

Office of Biological and Environmental Research

Biological Systems Science Division Update

Todd Anderson, Ph.D. Director, Biological Systems Science Division, Department of Energy, Office of Biological & **Environmental Research**

U.S. DEPARTMENT OF

October 1, 2014

Office alla:(e) of Science

Office of Biological and Environmental Research

Programmatic Activities

Completed/Upcoming Reviews

- Plant Feedstocks Genomics for Bioenergy (DE-FOA-0001034) complete
- Systems Biology of Bioenergy-Relevant Microbes to Enable Production of Next-Generation Biofuels (DE-FOA-0001060) - complete
- Committee of Visitors review (July 9-11) complete (Briefing by Dr. Dave Stahl)
- Systems Biology Knowledgebase (KBase) (Aug 12-13) complete
- Pacific Northwest National Laboratory Foundation Genomic Science SFA review (Nov. 17)
- Bioenergy Research Centers annual review
 - Great Lakes Bioenergy Research Center (GLBRC) Oct 7-8
 - BioEnergy Science Center (BESC) Nov 5-6
 - Joint BioEnergy Institute (JBEI) Dec 11-12
- ➢ Joint Genome Institute (JGI) Triennial Review (Dec 8-10)

Completed Workshops

- "Research for Sustainable Bioenergy," report completed
- * "Molecular Science Challenges Workshop" report pending (Briefing by Dr. Judy Wall)
- "DOE Bioenergy Workshop", June 23-25, 2014 report pending (Briefing by Dr. Kent Peters)

Plant Feedstocks Genomics for Bioenergy (DE-FOA-0001034)

Ten Awards totaling \$12.6 M in total funds (FY14-16)

- Genetic Improvement of Bioenergy Sorghum for Compositional and Agronomic Traits
- > Abiotic Stress Networks Converging on FT2 to Control Growth in *Populus*
- Exploiting Natural Diversity to Identify Alleles and Mechanisms of Cold Adaptation in Switchgrass
- > A Novel Poplar Biomass Germplasm Resource for Functional Genomics and Breeding
- Genetic Dissection of AM Symbiosis to Improve the Sustainability of Feedstock Production
- Advancing Field Pennycress as a New Oilseed Biodiesel
- Biofuels in the Arid West: Germplasm Development for Sustainable Production of Camelina Oilseed
- The Brachypodium ENCODE Project From Sequence to Function: Predicting Physiological Responses in Grasses to Facilitate Engineering of Biofuel Crops
- Genomics of Energy Sorghum's Water Use Efficiency/Drought Resilience
- Quantifying Phenotypic and Genetic Diversity of Miscanthus sacchariflorus to Facilitate Knowledge Directed Improvement of M. xgiganteus (M. sinensis x M. sacchariflorus) and Sugarcane

United States Department of Agriculture National Institute of Food and Agriculture

USDA funded projects in red font

http://genomicscience.energy.gov/research/DOEUSDA/2014awards.shtml

Systems Biology of Bioenergy-Relevant Microbes to Enable Production of Next-Generation Biofuels (DE-FOA-0001060)

- Research to advance the development of promising new model organisms relevant to biofuels production.
- Development of novel microbial functional capabilities and biosynthetic pathways relevant to the production of advanced biofuels and the development of strategies to overcome associated metabolic challenges resulting from pathway modification
- > Development of novel analytical technologies or high-throughput screening approaches

Fourteen Awards totaling \$19.6 M in total funds (FY14-16)

New model organisms for bioenergy purposes: *Rhodococcus*, *Rhodosporidium*, fast growing cyanobacterial strains, lignocellulytic fungi, lichens, oil producing yeasts, *Bacillus* sp.

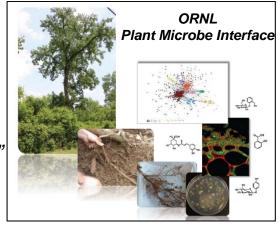
New functional capabilities: novel biofuels production pathways, multi-omics approaches to understanding metabolic regulation in microbes, protein acetylation and genome regulation relevant to biofuels production.

Novel technologies: cell-wide kinetic and metabolic modeling, mapping interspecies interactions and metabolic synergy.

Portfolio Context for the New Awards

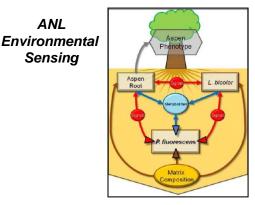
New Plant Feedstocks Awards Complement Existing Plant and Rhizosphere Research efforts in the:

- Oak Ridge National Laboratory SFA "Plant Microbe Interface"
- Argonne National Laboratory SFA "Molecular Mechanisms" Mediating Environmental Sensing and Response"

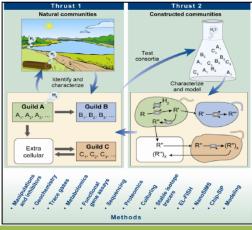

New System Biology Research on Bioenergy-Relevant Microbes Complements Existing Efforts in the:

- Lawrence Livermore National Laboratory SFA "A Systems" Approach to Energy Flow in H₂-producing Microbial Communities"
- > National Renewable Energy Laboratory SFA "...Addressing Limitations to Algal Hydrogen and Biofuels Photoproduction"
- > Oak Ridge National Laboratory SFA "Dynamic visualization of lignocellulose degradation..."

In addition to existing projects and ongoing efforts in the: **Bioenergy Research Centers Biosystems Design projects Early Career awards**



Use the Genomic Science Program PI Meeting to Encourage Collaborations



ANL

Sensing

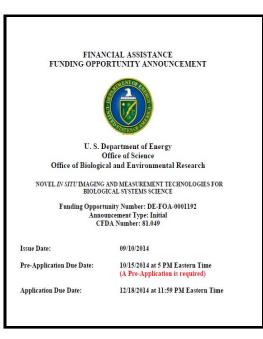
LLNL: Energy Flow in microbial communities

New Funding Opportunity Announcements (FOAs)

Systems Biology Research to Advance Sustainable Bioenergy Crop Development (posts October 1).

- Systems-level research to better understand the molecular and physiological mechanisms that control bioenergy crop vigor, resource use efficiency, and resilience/adaptability to abiotic stress, as well as interactions with the surrounding environment, in order to increase biomass productivity under changing and at times suboptimal conditions.
- Systems biology-enabled investigations into the role(s) of microbes and microbial communities in the complex and multi-scaled interactions of the plant-soil-environment: contribution(s) to bioenergy feedstock plant performance, adaptation, and resilience in the face of a broad range of changing environmental conditions and abiotic stressors (e.g., climate), and the impacts of introducing bioenergy cropping systems on the local ecosystem.

Plant Feedstocks Genomics for Bioenergy – posts in November


Small Business Innovative Research (SBIR) – posted

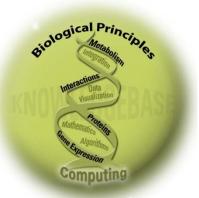
Includes intellectual property (IP) developed by the Bioenergy Research Centers

<u>New FOAs Cont'd</u> Bioimaging Technology Development (DE-FOA-0001192)

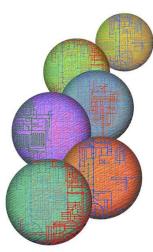
- Understanding translation of genomic information into the mechanisms that power living cells, communities of cells, and whole organisms
- Develop new measurement and imaging technologies to visualize the spatial and temporal relationships of key metabolic processes governing phenotypic expression in plants and microbes.
- Funded five projects at the DOE National Laboratories (ANL, BNL, ORNL PNNL, SLAC)
- Issued an FOA for FY 2015 funds to the Academic community

http://science.energy.gov/~/media/ber/pdf/Broch ures/imagingandmeasurement.pdf Posted Sept 10 Proposals due Dec 18

Department of Energy • Office of Science • Biological and Environmental Research

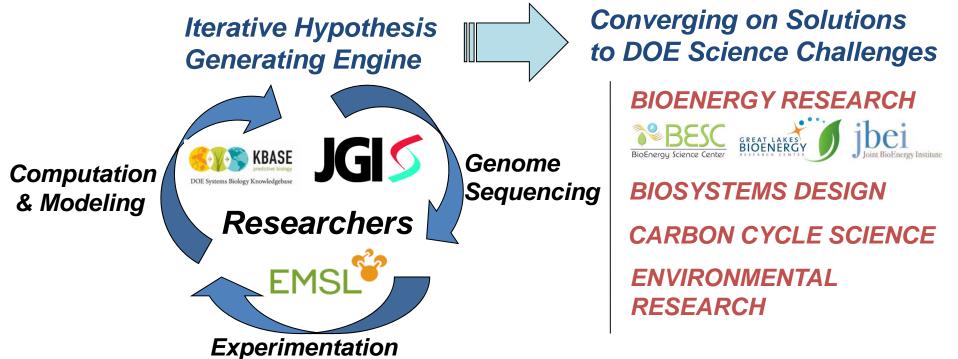


DOE Systems Biology Knowledgebase (KBase) Building a Community Resource for Predictive Biology


An *open-source and open-architecture* computational environment for integrating large, diverse datasets, generated by the Genomic Sciences program and other sources, and for using this information to advance predictive understanding, manipulation, and design of biological systems.

Reviewed this past August:

- Support for the overall vision
- Attention to improving the access and utility of KBase
- Concerted effort to improve core capabilities in the three KBase domains (microbes, plants and microbial communities)
 - Over 12,000 microbial genomes, 100 eukaryotic genomes, and 15,000 metagenomes
 - Annotated over 52 million genome features, 55,000 phylogenetic trees, and 132 million ontological terms
 - Generated 23,000 metabolic models with 27,000 compounds and 34,000 reactions
 - 8,000 expression samples, 250 correlation networks, and 13 protein-protein networks including 230,000 interactions
 - ~900 registered users from the Genomic Sciences, partnering with BRCs, JGI, and efforts at other funding agencies (*e.g.* iPlant)


http://www.kbase.us

Biological Systems Science

Enabling scientific communities

- support for individual researchers in Academia
- team-oriented research at the DOE National Laboratories
- technology development for systems biology integration
- cutting edge capabilities at the DOE User facilities
- computational infrastructure to collaboratively link researchers with each other and with facilities

Bioenergy Research Centers (BRCs)

Scientific goals (summarized) for FY 2015

Great Lake Bioenergy Research Center (GLBRC)

- Develop a functional metagenomics description of the rhizosphere for bioenergy crops
- Modify the cell wall structure in bioenergy crops for reduced recalcitrance and sugar yield
- Engineer efficient biosynthetic pathways for NextGen biofuels

Joint BioEnergy Institute (JBEI)

- Engineer plant cell walls with optimized matrix polysaccharide composition
- Develop and optimize new biomass pretreatment techniques based on ionic liquids
- Continue discovery and engineering of novel hydrocarbon biochemistries and biosynthesis

BioEnergy Science Center (BESC)

- Identify key biomass structural features that increase sugar release
- Generate modified and natural variant bioenergy crops improved for conversion into biofuels
- Establish thermophilic pathways for advanced biofuel production

To date the BRCs have generated :

- 602 invention disclosures and/or patent applications
- 19 patents awarded
- 108 licensing agreements
- 1661 peer-reviewed publications

BRC Science Highlight

Field Trials Demonstrate Viability of Reduced Recalcitrance Switchgrass

Evaluate the viability of a transgenic switchgrass (*Panicum virgatum* L.) in a field setting

Approach:

Low lignin (COMT down-regulated) switchgrass was analyzed in a 2-year field trial to evaluate the viability of this engineered bioenergy crop under agriculturally relevant conditions

Result/Impacts:

- Fully established harvested COMT variants produced results similar to greenhouse studies and did not appear susceptible to rust (*Puccinia emaculata*).
- Harvested plants exhibited a 34% increase in sugar yield upon deconstruction and 28% increase in ethanol yield upon conversion, relative to control plants
- The results suggests real-world improvements in a biofuel yield can be obtained with an engineered bioenergy crop

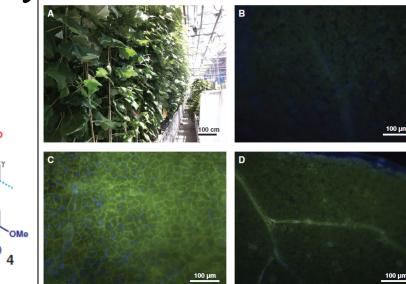
Baxter et. al. (2014) "*Two-year field analysis of reduced recalcitrance transgenic switchgrass*" **Plant Biotechnology J.** 12(7) 914-924 (Sept).

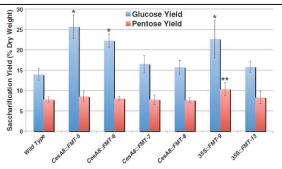
BRC Science Highlight

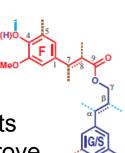
Engineered Lignin in Poplar Improves Wood Degradability

Objective

Engineer reduced recalcitrance into poplar cell walls

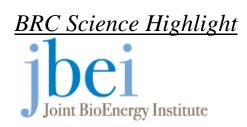

Approach


- Design modified lignin components with labile bond structures to improve degradability Ferulovlated
- > Express enzymes *in planta* to synthesize cell walls with modified lignin components
- Demonstrate improved sugar yields in modified plants


Results/Impact

- Engineered poplar strains grow indistinguishably from wild type
- Gene expression in planta, lignin component analysis and saccharification assays indicate demonstrate engineered reduced recalcitrance into poplar tissues

Wilkerson, et. al. (2014) "Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone" Science 4 April 2014: 90-93, doi 10.1126/science.1250161



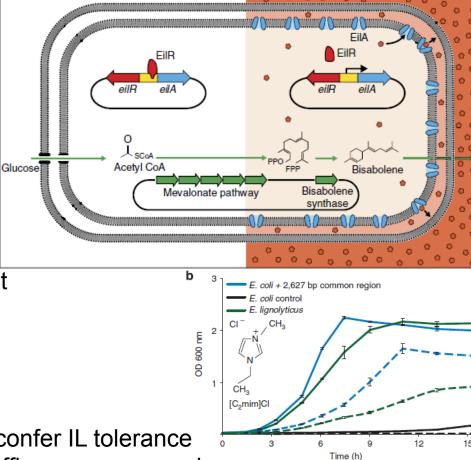
Lignin Unit

Ó(H)

An Auto-Inducible Mechanism for Ionic Liquid Resistance in Microbial Biofuel Production

Objective

Engineer efflux pumps into fuelsynthesizing microbial hosts to increase tolerance to ionic liquids


Approach

- Ionic liquid (IL) components can be toxic to fuel-synthesizing microorganisms
- Efflux pumps isolated from IL-tolerant Enterobacter lignolyticus, (rainforest isolate) show activity imidazoliumbased ILs.

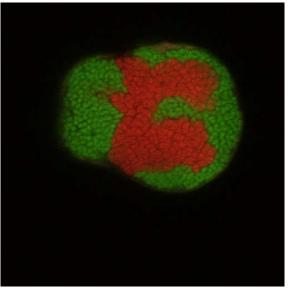
Results/Impact

- Efflux pumps transferred into *E. coli* confer IL tolerance via dynamic feedback regulation of efflux gene expression
- Demonstrates a method to increase the tolerance of fuel-synthesizing microbes to biomass pretreatment conditions

Ruegg, et. al. (2014) "An Auto-Inducible Mechanism for Ionic Liquid Resistance in Microbial Biofuel Production" **Nature Communications** 5:3490 doi: 10.1038/ncomms4490.

Department of Energy • Office of Science • Biological and Environmental Research

Genomic Science Program- C Cycling


Integration of Carbon, Sulfur, and Iron Cycling in Anaerobic Methane Oxidation

Objective:

Examine the impacts of iron minerals on rate of anaerobic oxidation of methane (AOM) by consortia methane-oxidizing archaea and sulfate-reducing bacteria

Approach:

Track microbial community function and the fate of isotopically labeled methane (CH_4) and sulfate (SO_4) in sediment microcosms containing varying concentrations of the iron oxide hematite

Results/Impact:

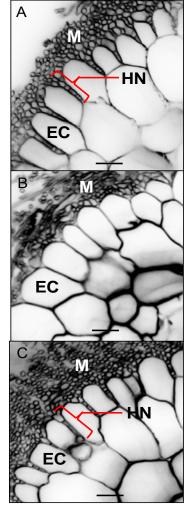
- Hematite significantly decreases the rate CH4 release from microcosms and increased the rate of AOM.
- Isotope analysis revealed that iron oxides stimulated sulfur reduction and facilitated recycling of reduced sulfur compounds, which in turn accelerated AOM rates.
- A new biological linkage in the biogeochemical cycling of carbon, sulfur, and iron, with important implications in predicting the contribution of AOM processes to the global carbon cycle
 Sivan et al. 2014. "Iron oxides stimulate sulfate-driven anaerobic

methane oxidation in seeps" **PNAS** doi/10.1073/pnas.1412269111

Fungal and Plant Proteins Interact to Allow Beneficial Colonization in Populus

Objective:

Investigate the mechanism(s) by which the *Laccaria bicolor*encoded effector protein MiSSP7 enables establishment of fungal-plant symbiosis


Approach:

Investigate the interactions between MiSSP7 and *P. trichocarpa*encoded proteins in root cells during fungal colonization

Results/Impact:

- MiSSP7 interacts with transcriptional repressor protein PtJAZ6 within *P. trichocarpa* nuclei, protecting PtJAZ6 from JA-induced degradation
- Repression of JA-induced gene transcription by MiSSP7 counters negative impacts of JA on fungal colonization of host tissues
- Mutualistic fungi, like pathogens, use effectors targeting host hormone pathways to promote fungal colonization, further delineating how beneficial and pathogenic microbes differ in the mechanisms by which they overcome plant defenses

Plett et al. 2014. "Effector MiSSP7 of the mutualistic fungus *Laccaria bicolor* stabilizes the *Populus* JAZ6 protein and represses jasmonic acid (JA) responsive genes". **PNAS** doi:10.1073/pnas.132267111

15 Oct 2014 BERAC Meeting

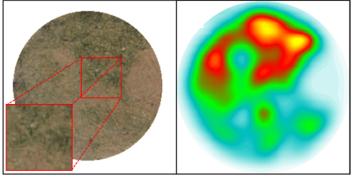
Imaging Desert Biological Soil Crusts:PET Images of ¹¹CO₂ Uptake During Emergence from Dormancy

Objective

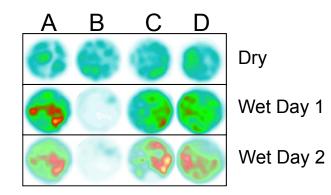
Detect microbial activity in desert crusts in response to wetting and drying as a method to measure CO_2 flux in arid soils

Approach

- PET imaging using ¹¹C-CO₂ to identify active sites of CO₂ uptake in environmental samples.
- Identify sites for detailed mechanistic studies using a range of genomic and metagenomic analyses.


Results/Impacts:

- New technique to investigate microbial activity and carbon dynamics in desert surface crusts and examine how crusts emerge from dormancy upon wetting.
- New methods to understand carbon flux in the environment.

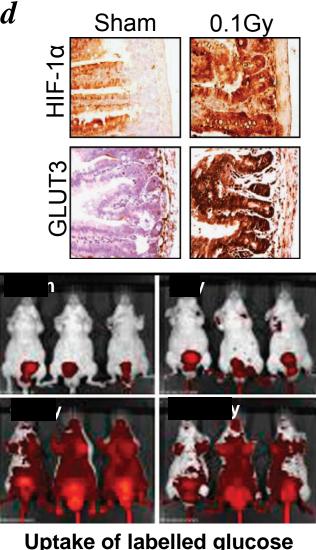

Manuscript accepted for publication (Vandehey, et al. in Environmental Science and Technology Letters)

Optical Image

Intra-sample heterogeneity

Inter-sample heterogeneity

Radiobiology: Low Dose Radiation Research


Low-dose irradiation induces glucose flux and radiation resistance in vivo

Objective

Studies have shown the existence of adaptive dose– response relationships with low doses being protective and high doses causing detrimental effects. This study searches for a metabolic mechanism underlying the adaptive stress response.....

Results / Impact

- Treatment of normal human cells with low-dose radiation induces a metabolic shift from oxidative phosphorylation to aerobic glycolysis, resulting in increased radiation resistance.
- Importantly, these findings are also observed systemically in mice.
- This metabolic change represents a previously unknown cellular response to low-dose radiation.

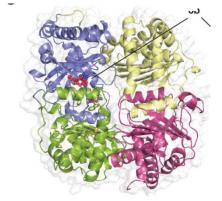
(live imaging)

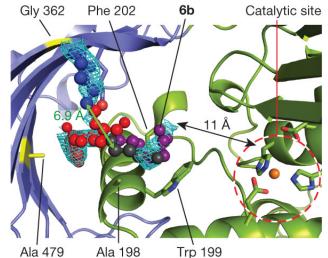
R Lall, *et al.*, Z-M Yuan, "Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response", *Cell Death and Differentiation* 28 February 2014; doi:10.1038/cdd.2014.24

Celebrating 30 years of Macromolecular Crystallography at the National Synchrotron Light Source (NSLS)

Objective:

Enable access the unique capabilities of the NSLS, from 1984 to September 30, 2014.


Approach:


- BER and its predecessor, HER, have funded research into new technologies, design and development of beamlines, and support for a large user community for crystallography, as well as small-angle scattering and imaging, at the NSLS, the first second-generation light source in the U.S.
- New capabilities have been introduced in response to community needs, using advanced technologies developed at Brookhaven National Laboratory and other institutions.
- Jointly funded/managed effort with NIH.

Results/Impact:

- The BER-funded crystallography stations have enabled nearly 5000 of the structures in the Protein Data Bank (and nearly 7300 have come from all NSLS stations)
- Forefront science (such as in this recent *Nature* paper from station X29) has been produced throughout the NSLS's 30 years.

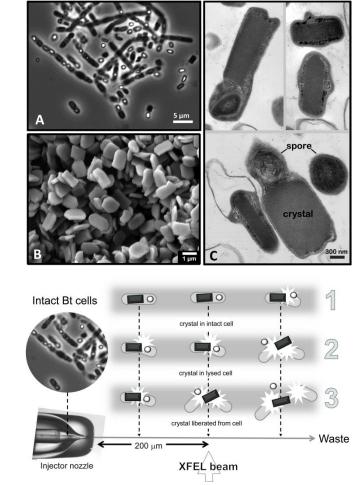
J.P. Maianti, et al., "Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones", *Nature*, 511, 94-98 (2014). doi:10.1038/nature13297

Above: Crystal structure of the Insulin Degrading Enzyme complex with macrocyclic inhibitor 6b Below: Close-up of the binding site

Structure of a crystal inside a living cell

Objective:

To determine the structure of a protein as it exists in crystalline form in living cells; to demonstrate that an x-ray free-electron laser can perform such studies.

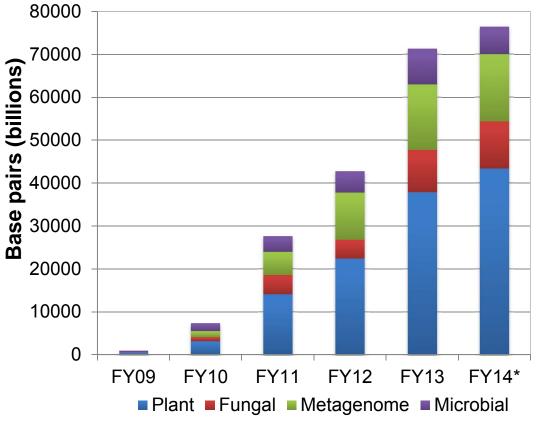

Approach:

- Select a well-characterized microbial species that is known to have a protein stored within the cell in crystalline form: *Bacillus thuringiensis* (Bt), which stores its toxins in this way.
- Develop a way to introduce living Bt cells into the beam of the CXI instrument of the Linac Coherent Light Source, which can obtain diffraction data on extremely small crystals.
- Compare the in vivo structures obtained for the toxin Cry3A with those determined using conventional in-vitro crystals.

Results/Impact:

A crystal structure with resolution to 2.9 Å was obtained from the experiments. It is consistent with the conventional structure of Cry3A. This demonstrates possibilities for studying crystals and other ordered structures in their native environments in living cells.

M.R. Sawaya, et al., "Protein crystal structure obtained at 2.9 Å resolution from injecting Bacterial cells into an X-ray free-electron laser beam", *Proceedings of the National Academy of Sciences (USA)*, 111, 12769-74 (2014). doi:10.1073/pnas.1413456111


Above: samples used for the studies; Below: Three ways in which the XFEL beam might interact with Bt cells

DOE Joint Genome Institute

Meeting the DNA sequencing needs of the bioenergy, carbon cycle, and subsurface science communities

- Complex plant, rhizosphere and microbial community sequencing
- New strategies for interpreting complex genomes through new highthroughput functional assays, DNA synthesis and manipulation techniques and, genome analysis tools in association with KBase.
- Supporting biosystems design efforts for biofuels and environmental process research.
- Metagenome (genomes from multiple) organisms) sequencing and analysis from environmental samples and single cell sequencing for hard-toculture microorganisms from understudied environments relevant to DOE.
- 20000 10000 0 **FY09 FY10**
- Joint projects with EMSL

^{*}through FY14-Q3

Joint Genome Institute

Selected Publications

- Ivanova, NN, et. al., (2014) <u>Stop codon reassignments in the wild</u> *Science*, 344: 909-913 doi:10.1126/science.1250691
- Myburg, AA, et. al.. (2014) <u>The genome of Eucalyptus grandis</u> *Nature 510:356-362* doi:10.1038/nature13308
- Wu, GA, et. al., (2014) <u>Sequencing of diverse mandarin, pummelo and orange genomes</u> reveals complex history of admixture during citrus domestication Nature Biotechnology 32:656–662 doi:10.1038/nbt.2906
- Schmutz, J., et. al., (2014) <u>A reference genome for common bean and genome-wide</u> <u>analysis of dual domestications</u> Nature Genetics 46: 707–713 doi:10.1038/ng.3008
- Riley, R., et. al., (2014) <u>Extensive sampling of basidiomycete genomes demonstrates</u> <u>inadequacy of the white-rot/brown-rot paradigm for wood decay fungi</u>., Proc. Nat. Acad. Sci. 111(27):9923-8. doi: 10.1073/pnas.1400592111.
- Shi, W., et. al., (2014) <u>Methane yield phenotypes linked to differential gene expression in</u> <u>the sheep rumen microbiome</u> Genome Research 24: 1517-1525 doi:10.1101/gr.168245.113
- Kis-Papo, T., et. al., (2014) <u>Genomic adaptations of the halophilic Dead Sea filamentous</u> <u>fungus Eurotium rubrum</u>, Nature Communications 5:37-45 doi:10.1038/ncomms4745
- Kashtan, N., et. al., (2014) <u>Single-Cell Genomics Reveals Hundreds of Coexisting</u> <u>Subpopulations in Wild Prochlorococcus</u>, Science 344:416-420 DOI: 10.1126/science.1248575
- Howe, AC., et. al., (2014) <u>Tackling soil diversity with the assembly of large, complex</u> metagenomes Proc. Nat. Acad. Sci. 111: 4904-4909 doi: 10.1073/pnas.1402564111

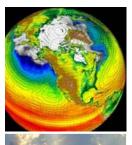
67 publications since the last BERAC meeting

JGI Publication Highlights: http://www.jgi.doe.gov/News/pubs.html

Latest Opportunities

The Community Science Program 2015:

- Functional Genomics and Microbiomes of DOE JGI Flagship Plants
- Functional diversity of microbes
- Microbial emission and capture of greenhouse gases in terrestrial systems
- Discovery and expression of natural product pathways relevant to energyrelated and environmental processes.

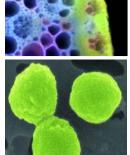

LOIs: 85 Full Proposals: 76 Selected Projects: 32

The JGI-EMSL Collaborative Science Initiative:

- Biogeochemistry
- Carbon Cycling
- Biofuels Production

LOIs: 37 Full Proposals: 31 Selected Projects: 12

http://www.jgi.doe.gov/CSP/user_guide/index.html



Systems science to meet DOE mission needs in bioenergy, climate and the environment.

http://science.energy.gov/ber

U.S. DEPARTMENT OF

http://genomicscience.energy.gov

Office of Biological and Environmental Research

Additional Science Highlights

Analysis of 33 Basidomycete Fungi Blurs "White Rot" and "Brown Rot" Distinction

Objective:

Characterize the diversity of fungal wood-degrading enzymes and pathways

Approach:

DOE JGI researchers analyzed 33 basidiomycete fungal genomes, 22 of which are known wood decayers, four recently sequenced by the DOE JGI.

The white rot fungus Botryobasidium botryosum

Results/impact:

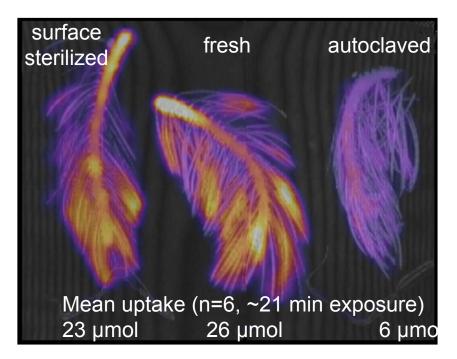
- The distinction between classic "white rot" fungi (able to break down cellulose, hemicellulose, and lignin) and "brown rot" fungi (able to break down cellulose, hemicellulose, but not lignin) is no longer clear-cut.
- Fungal genetics and biochemistry that are focused on wood degradation are more complex than previously thought, suggesting that additional options for exploring wood-degrading enzymes and pathways exist.

Riley, R., et. al. (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi **PNAS** 111(27):9923-9928.

Measuring Nitrogen Fixation in Conifer Trees

Objective:

Endophytic N_2 fixation in the needles of pine trees has been hypothesized by UC Merced / LBNL researchers to be a potential source of the missing N budget in sub-alpine ecosystems.


Approach:

 N_2 uptake was visualized and quantified in pine needles using ${}^{13}N_2$ radiotracer imaging.

Results/Impact:

- Significant ¹³N₂ uptake by limber pine twigs was observed, supporting previous observations of endophytic diazotrophs in these conifer needles.
- This work reveals a previously unknown nitrogen source in sub-alpine systems important for understanding the biogeochemical cycling of N in the environment.

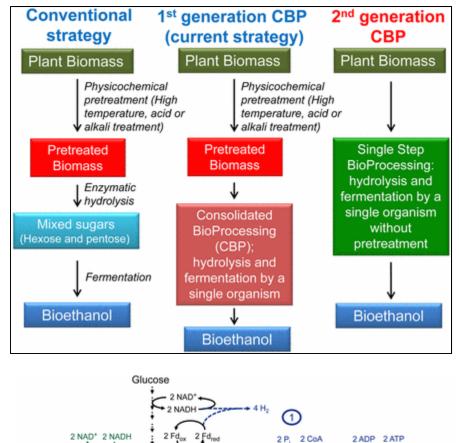
Image of Radiotracer (¹³N) Uptake in Limber Pine Twigs

The ability to fix nitrogen was determined by exposing limber pine twigs to ¹³N-labeled N₂ for ~21 minutes, flushing with unlabeled N₂, then imaging the ¹³N distribution. This figure shows rapid uptake of N₂ in the fresh twigs, with ~10% in the woody stems and 90% in the needles. Similar uptake in fresh and surface sterilized samples indicated that the uptake is not due to surface microbes. We see low uptake in autoclaved samples, indicating that the uptake is not due to diffusion into the twig (manuscript in preparation).

BRC Science Highlight

Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii

Objective:


Combine cellulolytic activity and ethanol production in one bioprocessing step

Approach:

Use bioinformatics analysis and metabolic engineering techinuques to modify cellulolytic *C. bescii* with ethanol-producing genes from *C. thermocellum*

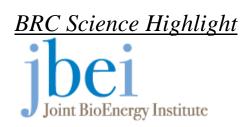
Result/Impacts:

- Modified C. bescii able to degrade unpretreated cellulose and ferment the resulting sugars to ethanol
- Approach demonstrates a 2nd Generation CBP process for bioethanol production

→ 2 Acetyl-CoA → 2 Acetyl-P → 2 Acetic acid

2 NADH

2 Ethanol


2 NAD*

Acetaldehvde

Chung et. al. (2014) "Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii" **PNAS** 111(24): 8931-8936 (Jun).

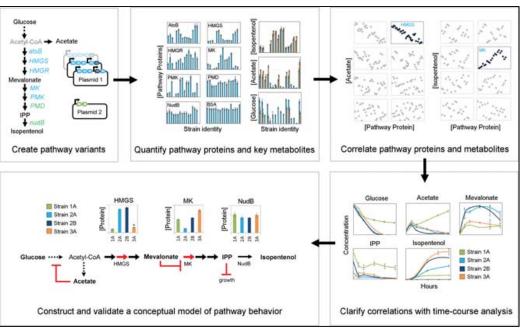
2 Pyruvate

2 Lactic acid

Engineered approaches to isopentenol production in microbial hosts

Objective

Optimize engineered isopentenol production in a microbial host


Approach

- Isopentenol can be produced from the mevalonate pathway in *E. coli* but titers are low.
- Combine classic molecular biology with high-throughput proteomics/metabolomics analysis and computational methods to optimize isopentenol production

Results/Impact

- Pathway optimization increased isopentenol titers 5-fold to 1.5g/L, 45% of theoretical
- The approach demonstrates a pipeline approach to pathway optimization for metabolic engineering in biofuels production in particular.

George, et. al. (2014), "Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production". **Biotechnol. Bioeng**., 111: 1648–1658. doi: 10.1002/bit.25226

