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• Review of some research contributions by the 
nonlinear optimization community

• New results:  questions in the design of 
algorithms for PDE-optimization

Overview
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Looking back at progress made: An Example

• OPF: whose objective is reactive power injection in all 
network buses as a diagnosis of lack of reactive support in 
system

• Network represents the Brazilian high voltage 
generation/transmission system with about 3500 buses and 
5000 circuits

• Nonlinear, nonconvex, written in AMPL

Number of variables:                                  14873
Number of nonlinear equality constraints:       6892
Number of nonzeros in Jacobian:                   57971
Number of nonzeros in Hessian:                    31501



Why?
• Interior-points much point better in these problems
• Exact second derivatives vs quasi-Newton
• Large reduced space 
• Active set method with exact Hessians? See next

Main point: could not get this performance 10 years ago!     

SQP  (SNOPT 7.2): 35 mins
Interior point (KNITRO 5.0):                30 seconds



In operational models (n=100,000) Hessian NOT available
Quasi-Newton needed?  
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Alternative to Quasi-Newton:
Compute Wd by finite difference of gradients
Iterative Method: reduced space interior point method
Projected CG with constraint preconditioner (to remove
barrier ill conditioning)
Software implementation: 2001
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Reduced space iterative solve
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Performance of various algorithms in KNITRO

Algorithm Iterations CPU (secs)
Interior/Default 53 32

Interior/Direct,
barrule=4

29 17

Interior/Direct, 
LBFGS

185 350

Active Set/Hessian *** > 20 mins (CPLEX)

Interior/CG,
FinDiffHess

34 48

Projected CG with constraint preconditioner; NO Hessian



One more comment about recent advances 
in nonlinear programming

There has been important research done in the last
five years on exact penalty functions



• Expands frontiers of NLP, addresses robustness
• Complementarity constraints (theory, algorithms) 

Scheel-Scholtes, Anitescu, Ralph, Leyffer, Pang
• General NLP: new active set methods, NU, Wright
• Generall NLP: achieving robustness, Chen-Goldfarb
• Dynamic (non-heuristic) rules for updating 

penalty parameter, Byrd, Waltz, Nocedal
• Design of inexact Newton methods for PDE 

optimization (today!)
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• Inexact Newton Methods for constrained 
optimization

• Negative Curvature

• Models  of Penalty functions

PDE-Optimization



For Simplicity: Equality Constrained Optimization
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No. of variables in the millions
Jacobian A not formed but       

available

Nonlinear Elimination                              Geophysics, Meteorology
Reduced Space                      Biros-Ghattas, Haber,…
Step-Decomposition  Heinkenschloss, Ridzal
Full Space (Primal-Dual) SQP
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SQP: Approximate Solution of

When do we stop iterative solver?
Use non-smooth penalty function as a guide!

Negative curvature?
Borrow from trust region methods              retroretro--1980s1980s
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Iterative Methods
• Symmetric QMR
• GMRES
• other …
We impose no structure
on the linear solver
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Question: can we ensure 
convergence with a
• step to constraints?
• step to reduce objective?

Preferably both, but if we
can’t do both?
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Algorithm: Newton’s method Algorithm: SQP

kx

(Heinkenschloss and Vicente, 2001)



Use a model of the merit function

to determine conditions for     and r

Our approach
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control residual 
components separately
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Model condition implies descent
Instead of imposing descent directly (KNITRO experience)

W > 0



– Iteratively solve

– until

Algorithm Outline (W>0)

||}||||||||,max{||1.0)(

10  ,

crcdm

Ag T

−≥Δ

<<+≤

π

ελερ
ββρ

εε

<≤

<<≤

0  ,

10  ,

c

cr
or

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡ +
−=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
rc

Agd
A

AW TT ρλ
δ0

– Update penalty parameter
– Perform backtracking line search
– Update iterate



- linear model for negative curvature direction
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If W is positive definite only on the null space of constraints

Only one change: modify the model



Global Convergence
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Byrd, Curtis, N., 2006

W is positive definite only on the null space of constraints
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Negative curvature W has negative eigenvalues
on null space of  A

Our approach
1. First identify conditions under which the step d

is acceptable even if negative curvature is present
2. Introduce a modification of W if conditions cannot 

be fulfilled )( IW γ+
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Algorithm Sequential Model Reduction

Repeat until convergence
Set
repeat
Apply 1 or more steps of linear solver
If Test 1 or Test 2 hold  break
else increase

end repeat
update penalty
perform backtracking line search

End repeat 

0=γ

γ



  ,λερ TAg +≤ as before…
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Test II:
Model reduction condition

plus

How?
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d= u+ v tangential, normal components

How?
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Motivation, Justification

Is this all:
• Incremental?
• Recycled?
• Just plain weird?
•.. Or simply wrong headed!



Unconstrained optimization - Inexactness
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Algorithm: Inexact Newton method (CG)

Choosing any 
intermediate step ensures 
global convergence; 
sufficient (Cauchy) 
reduction in model

kx

Suppose we cannot use
CG…
Negative curvature:
angle condition:
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If                      (positive def) inexactness condition:
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But this condition does not imply descent if f.  Define model
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Unconstrained optimization: Negative curvature

)()(2
kkk xfdxf −∇=∇

Exact Newton Method If Hessian not positive def:
modified Cholesky
shift modification

That is, convex models
or

Trust region approach

Why modify so quickly? Step could 
point  downhill  (toward saddle point)

kd
kg−

)())(( 2
kkk xfdIxf −∇=+∇ γ

Crucial question for inexact Newton 
case



Unconstrained optimization: Negative Curvature

fdfk −∇=∇2 Newton step

Simple idea: step is acceptable if

For scale invariance choose ||||10 8 W−=θ

22 ||||dfddT θ≥∇ (*)

• We prefer this to an angle test, which is not practical in the 
constrained setting
• Express (*) using a model
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Unconstrained optimization: Model Reduction
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Focus on model reduction, not spectrum

The new model for Newton’s method

Form of model depends
on the step d

Model Reduction Condition: Step d is acceptable if
2||||)1()()0()( ddmmdm θω−≥−=Δ

If not acceptable, modify W, or add trust region, or…
Model reduction condition ensures descent



A Numerical Test: 
Exact Newton step, negative curvature

Algorithm I
(loop)

Perform line search

Algorithm II
Shift only if model decrease
condition does not hold            (loop)
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Performance profiles for matrix factorizations

new

old

new better

Number of factorizations (number of iterations similar for both approaches)
71 problems  CUTEr, COPS



Repeat experiments with iterative solution of Newton equations
Inertia information not available

Use QMR and SYMQMR

Clear-cut advantage of model reduction approach
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Thanks to:

Richard Byrd
Eldad Haber
Richard Waltz
Todd Plantenga



Question: can we ensure 
convergence with a
• step to constraints?
• step to reduce objective?

Preferably both, but if we
can’t do both?
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Algorithm: Newton’s method Algorithm: SQP

Constrained Optimization W > 0   A full rank

kx

(Heinkenschloss and Vicente, 2001)
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Model Decrease Condition
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– Iteratively solve

– until

Algorithm Outline
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or

–Update penalty parameter
–Perform backtracking line search
–Update iterate
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