

Accelerated Climate Model for Energy

BER Advisory Committee

Dorothy Koch Earth System Modeling Climate and Environmental Sciences Division

February 26, 2015

Office of Biological and Environmental Research

Overview

- Officially launched in July 2014, ACME is a branch of the Community Earth System Model (CESM), i.e., within the family of models jointly supported by DOE and NSF
- ACME is supported by DOE to serve mission needs:
 - Advance a set of science questions that demand major computational power and advanced software
 - Provide the highest resolution for climate science (15-25 km), with adaptable grids <10 km</p>
 - Fully coupled climate simulation, time horizon: 1970-2050
- Code designed to effectively utilize next and successive generations DOE Leadership Class computers, through exascale
- Project based on a consolidation of previous DOE Laboratory model development projects, and is therefore a more efficient use of existing resources

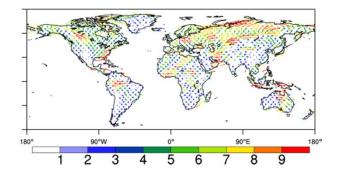
New Science using new capabilities

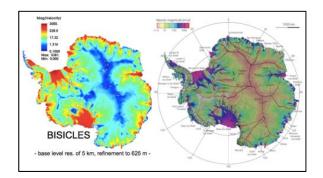
Science drivers

Water cycle: How do the hydrological cycle and water resources interact with the climate system on local to global scales?

Biogeochemistry: How do biogeochemical cycles interact with global climate change?

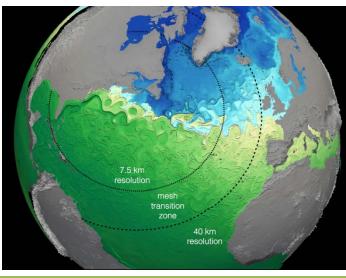
Cryosphere: How do rapid changes in cryospheric systems interact with the climate system?

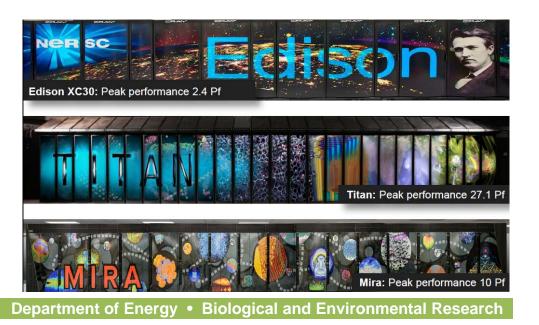

New capabilities to address


- Resolutions to resolve extreme phenomena (15-25 km coupled; <10 km using adaptive grids)
- Integration of the human/energy component

(energy-water sector interdependence, bioenergy)

• Dynamic coupling of ice-ocean, sea-level rise





ACME will be the first model to exploit DOE's next generation Leadership Class Computers

- Accelerated Climate Modeling for Energy
- ASCR (Computing Office) acquires cutting edge, increasingly disruptive computational facilities, which are exceedingly challenging for all domain scientists to effectively use.
- ACME embraces this challenge, risk, and opportunity as it develops software and algorithms to efficiently utilize current and future computer architectures.

Programmatic rationale: Before ACME DOE sponsored 7 modeldevelopment activities across 8 Labs

	CSSEF	Polar	COSIM	IMPACTS	UV- CDAT	Hi-Res	iESM
ANL							
LANL							
LBNL							
LLNL							
ORNL							
PNNL							
SNL							
BNL							

ACME combines and coordinates

	ACME	iESM
ANL		
LANL		
LBNL		
LLNL		
ORNL		
PNNL		
SNL		
BNL		
Other	NCAR, UC-Irvine, Scripps, NYU-Poly, U-MD, Kitware	

ACME: from proposal...to approved project

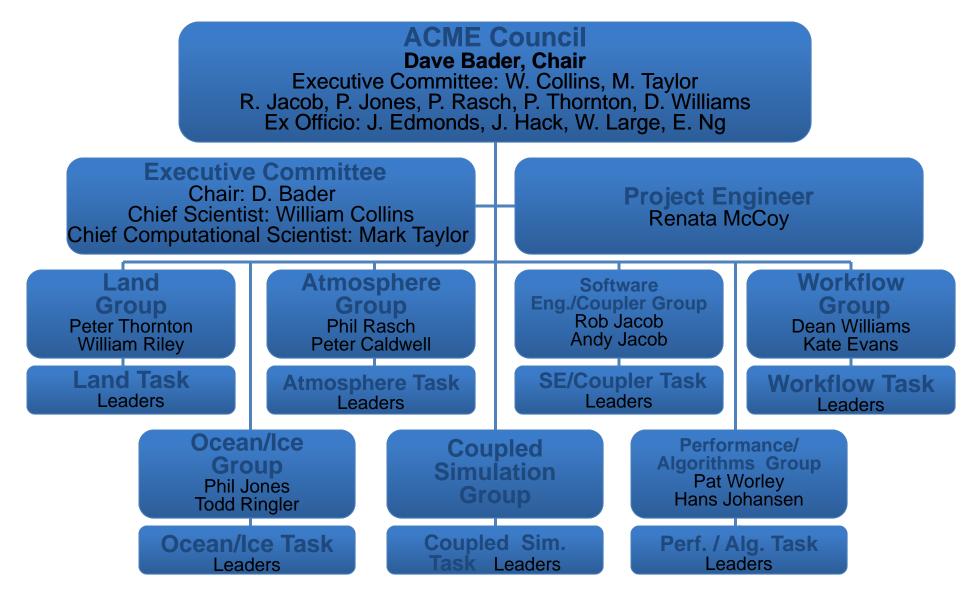
Reviewed by panel March 2014

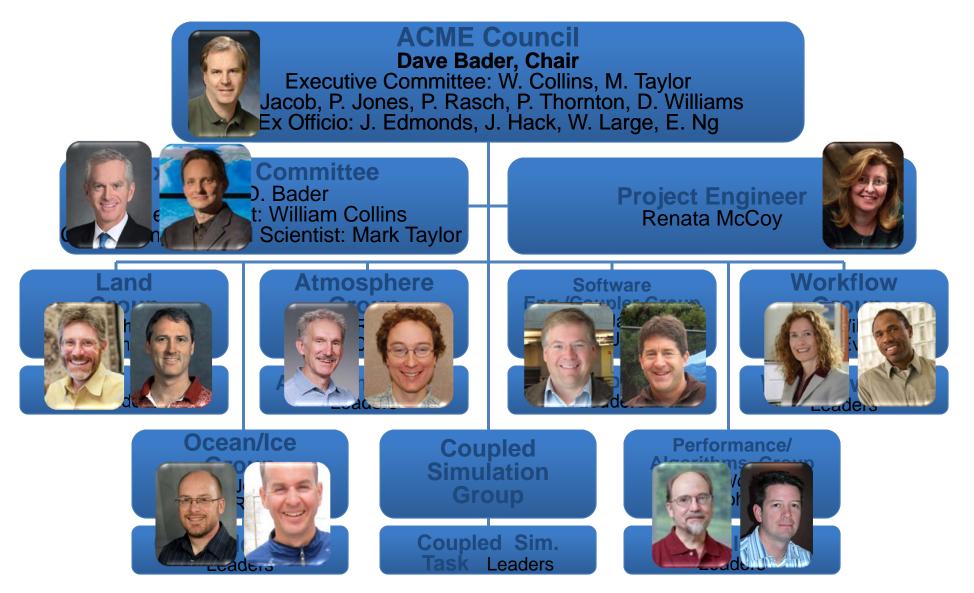
- Develop a concise and visionary document describing the project. Available on-line
- Careful consideration of the treatment of the energy/societal components.

BER approved project, July 2014

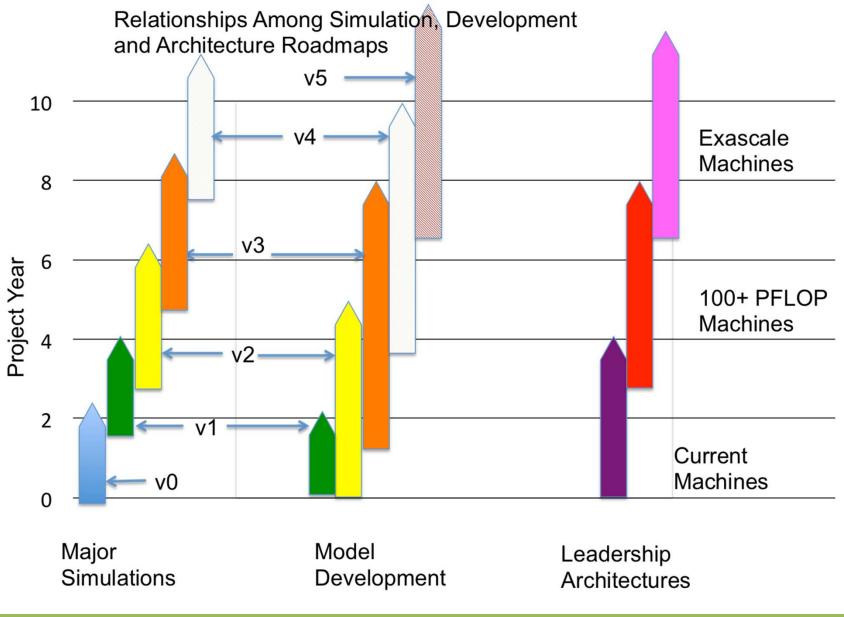
- BER held a community workshop in October 2014 to consider how best to address and model energy/societal elements, together with Integrated Assessment and Impacts Adaptation Vulnerability approaches and communities
- Follow-up review after 6 months

Management and progress review, January 2015


• Panel review was very positive on science outputs to-date and management processes

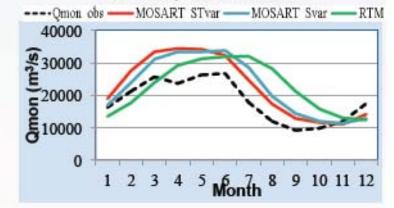

ACME Council Members David Bader William Collins Robert Jacob Philip Jones Philip Rasch Mark Taylor Peter Thornton Dean Williams

http://climatemodeling.science.energy.gov/ projects/accelerated-climate-modeling-energy


ACME management structure

ACME management structure

ACME development Roadmap


ACME • BERAC • February 2015

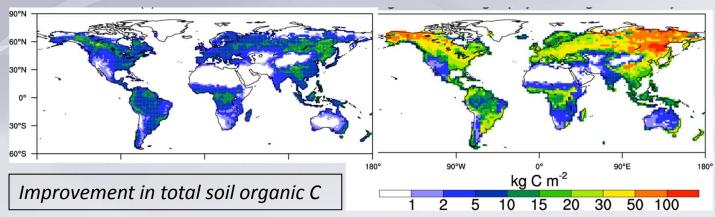
Water Cycle Experiment Strategy

- Explore the role of physical processes and parameterization in climate models influencing river flow and fresh water supply.
- Produce accurate simulation of river flow for major river basins: Mississippi, Amazon, Ganges

These basins represent very different:

- Climatic and hydrologic regimes
- Large-scale ocean-atmosphere interactions
- Regional land-atmosphere interactions
- Local human activities

Monthly Mean Flow

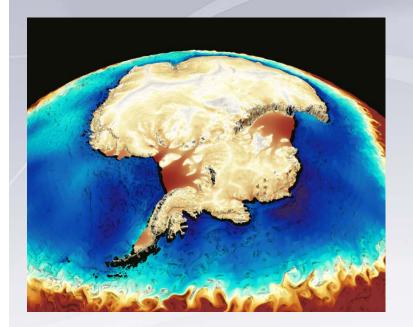

Seasonally inundated river basins in central Amazon

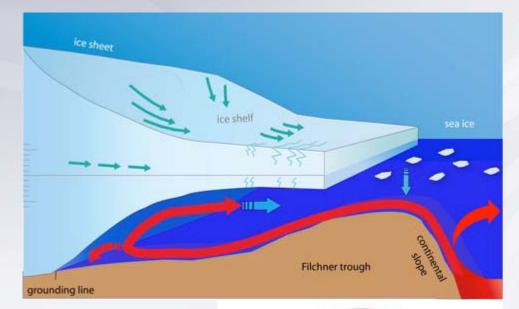
11

Biogeochemical Experiments

Science Question

- What are the impacts of nutrients on terrestrial C-Climate feedbacks? **Motivation**
- Globally, many ecosystems are N, P, or N and P limited
- Current nutrient-enabled models show poor performance compared to observations


Goals


- Quantify impacts on C-climate system feedbacks by nutrients (nitrogen, phosphorus)
- Investigate structural uncertainty in representations of nutrient controls on C-cycle dynamics

Cryospheric Experiments

Coupling of new dynamic ice sheet to new MPAS (Model Prediction Across Scales) variable-mesh ocean and seaice to simulate ice-sheet instability, calving, and sea-level rise

DOE-ASCR: Two computational architecture paths for today and future leadership systems

Power concerns for large supercomputers are driving the largest systems to either Hybrid or Many-core architectures

Hybrid Multi-Core (like Titan)

- CPU / GPU hybrid systems
- Small number of very powerful nodes, with multiple CPUs and GPUs per node
- Multiple levels of memory on package, DDR, and non-volatile

Many Core (like Sequoia/Mira)

- 10's of thousands of nodes with millions of cores
- Homogeneous cores
- Multiple levels of memory on package, DDR, and non-volatile

http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20141121/Bland_CORAL.pdf

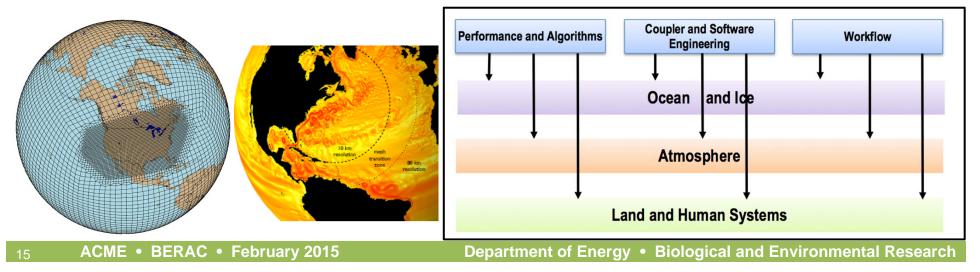
Significant challenge for ACME to design code for both architecture types!

ACME computation

Performance

Design code to run on DOE's Leadership Class computers, both existing and next-generation; internode, intranode parallelism. Engage in "early-user" facility programs (NERSC-NESAP; OLCF-CAAR)

Software design


Software development for portability, and rapid testing; modularity

Workflow

End-to-end model configuration, testing, validation, analysis, provenance

Algorithm

Variable mesh refinement, physics, in regions of interest or requirement. New algorithm design affected by computer architecture.

ACME next steps

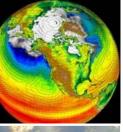
Energy/societal component

 Proposal is invited on GCAM-ACME carbon cycle, water management, biofuel-crops; to engage IAR

ASCR engagement

- Active discussions on ACME collaboration
- SciDAC4 (computational partnership program)
- NERSC/OLCF/(ALCF) early-user programs

Engagement of "Community"


- BER SFAs, NGEE's, ARM-LES
- University projects and partners

ACME v1 code and simulation release: July 2017

 New ocean, ice, convection scheme, coupled regional refinement system (ocean-ice-atmosphere), BGC-CNP, watershed hydrology, sub-grid orography

Thank you!

Dorothy.Koch@science.doe.gov

ACME: <u>http://climatemodeling.science.energy.gov/projects</u> /accelerated-climate-modeling-energy

U.S. DEPARTMENT OF

ENERGY

Earth System Modeling: http://science.energy.gov/ber/research/cesd/earthsystem-modeling-program/

> Office of Science

Office of Biological and Environmental Research