Stochastic multiscale modeling of spatially distributed biological systems

Jeremy Edwards¹, Markos Katsoulakis², Dion Vlachos³, James Faeder⁴

 ¹Molecular Genetics and Microbiology, Cancer Research and Treatment Center, University of New Mexico
 ²Dept. of Mathematics and Statistics, Univ. of Massachusetts
 ³Dept. of Chemical Engineering, University of Delaware
 ⁴Theoretical Biology and Biophys. Group, Los Alamos Nat. Lab

Supported by DOE (DE-FG02-05ER25702)

Outline

- Examples of multiple scales from cellular biology
 - Molecular scale and stochastic effects are crucial
- Multiscale mathematical and computational methods
 - Concepts
 - Mathematical tools
 - Numerical examples for model systems
- Comparison to real experimental data
- On-going and future work

EGF Receptor Signaling Network

- Important biological role
 - Trigger a rich network of signaling pathways and regulate functions such as proliferation, differentiation and migration.
 - Dysregulations in the signaling pathway lead to a variety of cancers: endometrial, breast, lung, prostate, colon, ovary, bladder, head and neck.
- Important as drug targets
 - EGFR is a target for anti-cancer drugs: ease of manipulation in the extracellular domain

Highly simplified signaling map of some of the proteins activated by the 4-member family of EGF receptors

EGFR pathway

- Adsorption and desorption of ligand
- Surface diffusion
- Surface dimerization

J. Saez-Rodriguez, et al. (2004)

New Imaging Data at the Receptor Level

Single particle tracking (SPT) experiments track receptor movement at micro-second scale are indicating compartments in the plasma membrane Heterogeneity in receptor distribution: EM image suggesting localization of receptors

Time and Length Scales in Cell Surface Modeling of the EGFR

Cell

A hierarchy of coarse grained processes and KMC simulations

Features of coarse grained processes

- We never pass to any continuum limit
 - Full hierarchy from microscopic MC to global MF
- Stochastic closure (local equil./LMF approximation)
- **Detailed balance** is used as a design tool in deriving transition probabilities from the microscopics (self consistent fluctuations)
- Haar wavelet basis is used in estimating the coarse grained interactions
- Large Deviation Principles demonstrate proper **rare event** description
- The method is exact when the potential length is infinite
- Implementation is straightforward/CPU savings: q²⁻⁴

Spatial acceleration methods

- Spatial adaptivity¹
 - Error estimates guide mesh refinement

¹ Chatterjee et al., JCP 121, 11420 (2004); PRE 71, 0267021 (2005)

Example of diffusion-reaction in a 1 mm domain (pellet) using ACGMC

Coarse-graining reduces computational intensity of ACGMC

A posteriori error estimates are well-established in FEM. How does one optimally adapt the mesh in MC?

Information theory in ACGMC

- Approach is completely different from finite elements
- Microscopic Gibbs measure $\mu_{micro} = Z_{micro}^{-1} e^{-H_{micro}/kT} P_{micro}(\underline{\sigma})$
- Coarse-graining results in loss of information (degrees of freedom)

MICROSCOPIC (4 states)

COARSE-GRAINED (1 state)

Adaptive CG Gibbs measure

$$u_{CG} = Z_{CG}^{-1} e^{-H_{CG}/kT} P_{CG}(\eta)$$

- Relative information entropy, R
 - distance between the two distributions
- Express in terms of difference, of Hamiltonians

$$R = \left\langle \Delta H \right\rangle + \left\langle \log \frac{P_{CG}(\underline{\eta})}{\sum_{cell} e^{-\Delta H/kT} P_{micro}(\underline{\sigma})} \right\rangle$$

$$\mathrm{R} = \left\langle \mathrm{log} \frac{\mu_{\mathrm{CG}}}{\mu_{\mathrm{micro}}} \right\rangle$$

$$\Delta H = H_{\rm micro} - H_{\rm CG}$$

Information theory in ACGMC

Microscopic solution is unknown! Estimate upper bounds

$$R = \langle \Delta H \rangle + \left\langle \log \frac{P_{CG}(\underline{\eta})}{\sum_{cell} e^{-\Delta H/kT} P_{micro}(\underline{\sigma})} \right\rangle \Rightarrow R \leq c \left\langle \Lambda(\underline{\eta}) \right\rangle$$
$$\Lambda(\underline{\eta}) = Upper bound(\Delta H)$$
$$\langle \Lambda(\underline{\eta}) \rangle = 4 \sum_{cells,k} \left\{ \frac{j_{kk}}{q_k(q_k - 1)} \langle \eta_k(q_k - \eta_k) [\eta_k(\eta_k - 1) + (q_k - \eta_k)(q_k - \eta_k + 1)] \rangle + \right\}$$
$$\sum_{int \, eracting \, cells,l} \frac{j_{kl}}{q_k q_l} \langle q_k^2 \eta_l(q_l - \eta_l) - 2\eta_k \eta_l(q_k - \eta_k)(q_l - \eta_l) \rangle \right\}$$
$$\bullet \text{Overall:} \quad \left\langle \Lambda(\underline{\eta}) \right\rangle = \sum_{cells,k} \langle \varepsilon_k \rangle$$

A posteriori error estimate based on the computed solution only!¹

Chatterjee et al. Int. J. Multiscale Comp. Eng. 3, 59 (2005)

Standing wave in 1D

- Adsorption, desorption
- Strong long-ranged attractive potential
- Continuum (analytical) solution

$$\theta(x) = \frac{1}{2} \left[\left(2\theta_{+} - 1 \right) \tanh\left(\beta J_{0} \left(2\theta_{+} - 1 \right) x \right) + 1 \right]$$

 $\theta_{\scriptscriptstyle +}$: Dense phase coverage

Mesh refinement

- Split offending coarse cells into two
- Equally distribute order parameters

Sol. esh - Adsorption, desorption - Strong long-ranged attractive potential - Continuum (analytical) solution $\theta(x) = \frac{1}{2} [(2\theta_{+} - 1) \tanh(\beta J_{0} (2\theta_{+} - 1)x) + 1]]$ θ_{+} : Dense phase concentration Mesh refinement - Split offending coarse cells into two - Equally distribute order parameters

Chatterjee et al., *Phys. Rev. E* **71**, 0267021 (2005)

Standing wave in 1D

- Adsorption, desorption
- Strong long-ranged attractive potential
- Continuum (analytical) solution

$$\theta(x) = \frac{1}{2} \left[\left(2\theta_{+} - 1 \right) \tanh\left(\beta J_{0} \left(2\theta_{+} - 1 \right) x \right) + 1 \right]$$

 θ_{+} : Dense phase concentration

Mesh refinement

- Split offending coarse cells into two
- Equally distribute order parameters

Chatterjee et al., *Phys. Rev. E***71**, 0267021 (2005)

Standing wave in 1D

- Adsorption, desorption
- Strong long-ranged attractive potential
- Continuum (analytical) solution

$$\theta(x) = \frac{1}{2} \left[\left(2\theta_{+} - 1 \right) \tanh\left(\beta J_{0} \left(2\theta_{+} - 1 \right) x \right) + 1 \right]$$

 θ_+ : Dense phase concentration

Mesh refinement

- Split offending coarse cells into two
- Equally distribute order parameters

Chatterjee et al., *Phys. Rev. E***71**, 0267021 (2005)

Standing wave in 1D

- Adsorption, desorption
- Strong long-ranged attractive potential
- Continuum (analytical) solution

$$\theta(x) = \frac{1}{2} \left[\left(2\theta_{+} - 1 \right) \tanh\left(\beta J_{0} \left(2\theta_{+} - 1 \right) x \right) + 1 \right]$$

 θ_+ : Dense phase concentration

Mesh refinement

- Split coarse cells into two
- Equally distribute order parameters

Chatterjee et al., *Phys. Rev. E***71**, 0267021 (2005)

Chatterjee et al., *Phys. Rev. E***71**, 0267021 (2005)

Standing wave in 1D

- Adsorption, desorption
- Strong long-ranged attractive potential
- Continuum (analytical) solution

$$\theta(x) = \frac{1}{2} \left[\left(2\theta_+ - 1 \right) \tanh\left(\beta J_0 \left(2\theta_+ - 1 \right) x \right) + 1 \right]$$

 θ_+ : Dense phase concentration

Mesh refinement

- Split coarse cells into two
- Equally distribute order parameters

ACGMC: 30 minutes KMC: 90 days (est.)

Spatial acceleration methods

- Spatial adaptivity¹
 - Error estimates guide mesh refinement
- Multiscale MC methods for high accuracy
 - Higher order closures²
 - Multigrid/Relaxation criteria²
 - Rigorous cluster expansions³

Coarse lattice

- ¹ Chatterjee et al., *JCP* **121**, 11420 (2004); *PRE* **71**, 0267021 (2005)
- ² Chatterjee and Vlachos, JCP **124**, 0641101 (2006)
- ³ Katsoulakis, Plechac, et al., ESAIM, Math Model. Num. Anal., to appear

Non-uniform mesh

Higher-order coarse-grained MC: Rigorous cluster expansions

 Corrections around H
^o from prior work of Katsoulakis and Vlachos: Renormalization Group Map

$$\mathbf{H}^{c}(\boldsymbol{\eta}) = \overline{\mathbf{H}}^{o}(\boldsymbol{\eta}) - \frac{1}{\beta} \log \mathbf{E}[e^{-\beta(\mathbf{H}_{N} - \overline{\mathbf{H}}^{o})} |_{\boldsymbol{\eta}}]$$

- Heuristics (expansion of exp and log)
 - $= E[\Delta H|_{\eta}] + E[(\Delta H)^{2}|_{\eta}] E[\Delta H|_{\eta}]^{2} + O((\Delta H)^{3})$
 - Formal calculations inadequate since: $\Delta H = H_N \overline{H}^o = N \cdot O(\epsilon)$
 - Rigorous analysis: Cluster expansion around \overline{H}^{o}

³ Katsoulakis, Plechac, Rey-Bellet, Tsagkarogiannis, ESAIM, Math Model. Num. Anal., to appear Higher-order coarse-grained MC: Rigorous cluster expansions – Cont.

• Corrections to the Hamiltonian – many body terms $H^{c}(\eta) = \overline{H}^{o}(\eta) + \overline{H}^{1}(\eta) + ...$

$$\overline{H}^{1}(\eta) = \beta \sum_{k_{1}} \sum_{k_{2} > k_{1}} \sum_{k_{3} > k_{2}} [j^{2}_{k_{1}k_{2}k_{3}}(-E_{1}(k_{1})E_{2}(k_{2})E_{1}(k_{3}) + ...)]$$

 $E_{r}(k) = E_{r}(\eta(k)) = (2\eta(k)/q - 1)^{r} + O_{q}(1)$

• Moments of the potential

$$j^{2}_{k_{1}k_{2}k_{3}} = \sum_{x \in C_{k_{1}}} \sum_{y \in C_{k_{2}}} \sum_{z \in C_{k_{3}}} [(J(x-y) - \overline{J}(k_{1},k_{2}))(J(y-z) - \overline{J}(k_{2},k_{3}))]$$

- Clusters expansions give
 - Sharp a posteriori error estimates/Adaptivity
 - Higher-order CGMC schemes

A numerical example

• Phase transitions between two states: PDF of switching times

Demonstration: Metastability for CG Arrhenius dynamics

من² لاشهاد (436 م. دو 100 م. در 100 م. ۲ x 10⁻ 2.514Ö ------MC , Etc]=486.91 CGMC q=10, E[+] =491.69 CGMC q=20 E[+]=503.95 CGMC 0=25, E[x] = 511.67 CGMC q=50, E[+;] = 584.08 CGMC q=100, E[x] = 980.82 CGMC converted g =50 , E[] = 480.78 CGMC conversed q= 100 , E[x] = 479.0 0.5 500 1000 1500

Switching Time PDFs/Autocorr.: with and w/o corrections

joint work with Sasanka Are (UMass)

Error quantification in CG schemes

- Theorem: A priori error estimate
 - Define a small parameter: $\varepsilon \equiv C\beta \frac{q}{L} ||J'||_1$
 - Then, specific relative entropy: $R(\mu_{M,q,\beta|}\mu_{N,\beta^{\circ}}T^{-1}) = O(\epsilon^{\alpha+2})$ α =order of truncation in cluster expansion
 - T σ =projection on coarse variables = $\sum_{y \in D_{L}} \sigma(y)$
- Error estimates for observables 'quantity of interest'⁴
 - Difficulty in dynamics: $T\sigma$ is not a Markov process
- **Reverse CG map** Microscopic reconstruction possible⁴
 - Reverse the CG via the conditional prior
 - Numerical error estimate for the reconstruction
 - ⁴ Katsoulakis, Plechac, Sopasakis, SIAM Num. Anal. (2006)

Spatial acceleration methods

- Spatial adaptivity¹
 - A posteriori error estimates guide mesh refinement and generation of phase diagrams
- Multiscale MC methods for high accuracy
 - Higher order closures²
 - Multigrid/Relaxation criteria²
 - Rigorous cluster expansions/Theory^{3,4}
- Multicomponent interacting systems⁵
- Time scale acceleration

Non-uniform mesh

¹ Chatterjee et al., *JCP* **121**, 11420 (2004); *PRE* **71**, 0267021 (2005); Katsoulakis, Plechac, et al., J. Non Newtonian Fluid Mech. (2007)

- ² Chatterjee and Vlachos, JCP **124**, 0641101 (2006)
- ³ Katsoulakis, Plechac, et al., ESAIM, Math Model. Num. Anal., to appear
- ⁴ Katsoulakis, Plechac, Sopasakis, SIAM Num. Anal. (2006)
- ⁵ Chatterjee and Vlachos, JCP, accepted

Time scales acceleration methods

- Binomial τ -leap method: fire multiple events^{6,7}
 - Time step increment based on stability
- Stochastic low dimensional manifold (SLDM): overcome stiffness
 - Computational singular perturbation (CSP) assisted partitioning⁸
 - Statistical criteria for convergence to the LDM^{8,9}
- Hybrid multiscale Monte Carlo method⁹
 - Deal with simultaneous separation of time scales and populations
- Incorporate these algorithms in spatial MC¹⁰
 - ⁶ Chatterjee et al., J. Chem. Phys. 122, 024112 (2005)
 - ⁷ Chatterjee et al., *Bioinformatics* **21**(9), 2136 (2005)
 - ⁸ Samant and Vlachos, J. Chem. Phys. **123**, 144114 (2005)
 - ⁹ Samant et al. BCM Bioinformatics, accepted
 - ¹⁰ Chatterjee and Vlachos, J. Comp. Phys. 211, 596 (2006)

New Imaging Data at the Receptor Level

Single particle tracking (SPT) experiments track receptor movement at micro-second scale are indicating compartments in the plasma membrane Heterogeneity in receptor distribution: EM image suggesting localization of receptors

Single Particle Simulation Reveals Hop Diffusion

- At a low frame rate (33 ms), simple Brownian Motion.
- At a high frame rate (25 µs), corrals trapping receptors.

Position in Nanometers

Effect of Sampling Time

- D depends on time resolution of data collection
- Good agreement with data
- Kusumi's data give macro D and a transition D
- At short times, receptors are unaffected by observation time but affected slightly by corral size
 - D can be lower than the intrinsic value!

Imaging Data at the Receptor Level

Single particle tracking (SPT) experiments track receptor movement at micro-second scale are indicating compartments in the plasma membrane Heterogeneity in receptor distribution: EM image suggesting localization of receptors

Comparison of MC with Single Particle Tracking Experiment Data

Effect of Localization on EGFR Dimerization Rate

• EGFR Diffusivity: **10**-9-**10**-11 cm²/s.

Range is likely due to presence of membrane microdomains (lipid rafts).

- Localization is unlikely to cause a significant increase in EGFR dimerization rates in <u>normal cells</u>.
- in <u>cancer cells</u>, localization leads to 1-2 orders of magnitude increase in rate!

¹² Mayawala et al., *Biophys. Chem.* **121**, 194–208 (2006)

Y-axis Effectiveness factor: Measure of reduction in dimerization rate due to diffusion limitation.

X-axis Damköhler number, Da: Ratio of time scales of diffusion and reaction.

100 EGFR/μm²: Avg. density in normal cells
10,000 EGFR/μm²: Avg. density in cancer cells
or Localization in normal cells
100,000 EGFR/μm²: Localization in cancer cells

Molecular dynamics of extra-cellular part of EGFR

Summary of accomplishments

- Develop a multiscale stochastic framework for spatiotemporal dynamics
 - Adaptivity
 - A posteriori error estimates
 - Cluster expansion-based corrections
 - Multigriding
 - Temporal acceleration
- Modeled real biological systems
 - Good agreement with experimental data
 - Plasma membrane heterogeneity and localization can lead to substantial increase in dimerization rates in cancer cells
- The framework applies to many other areas
 - Growth of nanomaterials
 - Separations (e.g., hydrogen production)
 - Distributed and portable energy production (e.g., alternative fuels, biofuels)

Acknowledgements

- Collaborators
 - Petr Plechac (UTN/ORNL)
 - Luc Rey-Bellet (UMass)
 - Andy Majda (Courant)
 - Dimitri Tsagkarogiannis (Max Planck)
 - Jose Trashorras (Paris IX)
 - Anders Szepessy (KTH/Sweden)
- Students and postdocs (UD, UMass, UNM)
 - Kapil Mayawala
 - Anne-Marie Niehaus
 - Abhijit Chatterjee
 - Alex Sopasakis
 - Altaf Karim
 - Michelle Costa
 - Sasanka Are