

New heuristic techniques for general mixed-integer programs

Robert Carr, Sandia National Laboratories Jonathan Eckstein, Rutgers Cynthia Phillips, Sandia National Laboratories Jean-Paul Watson, Sandia National Laboratories

(Mixed) Integer Programming (IP)

Min
$$c^T x$$

Subject to: $Ax = b$
 $\ell \le x \le u$
 $x = (x_I, x_C)$
 $x_I \in Z^n$ (integer values)
 $x_C \in Q^n$ (rational values)

• Can also have inequalities in either direction (slack variables):

$$a_i^T x \leq b_i \Longrightarrow a_i^T x + s_i = b_i, \ s_i \geq 0$$

• IP (easily) expresses any NP-complete problem

Linear programming (LP) relaxation of an IP

- LP can be solved efficiently (in theory and practice)
- LP optimal gives lower bound

DOE/Science MIP Applications (Small Sample)

Defense program applications:

- Logistics
 - Capacity planning, scheduling, workforce planning, constrained vehicle routing, fleet planning
- Site security
- Tools for high-performance computing (scheduling, node allocation, domain decomposition, meshing)

Science

- Bioinformatics: protein structure prediction/comparison
- Wireless sensor management
- New applications (with Ali Pinar, LBNL)
 - Scheduling telescope time (eg. For supernovae observations)
 - Groundwater monitoring
 - Analysis of particle behaviors in supercolliders

Simple Example: Scheduling telescope

- A number of projects are sharing a telescope
 - Looking for different types of objects
 - Sky regions observed multiple times
 - Quality of a pair of observations depends on time gap
- x_{ij} = 1 if observe region *i* on night j
- Z_{ijkp} = 1 if project p uses an observation of region *i* on nights *j* and *k*
- V_{gp} = value to project p for observing with a gap of g
- n = # of observations/night
- V_p = minimum value for project p

Simple example: Scheduling telescope

$$\max \sum_{ijkp} v_{k-j,p} z_{ijkp}$$
st
$$\sum_{ij} x_{ij} \le n \qquad \text{maximum observations/night}$$

$$z_{ikjp} \le x_{ik} \forall i, k, j, p$$

$$z_{ikjp} \le x_{jk} \forall i, k, j, p$$

$$\sum_{ijk} v_{k-j,p} z_{ijkp} \ge V_p \forall p \quad \text{miminum quality}$$

$$\sum_{ijk} z_{ijkp} \le 1 \forall p, \text{ overlap sets } F \text{ (no overlaping intervals)}$$

Solution Options for Integer Programming

- Commercial codes (ILOG's cplex)
 - Good and getting better
 - Expensive
 - Serial (or modest SMP)
- Free serial codes (ABACUS, MINTO, BCP)
- Modest-level parallel codes (Symphony)
- Grid parallelism (FATCOP)
- In development: ALPS/BiCePs/BLIS
- Massive parallelism: PICO (Parallel Integer and Combinatorial Optimizer)

Note: Parallel B&B for simple bounding: PUBB, BoB/BOB++, PPBB-lib, Mallba, Zram

Solving Integer Programs: Branch and Bound

PICO Parallel IP Solver: Two Phases

- Parallel subproblem phase
 - There are plenty of subproblems compared to # processors
- Ramp up (eg. 1 subproblem, 10000 processors)
 - Parallel processing of single problem
 - Gradients
 - Cuts
 - LP bounds
 - Incumbent heuristics (looking for a good feasible solution)

Value of a Good Feasible Solution Found Early

- Faster pruning
- Having something to say if the computation stops early

Slide 10

General-Purpose Incumbent Heurstics

- Randomized rounding
- Feasibility pump
- Nediak-Eckstein
- Fractional Decomposition Tree

Binary decision variables. LP relaxation x*

- Simplest form: treat LP relaxation $0 \le x^* \le 1$ probability
- Select each x* independently with probability x*
- For parallel IP, in early computation, many processors can do this independently.
- Resulting vector x is
 - Integer by construction
 - Almost certainly infeasible for linear constraints Ax = b.
 - Exception: covering problems [Raghavan, Thompson]
- Fast way to find something when (almost) everything is feasible Slide 12

Feasibility Pump (Fischetti, Glover, Lodi)

Basic algorithm:

- 1. Solve LP to obtain x*
- 2. Round (arithmetically) x* to \tilde{x}
- 3. While \tilde{x} is not feasible obtain new x* from this LP:

$$\min \sum_{i} y_{i}$$
s.t
$$y_{i} \ge x_{i} - \tilde{x}_{i}$$

$$y_{i} \ge \tilde{x}_{i} - x_{i}$$

$$Ax = b$$

and round x to \tilde{x} again

Feasibility Pump Improvements

- Gap is $\frac{\text{value of first feasible solution}}{\text{optimal (or best known)}}$
- Improvement is relative to initial feasibility pump
- Tested with problems from miplib2003
- Round x* multiple times, take best (most feasible) of k trials
 - 23.7% gap improvement for k = 30
 - Running time increase factor of k, but fully parallelizable
- Iterated local search: perturb and redo the feasibility pump
 - For k=30 iterations, gap improvement of 31.2%
 - Runtime increase of k, not parallelizable individually, but can do multiple independent iterated searches.
- Good idea to round randomly for x* components near .5

Slide 14

Eckstein-Nediak Heuristic

• Parallelizable, General 0-1 MIPs

Uses a merit function $\psi(x)$

- motivated by Løkkentangen and Glover, 1998
- $\psi(x) = 0$ if vector x is integer feasible
- $\psi(x) > 0$ if an integer variable is fractional
- $\psi(x)$ is differentiable and strictly concave
 - Important properties, not enforced by Løkkentangen and Glover

Goals:

- Reduce $\psi(x)$ to 0
- Obey linear constraints $(Ax \leq b)$ and variable bounds
- Minimize increase in MIP objective $(c^T x)$

Parallel MIP Heuristic Merit Function

We define a separate merit function $\phi_j(x_j)$ for each binary variable x_j Same properties:

- $\phi_j(0) = \phi_j(1) = 0$
- $\phi_i(x) > 0$ for 0 < x < 1
- Differentiable, strictly convex

Total merit is the sum of the individual merits (retains properties)

$$\psi(x) = \sum_{j \in I} \phi_j(x_j)$$

Merit Function for a variable x_{j}

 $\mathcal{C}^{\,\scriptscriptstyle 1}$ quadratic spline defined by

•
$$\phi(0) = 0$$

•
$$\phi(\alpha) = 1$$

•
$$\phi'(\alpha) = 0$$

•
$$\phi(1) = 0$$

 $\alpha = 0.75$ shown

Specifically, for

$$\alpha \in (0,1)$$

$$\phi_{\alpha}(x) = 1 - \begin{cases} \left(\frac{x-\alpha}{\alpha}\right)^{2} & \text{for } x \leq \alpha \\ \left(\frac{x-\alpha}{1-\alpha}\right)^{2} & \text{for } x > \alpha \end{cases}$$

Nediak-Eckstein MIP heuristic

New objective function $\nabla \psi(x^*) + wc$, where

- x* is the current point (such as LP optimal)
- *c* is the original IP objective function
- *w* is a weighting factor (IP objective vs. integrality)
- This is the Sum/Frank-Wolfe approach

Use normal LP simplex pivots to improve the new objective

- Adjust the objective at each step (for new x*)
- Provably finds a local optimum (via concavity)
- If the local optimum x has $\psi(x) > 0$, can add Gomory cuts and continue.

Nediak-Eckstein MIP Heuristic

- Processors can use different merit functions
 - Random values of $\boldsymbol{\alpha}$ for each variable
- Processors can also fix one fractional variable
 - For example, if binary variable x_j is .4. Set to 0 or 1 in heuristic.
- Combinations of the two types of variation
 - Fixing variables that have a good history of improving integrality

LP-Relaxation-Based Approximation for IP

- Compute LP relaxation (lower bound).
- Common technique:
 - Use structural information from LP solution to find feasible IP solution (use parallelism if possible)
 - Bound quality using LP bound
- Integrality gap = max_I(IP (I))/(LP(I))
 - Taken over all instances I (settings of class parameters: c,b)
 - Integrality gap is unbounded (infinite) if
 - LP(I) = 0 or
 - IP is infeasible when LP isn't
- This technique cannot prove anything better than integrality gap

Finding an Approximate solution: Convex Decomposition

Key Theorem (Carr, Vempala)

- Recall integrality gap = value of best integer solution value of LP relaxation
- Let x* be the optimal LP solution to the LP relaxation for an IP. There exists a convex decomposition dominated by ρx* if and only if the integrality gap is ρ for finite ρ.

$$S_0, S_1, \dots, S_m$$
 such that $\sum \lambda_i S_i \le \rho x^*$
 $0 \le \lambda_i \le 1; \sum_i \lambda_i = 1$

Fractional Decomposition Tree - Overview

- Previous decomposition results were problem-specific The FDT method applies decomposition to any integer program.
- Will succeed if the problem class has finite integrality gap!
 - Success = find feasible solution
 - No quality guarantee
- Grows a tree-like branch and bound (B&B) except
 - Preserves structure of LP relaxation (vs. preserving objective function in B&B)
 - Limits the tree to polynomial size (vs. exponential for B&B)

- Order the variables that are fractional in the LP optimal x^*
- At each level of the tree, one more variable is forced integral
- Use LP to pack the children into the parent optimally
 - Preserve structure of the solution

LP to create the children

• To create children of the root from x* (LPC): max $\lambda_0 + \lambda_1$

st $Ay^0 \ge b\lambda_0$

 $Ay^1 \ge b\lambda_1$

 $0 \le y^0 \le \lambda_0 \bullet 1$

 $0 \le y^1 \le \lambda_1 \bullet 1$

 $y_1^0 = 0; y_1^1 = \lambda_1$

• Children of the root have solutions:

• Solutions are feasible, have first variable integral, and decompose x* with value $\rho = \frac{1}{\lambda_0 + \lambda_1}$.

Slide 25

LPC is feasible in general

• For finite integrality gap, there exists

 S_0, S_1, \dots, S_m such that $\sum \lambda_i S_i \le \rho x^*$

• Let $S_i^{(1)}$ be the members of S_i with $x_1=1$ $S_i^{(0)}$ be the members of S_i with $x_1=0$

$$\sum \lambda_i S_i^{(1)} \le \rho x *$$
$$\sum \lambda_j S_j^{(0)} \le \rho x *$$

Pruning the tree

- Let n be the number of fractional variables in x^*
- If any level of the tree has more than n nodes, we prune the tree, keeping only the best n partially integral solutions.
- This LP (LPP) picks the n survivors that best pack into the root solution x* and calculates the convex combination parameters.

$$\max \sum_{i} \lambda^{i}$$

st
$$\sum_{i} \lambda^{i} x^{i} \le x^{*}$$
$$0 \le \lambda^{i} \le 1$$

• Has only n nonzeros because there are only n constraints

- Some of the decompositions will have only one child.
- If any of the xⁱ are integral, no further decomposition. They can participate in LPP (travel to next "level" logically).
- If this were to run n levels, all leaves would be feasible integral solutions.
- Running to the end level could be very expensive
 - Combine this with randomized rounding or other heuristics

- Child decompositions on each level are independent
- Alternatively, can "dive" through the FDT
 - Do a child decomposition
 - Pick a single child
 - Travel a single path to a leaf
 - This can fail even when the full computation would not
- Each processor can dive independently

- For important applications, customization is best
 - PICO provides tools for each addition of custom incumbent heuristics
 - If using ampl modeling language, ampl variables are available directly within PICO
- Expect FDT will be the sledgehammer for when nothing else works.
- Key challenge: managing parallel heuristics

