Multi-scale Hydrological **Data Assimilation in** Layered Media Juan M. Restrepo **Department of Mathematics Physics Department** University of Arizona

Collaborators:

Daniel Tartakovsky, UCSDMichael Holst, UCSD

TIME SERIES Estimation Problems:

Given a random time series { z(t): t < t₀} z(t) 2 \mathbb{R}^{N}

Prediction:
 Estimate {z(t): t> t₀}
 Filtering (Nudiction):
 Estimate {z(t₀)}
 Smoothing (Retrodiction):
 Estimate {z(t): t · t₀}

Turning a model into a state estimation problem Example: $\partial_t u(z,t) = v \partial_{zz} u(z,t) + f(t)$ $u(z,0) = u_0(z)$ $u(0,t) = g(t) \quad u(1,t) = h(t)$ Discretizing: $x(t) \in [u_1(t), u_2(t)...u_N(t)]^T$ is the state variable, obeying $x(t+\delta t) = A x(t) + B q(t)$ $x(t) = A x(t-\delta t) + B q(t-\delta t)$ Leads to LINEAR PROBLEM: $L(x(0),...,x(t-\delta t),x(t),x(t+\delta t),...,x(t_{f}),...,x(t_{f}))$ $Bq(t), Bq(t+\delta t), \dots, t) = 0$

 $x(t) 2 \mathbb{R}^N$ Bq2 \mathbb{R}^N

Statement of the Problem

MODEL (Langevin Problem): $dx(t) = f(x(t), t)dt + (2D)^{1/2}(x, t)W(t), \qquad t > t_0,$ $x(t_0) = x_0.$ $x, f, dW \in \mathbb{R}^N,$

DATA:

$$egin{aligned} y(t_m) &= h(x_m) + [2R(x_m,t)]^{1/2} \epsilon_m \ & ext{where } m = 1,2,...,M \ & ext{h}, \epsilon &: & oldsymbol{R}^N o oldsymbol{R}^{N_y} \end{aligned}$$

GOAL: estimate moments

(at least) find mean conditioned on data: $x_{s}(t) = E[x(t)|y_{1},...,y_{M}]$ and Covariance matrix (uncertainty) $C_{s}(t) = E[(x(t)-x_{s}(t))(x(t)-x_{s}(t))^{>}|y_{1},...,y_{M}]$

The conditional mean $x_s(t)$ minimizes tr $C_s(t) = E[|(x(t)-x_s(t))|^2|y_1,...,y_M]$. It is termed the smoother estimate.

Optimal Estimate of Discretized Linear Model with Gaussian Noise

Let $z_i = u(x_i)$ where $x_i 2 \Omega$ $B z + n_m = F$ $D z + n_d = Y$ OR M z + N = T $min_z J = \langle N^T N \rangle$

Least Squares, SVD (Kalman)

A Nonlinear Example

Stochastic Dynamics (Langevin Problem): $dx(t) = f(x(t)) dt + \kappa dW(t)$ with $V(x) = -2x^2 + x^4$ $f(x) = -V'(x) = 4x(1-x^2)$ $\kappa = 0.5$

Measurements:

at times m Δt , m=1,..., M one observes $y_m := X(t_m) + \rho N_m$ to have measured values Y_m , m=1,2,...,M Kolmogorov Equation

$$\partial_t P = -\partial_x [f(x) P] + \kappa^2 \partial_{xx} P/2$$

$$P(x,t)_{t!1} = P_s(x)$$

Observations

BAYESIAN STATEMENT

- P(X|D) / Prior £ Likelihood
- Use data for the likelihood
- Use model for the prior

 $P(X|D) \sim exp(-A_{data}) exp(-A_{model})$

Extended Kalman Filter

Alternative Approaches

- KSP: optimal, but impractical
- ADJOINT/4D-VAR: optimal on linear/Gaussian

(Restrepo, Leaf, Griewank, SIAM J. Sci Comp 1995)

Mean Field Variational Method

(Eyink, Restrepo, Alexander, Physica D, 2003)

- enKF (ensemble Kalman Filter)
- Particle Method

(Kim Eyink Restrepo Alexander Johnson, Mon. Wea. Rev. 2002)

Path Integral Method

(Alexander Eyink Restrepo, J. Stat. Phys. 2005 and Restrepo Physica D, 2007)

Path Integral Method

- Related to simulated annealing
- It could be developed as a black box
- Simple to implement
- Can handle nonlinear/non-Gaussian problems
- Calculates sample moments

PROBLEM: Relies on MC!!!

$$dx(t) = f(x(t), t)dt + [2D(x, t)]^{1/2}dW(t), \qquad t > t_0,$$

$$x(t_0) = x_0.$$

Discretized using explicit Euler-Maruyama scheme

$$\begin{array}{ll} x_{k+1} &=& x_k + f(x_k, t_k) \delta t + (2D)^{1/2} (x_k, t_k) (W(t_k + \delta t) - W(t_k)), \\ & k = 0, 1, 2, \ldots \end{array}$$

 $x_{k=0} = x_0.$

Let
$$\eta(t_k) = W(t_k + \delta t) - W(t_k)$$
,
at times t_k , $k=0,1,2,...,$

Suppose $\eta(t_k)$ is Gaussian Prob $\eta(t) \approx \exp(-1/2 \sum_k | \eta(t_k) |^2)$.

Hence exp(- A_{dyn}), for t = t₀, t₁, ...t_T

$$\begin{array}{l} A_{dyn} \quad \sum_{k = 0}^{T-1} \left[\left[(x_{k+1} - x_k) / \delta t - f(x_k, t_k) \right]^{>} D^{-1}(x_k, t_k) \\ \left[(x_{k+1} - x_k) / \delta t - f(x_k, t_k) \right] \right] / 4 \end{array}$$

To include influence of observations use Bayes' rule. This modifies Action:

 $A_{obs} = \sum_{m=1}^{M} [h(x(t_m) - y(t_m))] R^{-1}[h(x(t_m)) - y(t_m)]$

The Total Action:

$$A = A_{dyn} + A_{obs}$$

The Action is like the log-likelihood.

PIMC Filter Results

Estimation Applied To Steady State Hydrology

- Estimate hydraulic head in domain
- Estimate material properties in domain
- Estimate "best"
 boundary values
- Estimate all of the above

Simplest Boundary Value Problem

 $n(x),\, heta(x),\,
ho(x)\,$ are known statistical quantities

OUR APPROACH

 USE DATA-DRIVEN CLASSIFICATION: estimates partitioning into homogeneous layers.
 Support Vector Machines

DISCRETIZE Variational formulation for the model plus constraint (via Lagrange multiplier): constrained minimum satisfies E-L. Coupling of each subproblem is automatically satisfied.

Weak form (using Dirichlet energy)

SOLVE nonlinear system in each subdomain: Newton

Data-Driven Classification

Estimate the boundaries between heterogeneous geologic facies

- Data
 - $K_i = K(\mathbf{x}_i)$, e.g., conductivity $h_{jk} = h(\mathbf{x}_j, t_k)$, e.g., head
- Data are sparse
- Measurements are well differentiated

Measurements of system parameters $(K) \implies$ forward FD problem Measurements of system states $(h) \implies$ inverse FD problem Assign indicators to data,

 $I(\mathbf{x}_i) = 1(0)$ if $\mathbf{x}_i \in M_1(M_2)$

- $\mathcal{I}(\mathbf{x}, \boldsymbol{\alpha}) \equiv$ an estimate of $I(\mathbf{x})$
- min $R = \int ||I \mathcal{I}|| \mathrm{d}P(I, \{\mathbf{x}\}_{i=1}^N)$
- Geostatistics (Kriging)
 - 1. the L^2 norm
 - 2. the indicator function $I(\mathbf{x})$ is a random field, and
 - 3. the choice of sampling locations $\{\mathbf{x}_i\}_{i=1}^N$ as deterministic. \implies

4. Variance:
$$\sigma_I^2 = \int (I - \mathcal{I})^2 dP(I)$$

SVMs

- 1. the L^1 norm
- 2. the indicator function $I(\mathbf{x})$ as deterministic, and
- 3. the choice of sampling locations $\{\mathbf{x}_i\}_{i=1}^N$ as random. \Longrightarrow
- 4. Expected risk: min $R_{exp} = \int |I \mathcal{I}| dP(\{\mathbf{x}\}_{i=1}^N)$

Support Vector Machines

- Alternative to Kriging
- Very good alternative when sample densities are too low for Kriging
- Highly automated
- Can be incorportated in the solver problem

Heterogeneous Sub-Surface

In each subdomain i = 1, 2, ..., M

$$K(x,\omega) = \exp\left[\sum_{j=1}^{\infty} \kappa_j(\omega)\phi_j(x)\right]$$
$$u(x,\omega) = \sum_{j=1}^{\infty} \mu_j(\omega)\phi_j(x)$$

$$egin{aligned} -
abla \cdot (K
abla u) &-\overline{f} = n(x,\omega) \ E(n) &= 0 \ E(n(x)n(y)) &= g(|x-y|) \end{aligned}$$

(Weak) Variational Formulation

Let P:=[u,K]

- Use standard machinery to solve nonlinear problem but use weighted norms (locally in each subdomain).
- Use Newton solver but decide whether to do global estimate of partial estimates (increasing or decreasing the uncertainty in each subdomain).

Use Galerkin discretization of Newton Systems.

Weak Formulation (no noise) $\phi(P) = \frac{1}{2} ||T(P) - y||^2 + S(P - P_0)$

Dirichlet-like Energy $S(P) = \sum_{i=1}^{M} \left[\int_{\Omega_i} \left(\frac{1}{2} |\nabla P|^2 + kP^2 \right) dx \right]$

$$G(P) = -\nabla \cdot (K\nabla P) - \overline{f} = 0$$

$$\Phi(P, \Lambda) = \phi(P) - \langle \Lambda, G(P) \rangle$$

LEADS TO: Find [P, Λ]^T such that

$$\langle \Phi'(P), v \rangle - \langle \Lambda, G'(P)v \rangle = 0, \quad \forall v \in X$$

$$\langle \nu, G(P) \rangle = 0, \quad \forall v \in Y^*$$

X, Y* Banach spaces

Newton Solution Find corrections $[\pi, \lambda]^{\mathsf{T}}$ to $[\mathsf{P}, \Lambda]^{\mathsf{T}}$ $\begin{bmatrix} \phi''(P) - [G''(P)^T \Lambda] & -G'(P)^T \\ G'(P) & 0 \end{bmatrix} \begin{bmatrix} \pi \\ \lambda \end{bmatrix} = \begin{bmatrix} -\phi'(P) + G'(P)^T \Lambda \\ -G(P) \end{bmatrix}$

To find Hessians and Jacobians, use ADIFOR/C

Final Comments

- Model error formulation vs. closure?
- Already existing nonlinear solvers.
- Weak formulation automatically takes care of boundary conditions at the layer interfaces.
- Can give a-priori estimates of error.
- Unlike Inverse Method (Tikhonov, e.g.) problem is greatly more numerically stable.
- Use PIMC (see Restrepo, 2007) to benchmark results.
- Constrain number of SVM subdomains to the Newton solve.

Further Information:

http://www.physics.arizona.edu/~restrepo