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TIME SERIES 
Estimation Problems:

Prediction:
Estimate {z(t): t> t0}
Filtering (Nudiction):

Estimate {z(t0)}
Smoothing (Retrodiction):

Estimate {z(t): t · t0}

Given a random time series {z(t): t < t0}
z(t) 2 RN 



Turning a model into a state estimation problem
Example:
∂t u(z,t) = ν ∂zzu(z,t) + f(t)
u(z,0) = u0(z)
u(0,t) = g(t)   u(1,t) = h(t)

Discretizing:
x(t) ´ [u1(t),u2(t)…uN(t)]T

is the state variable, obeying
x(t+δt) = A x(t) + B q(t)
x(t)      = A x(t-δt) + B q(t-δt)
....
Leads to LINEAR PROBLEM:
L(x(0),…,x(t-δt),x(t),x(t+δt),…,x(tf),…,

Bq(t), Bq(t+δt),…,t) = 0

x(t) 2 RN B q 2 RN



Statement of the ProblemStatement of the Problem

MODEL (Langevin Problem):

DATA:



GOAL: estimate moments

(at least) find  mean conditioned on data:
xS(t) = E[ x(t)| y1,..., yM]
and 
Covariance matrix (uncertainty)  
CS(t) =E[(x(t)-xS(t))(x(t) -xS(t))>|y1,...,yM] 

The conditional mean xS(t) minimizes 
tr CS(t) = E[|(x(t)-xS(t))|2|y1,...,yM]. 

It is termed the smoother estimate.



Optimal Estimate of Discretized 
Linear Model with Gaussian Noise

Let zi = u(xi)   where xi 2 Ω

B z + nm = F
D z + nd = Y

OR 
M z + N= T

minz J = <NT N >

Least Squares, SVD (Kalman)



A Nonlinear ExampleA Nonlinear Example

Stochastic Dynamics (Langevin Problem):
dx(t) = f(x(t)) dt + κ dW(t)

with
V(x) = -2x2+x4

f(x) = -V’(x)=4x(1-x2)
κ = 0.5

Measurements:
at times m Δt, m=1,…, M one observes   

ym := X(tm) + ρ Nm
to have measured values Ym,   m=1,2,…,M



∂t P = -∂x [f(x) P] + κ2∂xx P/2

P(x,t)t ! 1 = Ps(x)

Kolmogorov Equation



Observations 

Ym 2 y(tm)



BAYESIAN STATEMENT

P(X|D) / Prior £ Likelihood
Use data for the likelihood
Use model for the prior

P(X|D) ~ exp(-Adata) exp(-Amodel)



Extended Kalman Filter



Alternative Approaches
KSP: optimal, but impractical
ADJOINT/4D-VAR: optimal on 
linear/Gaussian

(Restrepo, Leaf, Griewank, SIAM J. Sci Comp 1995)

Mean Field Variational Method
(Eyink, Restrepo, Alexander, Physica D, 2003)

enKF (ensemble Kalman Filter)
Particle Method

(Kim Eyink Restrepo Alexander Johnson, Mon. Wea. Rev. 2002)

Path Integral Method  
(Alexander Eyink Restrepo, J. Stat. Phys. 2005 and Restrepo 
Physica D, 2007)



Path  Integral MethodPath  Integral Method
Related to  simulated annealing
It could be developed as a black box
Simple to implement
Can handle nonlinear/non-Gaussian 
problems
Calculates sample moments

PROBLEM: Relies on MC!!!



Discretized using explicit Euler-Maruyama scheme 



Let η (tk) = W(tk + δt)-W(tk), 
at times tk,     k=0,1,2,…,

Suppose η(tk) is  Gaussian
Prob η(t) »exp(-1/2 ∑k | η (tk) |2). 

Hence exp(-Adyn), for t = t0, t1, ...tT

Adyn ´ ¼ ∑k = 0
T-1 [ [(xk+1- xk)/δt-f(xk,tk)]> D-1(xk, tk)

[(xk+1-xk)/δt-f(xk,tk)] ]



Adyn ´ ∑k = 0
T - 1 [ [(xk+1- xk)/δt –f(xk,tk)]> D-1(xk, tk)

[(xk+1-xk)/δt -f(xk,tk)] ]/4

To include influence of observations
use Bayes' rule. 

This modifies Action:

Aobs =∑m=1
M[h(x(tm)- y(tm)]>R-1[h(x(tm))-y(tm)]

The Total Action:

A = Adyn + Aobs

The Action is like the log-likelihood. 



PIMC Filter Results



Estimation Applied To Steady 
State Hydrology

Estimate hydraulic 
head in domain
Estimate material 
properties in domain
Estimate “best”
boundary values
Estimate all of the 
above



Simplest Boundary Value Problem

MODEL:

DATA:

are known statistical quantities



OUR APPROACH

USE DATA-DRIVEN CLASSIFICATION:
estimates partitioning into homogeneous layers.

Support Vector Machines
DISCRETIZE Variational formulation for the 

model plus constraint (via Lagrange multiplier): 
constrained minimum satisfies E-L. Coupling of 
each subproblem is automatically satisfied. 

Weak form (using Dirichlet energy)
SOLVE nonlinear system in each subdomain:

Newton 



Data-Driven Classification





Support Vector Machines
Alternative to Kriging
Very good alternative when sample 
densities are too low for Kriging
Highly automated
Can be incorportated in the solver 
problem



Heterogeneous Sub-Surface

In each subdomain i = 1, 2, .., M



(Weak) (Weak) Variational Variational FormulationFormulation

Let P:=[u,K]
Use standard machinery to solve nonlinear 
problem but use weighted norms (locally in each 
subdomain).
Use Newton solver but decide whether to do 
global estimate of partial estimates (increasing 
or decreasing the uncertainty in each 
subdomain).
Use Galerkin discretization of Newton Systems.



Weak Formulation (no noise)

LEADS TO: Find [ P,Λ ]T such that

X, Y* Banach spaces



Newton Solution

Find corrections [π,λ]T to [P,Λ]T 

To find Hessians and Jacobians, use
ADIFOR/C



Final Comments
Model error formulation vs. closure?
Already existing nonlinear solvers.
Weak formulation automatically takes care 
of boundary conditions at the layer 
interfaces.
Can give a-priori estimates of error.
Unlike Inverse Method (Tikhonov, e.g.) 
problem is greatly more numerically stable.
Use PIMC (see Restrepo, 2007) to 
benchmark results.
Constrain number of SVM subdomains to 
the Newton solve.



Further Information:

http://www.physics.arizona.edu/~restrepo


