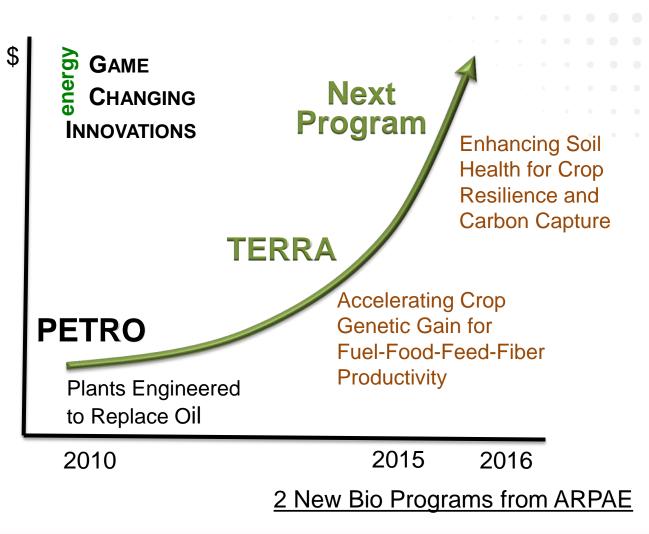


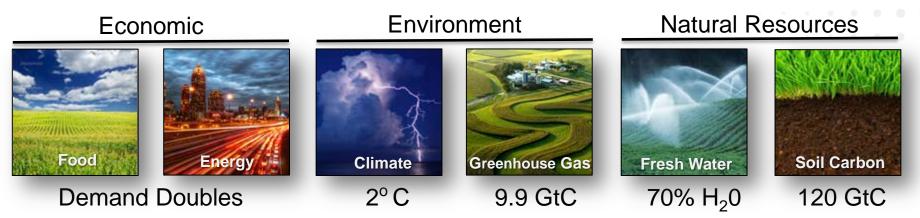
Advanced Research Projects Agency – Energy & Biological and Environmental Research Advisory Council

BRIEFING


Joe Cornelius Program Director 25 August 2015

Advanced Research Projects Agency - Energy

Catalyze development of high risk, high-impact, transformational technologies

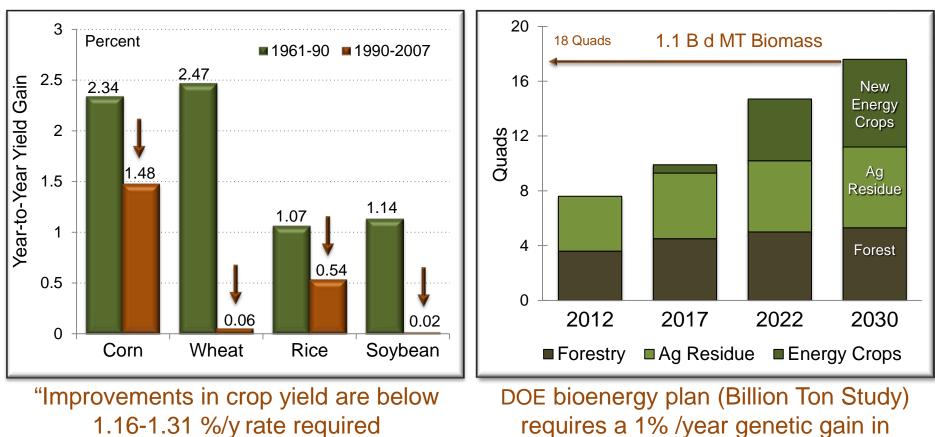

- ► NATIONAL SECURITY
- ECONOMIC SECURITY
- ENERGY SECURITY
- TECHNOLOGICAL LEADERSHIP

Goal: Sustainable, Economical, Crop Production FOOD – FUEL – FEED - FIBER

Context:

- Agriculture has the capacity and scale to deliver significant benefits.
- However, agriculture is significantly behind its productivity pathway.
- Increased yield can be achieved through breeding,

BUT

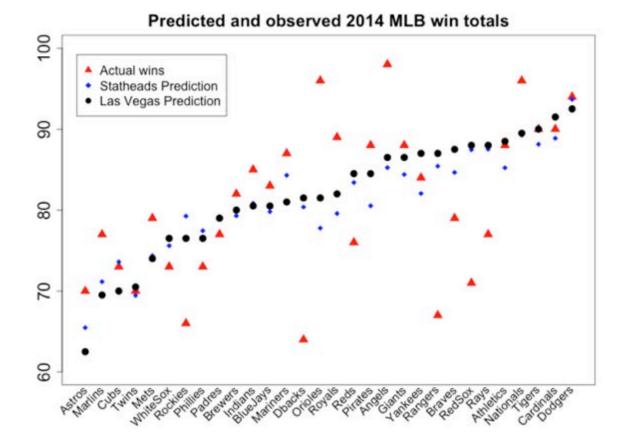

- Breeding is slow and inefficient

- Investment in crop development is sub-optimal

- Small stakeholders are disadvantaged from the development pipeline

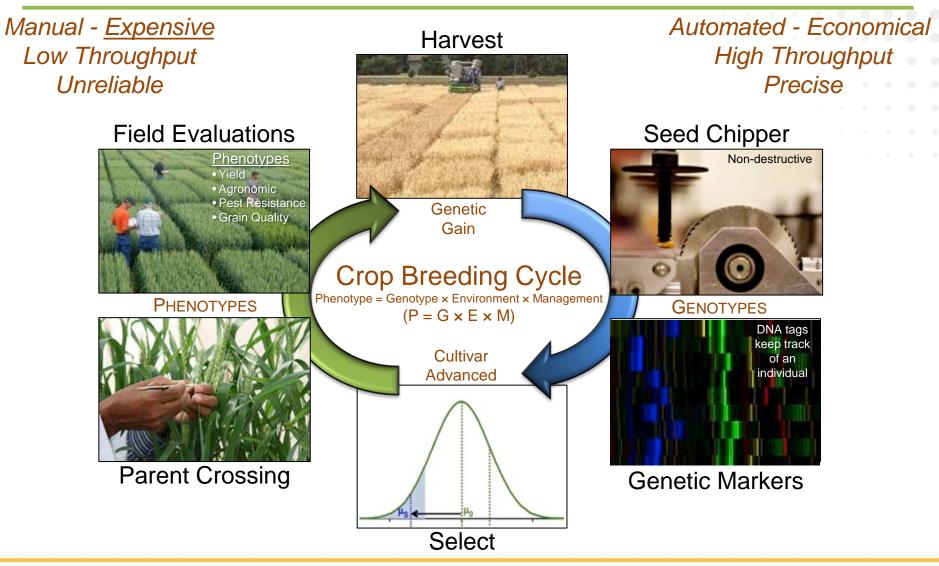
However, We Are Off the Pace to Satisfy Demand Evidenced by Declining Rate of Genetic Gain in Core Crops

to meet demand in 2050."


requires a 1% /year genetic gain in dedicated energy crops.

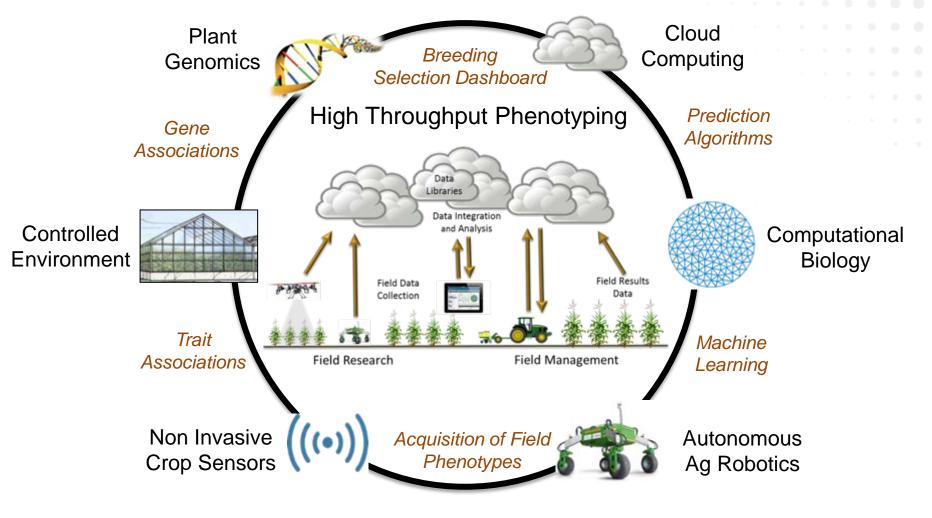
4

Breeding is like Baseball Selecting the best players to win games


- What are the drivers for 'winning' crop varieties?
- What data should the breeder collect?
- Which genes should the breeder try to discover and utilize?

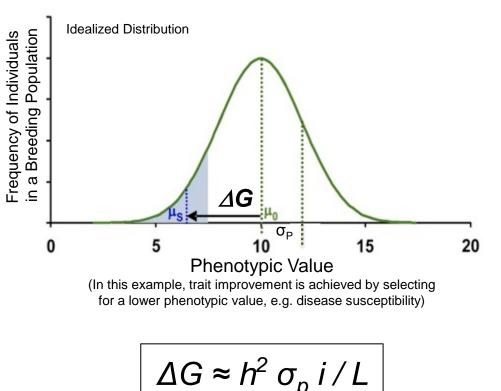
	Ted V	Ted Williams stat sheet (1939–1960)						
	н	HR	RBI	BB	BA	OBP	SLG	
1939	185	31	145	107	0.327	0.436	0.609	
1940	193	23	113	96	0.344	0.442	0.594	
1941	185	37	120	147	0.406	0.553	0.735	
1942	186	36	137	145	0.356	0.499	0.648	
1946	176	38	123	156	0.342	0.497	0.667	
1947	181	32	114	162	0.343	0.499	0.634	
1948	188	25	127	126	0.369	0.497	0.615	
1949	194	43	159	162	0.343	0.49	0.65	
1950	106	28	97	82	0.317	0.452	0.647	
1951	169	30	126	144	0.318	0.464	0.556	
1952	4	1	3	2	0.4	0.5	0.9	
1953	37	13	34	19	0.407	0.509	0.901	
1954	133	29	89	136	0.345	0.513	0.635	
1955	114	28	83	91	0.356	0.496	0.703	
1956	138	24	82	102	0.345	0.479	0.605	
1957	163	38	87	119	0.388	0.526	0.731	
1958	135	26	85	98	0.328	0.458	0.584	
1959	69	10	43	52	0.254	0.372	0.419	
1960	98	29	72	75	0.316	0.451	0.645	

Crop Improvement Process... 8-10 years / new hybrid Phenotyping is the Bottleneck for Trait Discovery and Cultivar Development



Major breeding objectives: yield, composition, disease and insect resistance and tolerance to abiotic stresses.

TERRA: Program Vision Transportation Energy Resources From Renewable Agriculture



Integrated Technologies Provide Platform for Accelerated Breeding

TERRA enables breeders to accelerate genetic gain

(ΔG) Genetic Gain is the predicted change in the mean value of a trait within a population that occurs with selection.

Stephen P. Moose, and Rita H. Mumm Plant Physiol. 2008;147:969-977

Genetic Gain Equation Component Parts:

- $\Delta G = Genetic Gain$
- μ_0 = mean phenotypic value of the original population
- μ_s = mean phenotypic value of selected individuals
- h² = heritability, a measure of the linkage between genotype and phenotype independent of environment
- σ_{P} = phenotypic variability in population
 - selection intensity, proportion of population selected to produce the next generation
 - = length of cycle interval (usually 1 generation)

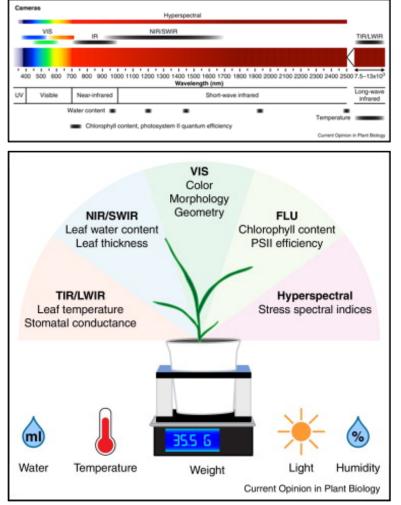
TERRA increases ΔG by :

- Estimating h by large scale collection of phenotype x genotype association data (GWAS)
- Determining environmental effects on traits at multiple field sites (h² ≈ P / (G X E))
- Introducing new genes (σ_p)
- Increasing number of crosses/population (i)
- Shortening cycles (L)

TERRA Performer Portfolio

(6 Integrated Systems Teams: Plant Biology, Robotic Sensors, Computer Science)

"COMPONENT" FOCUS SYSTEMS TEAMS


20th Century Crop Phenotyping SOA

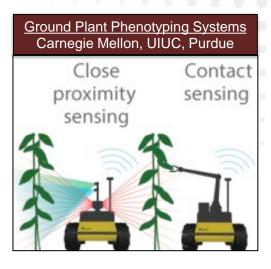
Phenotype Sensing - High-throughput Imaging

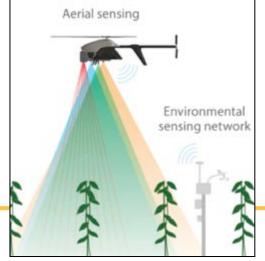
Data to quantify genotype by phenotype by environmental interactions

High-throughput plant phenotyping; Noah Fahlgren, Malia A Gehan, Ivan Baxter[:] Plant B<u>i</u>ology <u>Volume 24, April 2015, Pages 93–99</u>

Breeding Process:

Cameras capture signal from visible and infrared spectrum of light.


- <u>VIS</u> cameras detect light in the visible range from ~400 to 700 nm to measure morphological, geometric, and color properties of plants .
- <u>Infrared</u> (IR) cameras detect near-infrared (NIR) light for night imaging.
- <u>NIR</u> cameras detect NIR and short-wave infrared (SWIR) light useful for detecting leaf water content.
- <u>Thermal infrared (TIR)</u> cameras detect long-wave infrared (LWIR) light that is emitted by leaves in a temperature-dependent intensity.
- <u>Hyperspectral</u> cameras detect hundreds of spectral bands with nm-level resolution between 350 and 2500 nm to detect plant stress.
- <u>Specialized</u> imaging systems measure chlorophyll fluorescence after excitation.

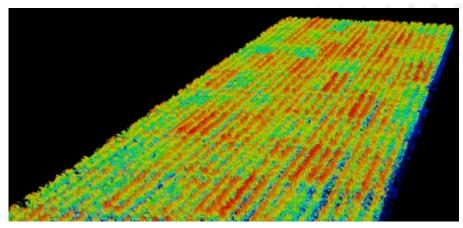

$\Delta G \approx h^2 \sigma_p i / L$ TERRA Robotic Platforms are Diverse and Data Rich

GFE Reference Field Phenotyping Platform Danforth Center, USDA, UAZ Sensor Hood Lemnalec" Reference **Field Gantry** (20 x 200 m)

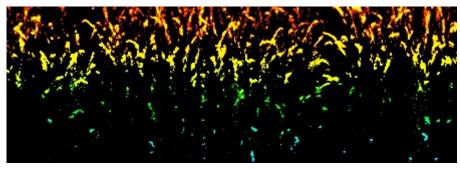
Performance Comparison	Current Breeding Manual	TERRA Ground & Aerial Vehicles				
# Breeder Plots	1,000	1,000				
# Phenotypes	10's	1000's				
Resolution	1 m	1 cm				
Bandwidth (nm)	400-700	100-2500				
Data Collection	Bytes	Terabytes				
Cycle Time	8 hrs	1 min UAV 4 hrs AGV				
Reference Field Gantry Sensors:• Hyperspectral i350-2500 nm • Thermal infrared• Height Scanner • 8 MP RGB down camera • 8 MP RGB down camera • 2 side looking cameras • 2 side looking cameras • Active reflectance in-field • Fluorescence • Environmental temperature, humidity, rainfall, wind, CO2						
Deployable Gantry Plant Phenotyping Systems National Robotics Engineering Center, TAMU						

Aerial Plant Phenotyping Systems Near Earth, Purdue, KSU, Blue River

CHANGING WHAT'S POSSIBLE

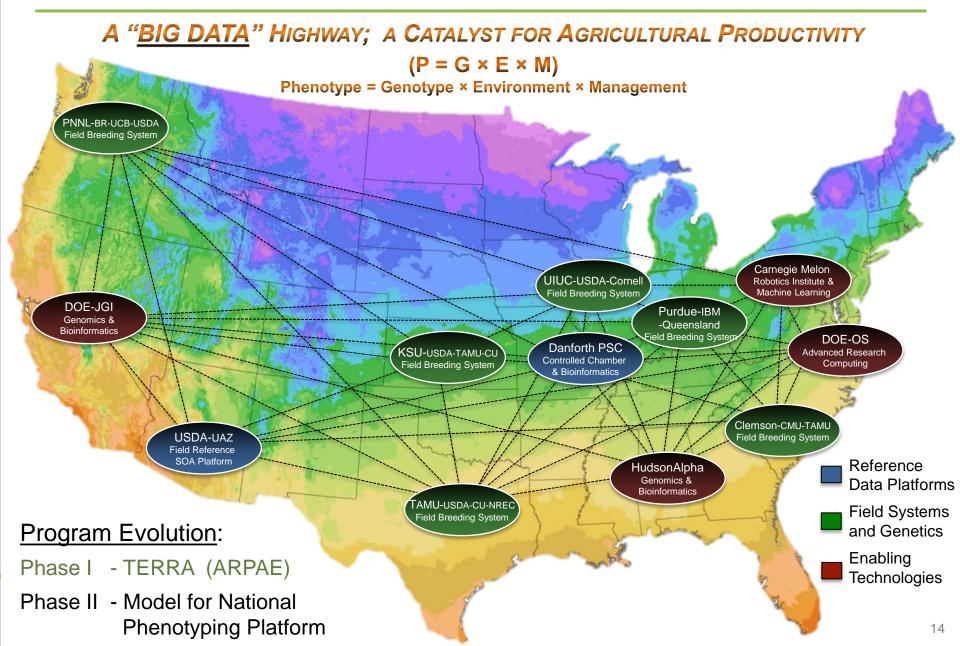

Phenotype Sensing – Drought Stress Example:. TERRA Performer PNNL and Blue River Technology

- Blue River Technology develops advanced computer vision, and robotics platforms.
- LiDAR, thermal, and multispectral imaging sensors measure over 1 million plants/day:
 - o Height
 - o Leaf Area
 - o Water stress
- Field-based 3D reconstruction of crop architecture demonstrated using ground-based cart in 2014.
- Sensors aboard new aerial platform will cover entire plant growth cycle.

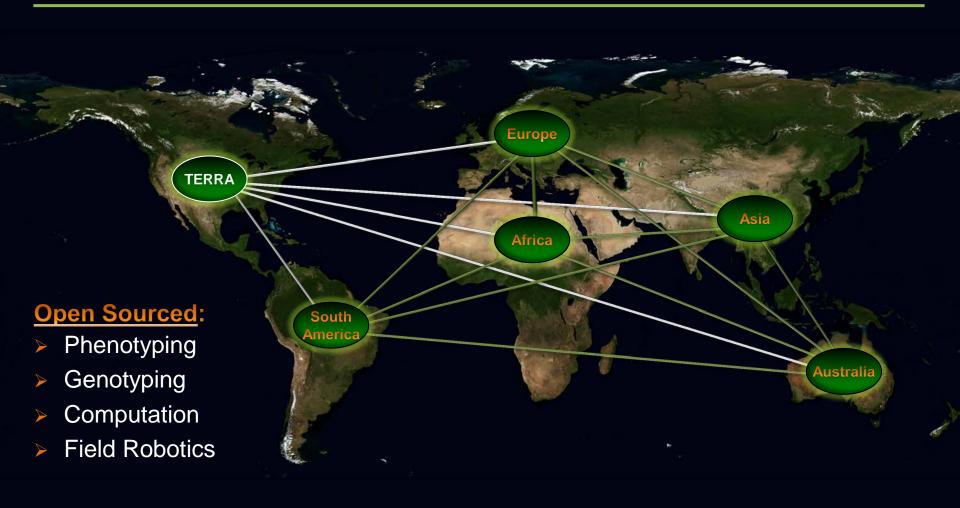

APPS - Aerial Plant Phenotyping System

Automated, Aerial-based, 3D Imaging Customized for Plant Breeding

Corn breeding plots in a drought stress trial. Color is height measured by LiDAR.

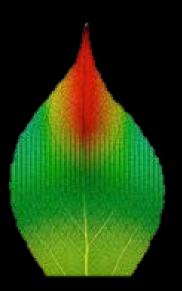


Side-profile of a row of mature corn (10 ft tall) using downward-facing LiDAR (color indicates height), showing the high resolution and canopy penetration that Blue River's drone LiDAR data provide. Extracted from the full field above.


TERRA: Integrated Phenotyping Network

Breeding-Agronomy-Genetics-Physiology- Robotics-Sensors-Computation-Machine Learning

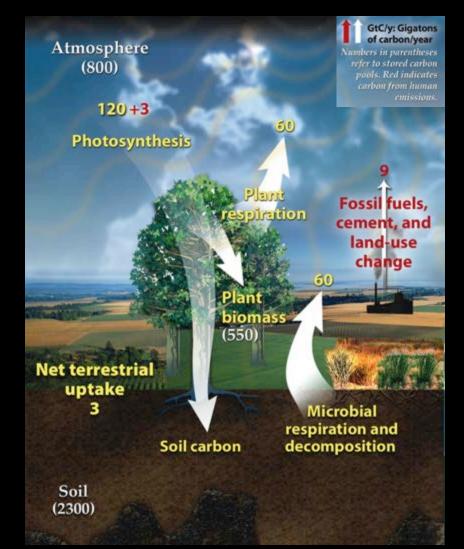
IMAGINE a 2nd Green Revolution


Powered by a National and International Phenotyping Network

AN INFORMATION HIGHWAY THAT IS A CATALYST FOR AGRICULTURAL PRODUCTIVITY FOOD – FUEL – FEED – FIBER

TERRA

TRANSPORTATION ENERGY RESOURCES FROM RENEWABLE AGRICULTURE


HT PLANT PHENOTYPING

 $\mathsf{P} = \mathsf{G} \times \mathsf{E} \times \mathsf{M}$

INTEGRATED BREEDING SYSTEMS

GENETICS & BIOINFORMATICS FIELD ROBOTICS & SENSORS COMPUTATIONAL ANALYTICS

POTENTIAL NEW PROGRAM SOIL HEALTH "BIOGEOCHEMISTRY"

ARPAE TERRA Program "standing upon the shoulders of giants"

Mission Alignment Creates Scale to Tackle the Really Big Problems

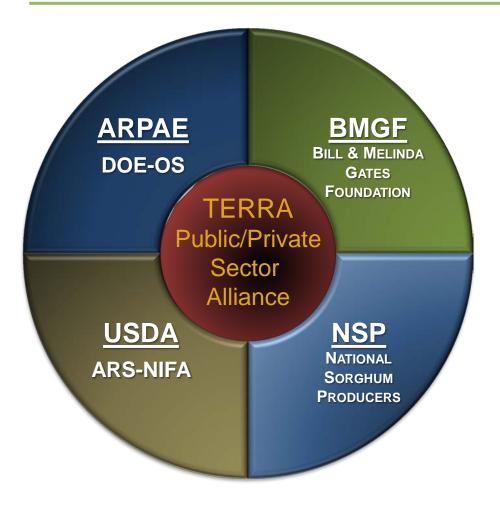
NASA

Germplasm Development

Crop Management

Genomics

Bioinformatics


Computational Analytics

Remote Sensing

Autonomous Robotics

Building a Strategic Collaboration Network

COMPLEMENTARY INTERESTS

- Agricultural Productivity and Food Security
- Affordable and Sustainable Renewable Energy
- Economic Growth for Small Stakeholders
- International Market
 Development (Bio-Economy)
- Environmental Stewardship and Resiliency

As well as other Federal Agencies; Trade Associations; Agricultural Companies and Information Technology Companies.

