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Functional Genomics of Populus Growth & Development



• Environmental regulation of growth, dormancy, flowering 

• Regulatory genes and  differentiating functions of paralogs

• Multi-tissue time series transcriptomics to gene regulatory networks

• Wood-associated protein-protein and protein-DNA interactions
• Have we identified new regulators of wood formation?

Outline



Native range of P. trichocarpa
Phenology is closely matched to local 

climates
• Common garden studies

• Latitudinal clines
• Genetic differentiation between 

populations
• Ecotypes –controlled environment 

studies
• Different critical daylengths for 

bud set & dormancy induction
• Phytochrome: night breaks of 

white or red light disrupt SD 
response



• Dormancy: a meristem is insensitive to growth promoting 
conditions until it is released from dormancy by an 
environmental cue 

• Depth of Dormancy: refers to the quantitative nature of this 
phase

• “Classic terms”

• Ecodormancy: meristem is quiescent, but will rapidly resume growth 
if the limiting environmental factor is altered

• Endodormancy



• Reproductive phenology: Seasonal timing of the 
floral transition, anthesis and fruiting

• In temperate zones, flowering is indirect

bract
floral 

meristem

Inflorescence bud



Environmental Factor Reliability in temperate
zones

Photoperiod High

Prolonged chilling period High

Ambient temperature Moderate

Light intensity Moderate

Water availability Moderate

Nutrient availability Low

Light quality Low

Less predictable factors modulate the effects of the primary signals and 
sometimes can substitute for the primary signal 

Adapted from Bernier and Perilleux (2005) A physiological overview of the genetics of 
flowering time control. Plant Biotechnol J 3 (1): 3-16

The environmental signals regulating vegetative and flowering 
phenology in temperate zones are generally the same 
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Free growing, Populus balsamifera
Boreal: Alaska (65oN)

Free growing, Populus trichocarpa
Maritime temperate: British Columbia (49oN) 

Rhythmic growth, Quercus robur
Warm temperate: Serbia (45oN) 

o

Deciduous, Pulmeria rubra
Tropical wet & dry: Costa Rica (10oN)

Deciduous, Parkia javanica
Tropical rain forest: Singapore (1oN)

Summer Solstice

Brevideciduous, Dillenia indica
Sub-tropical highland: India (25oN)

Evergreen, Eucalyptus miniata
Tropical wet and dry: Australia (13oS) r o

r o

r o

Adapted from Brunner, Varkonyi-Gasic and Jones 2017 
https://link.springer.com/chapter/10.1007/7397_2016_30

Tree annual growth patterns Spring 
Equinox

Autumn 
Equinox

https://link.springer.com/chapter/10.1007/7397_2016_30
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FT is  an integrator of 
environmental and 

internal signals 
regulating flowering time



Dormancy release Bud flush Inflorescence 
meristems form

Floral meristems 
form

Transition to flowering in Populus

Meristems commit to flowering during a limited seasonal time 



FT1: Shoot apex

FT1: Leaf, shoot

FT2: Leaf
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FT1/FT2 seasonal expression in mature P. deltoides

Hsu et al. 2011 PNAS 108: 10756-61

Do FT1 and FT2 have distinct roles in vegetative phenology?



FT2

Drought
Cold 
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SD
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deficiency

CRISPR/Cas9-induced mutations in both FT2 and 
FT1: reduced shoot elongation and terminal bud 
set in tissue culture under 16 hr daylengths

WT

FT1-specific mutants appear WT

WT ft1 #3
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ft1 mutants have WT-like phenotype in both long and short 
daylengths



WT ft1#1 WT ft1#1
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Dormancy release

Dormancy release is delayed in ft1 mutants
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FDL2.2:  Parmentier-line and Coleman 2016

FDL1 and FDL2.1 :Tylewicz et al. 2015
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• All Populus FDLs delay 
SD-induced bud set

• Only FDL2.2 induced 
flowering under LDs

• FDL2 and FDL3 affect 
shoot development 
under long days

• Diverged in regulation 
and proteins have 
partial functional 
equivalency



• 540 P. trichocarpa Nisqually1

• Daylength

• LDSDLD

• Nutrient

• HNLNHN

• Tissues/organs:

• Shoot apex

• Leaf

• Root

• Cambial zone (daylength only)

Multi-tissue time series transcriptomes 



Goals/Questions

• GRNs for organismal-level processes and phenotypes relatable 
to field conditions/natural populations

• Among different organs/tissues and environmental treatments: 

• To what extent are there common modules, transcriptional regulators 
(context dependent), paralogous modules/regulators etc.?

• Regulatory network context of adaptive variation
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Gene Regulatory Network (GRN) Prediction:  Ensemble method

• Uses 5 different algorithms: ARACNE, Random Forest, Least angle 
regression, Partial correlation, Context likelihood relatedness (Redekar, N. 
et al. 2017)

Transcriptional 
regulators 
predicted by at 
least 4 of the 5 
algorithms



More unique genes per network, but 
also common genes between: 

• Different organs in same treatment

• Same organ in different treatments

3 Daylength
organs

Same organ, nutrient & daylength

6%
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Regulatory context of adaptive variation

(Evans et al. 2014)

• GWAS traits
• Bud set

• Bud flush

• Height

• Selection scans

–

Clatskanie, OR – Coastal

Placerville, CA – Xeric

Corvallis, OR – Inland Valley



Nutrient Bud Network - GWAS 

.19 .35

• 115 Transcriptional 
regulators

• 33 GWAS

• 18 modules (4465 
genes)
• 96-404 genes/module

• 1318 GWAS



Nutrient Bud Network  - GWAS Nutrient Bud Network - BS-GWAS 

.19 .35 .07 .15

Nutrient Bud  - GWAS 

T

Fertilization

• Tale transcriptional regulator 

• Bud set associated gene

• Selection candidate 

• Also regulator in the 
daylength bud network
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• 163 transcriptional 
regulators

• 27 Bud set GWAS

• 24 Selection 
candidates

• 529 (11%) Bud set GWAS



FDL1 is a predicted regulator in nutrient and daylength bud 
networks 

• Response to water stress
• Response to ABA

• Response to Chitin
• Regulation of JA signaling



Module from leaf nutrient response GRN
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• 35S:NAC154 poplar (Grant et al. 2010; Jervis et al. 2015)

• Reduced size

• Elevated levels of arginine in stems

• 35S:PtrSND2-SRDX poplar (Wang et al. 2013)

• Reduced growth

• Reduced secondary cell wall thickening



Field trial established Nov 2013, photo taken 
Dec 4, 2015
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N154-LN study

* *

P-value < 0.001



• In short days, amiRNA-SND2 transgenics cease growth and set bud 
the same time as WT

• After temperature lowered, leaf senescence and drop is slower in 
transgenics

Results consistent with presence of NAC154 in nutrient 
network, but not the daylength network



Did we identify new regulators of wood formation?

Protein-Protein and Protein-DNA interactions linked to wood 
formation

Petzold et al. 2018
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Transgenic field trial (Nov 
2013-July 2017 ) included 
trees with 18 different 
constructs
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8 transgenic and WT 
were selected for wood 
chemistry analysis 
• Performed by the 

GLBRC





Petzold et al. 2018



LMX5::DIV1-SRDX 
phenotypes

WT



WTLMX5::DIV1-SRDX



Suzanne Gerttula et al. Plant Cell 2015;27:2800-2813

OE-ARK2miRNA-ARK2 OE-ARK2



Summary comments

• GRNs and integration with GWAS shows potential 

• As less biased approach to advance understanding of these complex 
processes in trees

• For improving precision in identifying  genes with key roles in 
phenology and growth

• SCW genes can have important roles in growth not related to 
wood formation

• Protein-Protein networks can identify novel 
regulators/regulatory complexes
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