Integer Nonlinear Optimization

Sven Leyffer \& Jeff Linderoth
Mathematics and Computer Division Argonne National Laboratory

Lawrence Livermore National Laboratory, May 23-25, 2007

Overview

Introduction to Integer Nonlinear Optimization
Process Systems Design Example
MINLP Applications
Modeling Without Categorical Variables
Nonlinear Branch-and-Cut
Outer Approximation
Branch-and-Cut for MINLP
Numerical Experience
Theoretical and Computational Challenges
The Curse of Exponentiality
Simulation-Based MINLP
Conclusions \& Outlook

Integer Nonlinear Optimization

Mixed Integer Nonlinear Program (MINLP)

minimize $f(x, y)$ subject to $c(x, y) \leq 0$, and y_{i} integer

Small process design example:

- synthesis of distillation column

Integer Nonlinear Optimization

Mixed Integer Nonlinear Program (MINLP)

minimize $f(x, y)$ subject to $c(x, y) \leq 0$, and y_{i} integer

Small process design example:

- synthesis of distillation column
- nonlinear physics: phase equilibrium, component material balance

Integer Nonlinear Optimization

Mixed Integer Nonlinear Program (MINLP)
minimize $f(x, y)$ subject to $c(x, y) \leq 0$, and y_{i} integer

Small process design example:

- synthesis of distillation column
- nonlinear physics: phase equilibrium, component material balance
- integers model number of trays in columns
- $y_{i} \in\{0,1\}$ models position of feeds

Applications of Integer Nonlinear Optimization

Mixed Integer Nonlinear Program (MINLP)

```
minimize f(x,y) subject to c(x,y)\leq0, and \mp@subsup{y}{i}{}\mathrm{ integer}
    x,y
```

- process design for FutureGen (zero CO_{2}-emissions fossil plant)
- radiation therapy treatment planning
- emergency evacuation planning; routing and dispatch
- blackout prevention of national power grid
- nuclear reactor core-reload operation
- design of thermal insulation layer for superconductors

Categorical Variables

Consider discrete optimization problems with categorical variables

- discrete choice, e.g. type of insulator material: m_{i} from $\mathcal{M}=\{$ nylon, teflon, epoxy, ... \}
- non-numerical, discrete variables \Rightarrow no relaxation
- limited to heuristic search techniques

Design of thermal insulation system [Abramson:04]

Modeling Physics of System

Given t_{i-1}, t_{i}, heat transfer is $q_{i}=\frac{a_{i}}{x_{i}} \int_{t_{i-1}}^{t_{i}} k\left(t, m_{i}\right) d t$
... from Fourier's law where

- $k\left(t, m_{i}\right)$ thermal conductivity of insulator m_{i} at temperature t
- $k\left(t, m_{i}\right)$ given as tabulated data
- interpolate with cubic splines
- integrate with Simpson's rule \Rightarrow consistent with cubic splines

Modeling Categorical Variables m_{i}

$z_{i j} \in\{0,1\}$ where $z_{i j}=1 \Leftrightarrow$ layer i has $j^{\text {th }}$ material

$$
\sum_{j=1}^{|\mathcal{M}|} z_{i j}=y_{i}, \quad i=1, \ldots, N+1 .
$$

... only existing layers $\left(y_{i}=1\right)$ can choose material Heat transfer equation with categorical $m_{i} \in \mathcal{M}$

$$
q_{i}=\frac{a_{i}}{x_{i}} \int_{t_{i-1}}^{t_{i}} k\left(t, m_{i}\right) d t \Leftrightarrow x_{i} q_{i}=a_{i} \int_{t_{i-1}}^{t_{i}} \sum_{j=1}^{\mathcal{M}} z_{i j} k\left(t, m_{j}\right) d t
$$

Form $\hat{k}(t):=\sum_{j=1}^{\mathcal{M}} z_{i j} k\left(t, m_{j}\right)$ from data look-up
Integrate $\hat{k}(t)$... convex combination of materials

Overview

Introduction to Integer Nonlinear Optimization Process Systems Design Example
 MINLP Applications
 Modeling Without Categorical Variables

Nonlinear Branch-and-Cut
Outer Approximation
Branch-and-Cut for MINLP
Numerical Experience
Theoretical and Computational Challenges
The Curse of Exponentiality
Simulation-Based MINLP
Conclusions \& Outlook

Outer Approximation (Duran \& Grossmann, 86)

NLP subproblem y_{j} fixed:

$$
\operatorname{NLP}\left(y_{j}\right) \begin{cases}\min _{x} & f\left(x, y_{j}\right) \\ \text { s.t. } & c\left(x, y_{j}\right) \leq 0 \\ & x \in X\end{cases}
$$

linearize f, c about $\left(x_{j}, y_{j}\right)=: z_{j}$
$\Rightarrow \operatorname{MINLP}(P) \equiv \operatorname{MILP}(M)$

$$
(M)\left\{\begin{array}{lll}
\underset{z=x, y, y), \eta}{\operatorname{minimize}} & \eta \\
\text { subject to } & \eta \geq f_{j}+\nabla f_{j}^{T}\left(z-z_{j}\right) \quad \forall y_{j} \in Y \\
& 0 \geq c_{j}+\nabla c_{j}^{T}\left(z-z_{j}\right) \quad \forall y_{j} \in Y \\
& x \in X, y \in Y \text { integer }
\end{array}\right.
$$

but need linearizations $\forall y_{j} \Rightarrow$ solve relaxations of (M)

Outer Approximation (Duran \& Grossmann, 86)

Alternate between solve $\operatorname{NLP}\left(y_{j}\right)$ and MILP relaxation

initial NLP

solve MILP relaxation
generate new hyperplanes

MILP \Rightarrow lower bound; \quad NLP \Rightarrow upper bound
... MILP solution is bottleneck ... no hot-starts for MILP

Branch-and-Cut for MINLP (Quesada \& Grossmann, 92)

branching
outer approximation

cutting planes

- interrupt MILP branch-and-cut \& add linearizations e.g. solve $\operatorname{NLP}\left(y_{j}\right) \Rightarrow$ separates $y_{j} \ldots$ infeasible
- New Solver: FilterSQP + MINTO = FilMINT [with Linderoth]

Important MIP Tricks

Important MIP tricks based on numerical experiments:

- diving-based primal heuristic (get good incumbent)
- pseudo-cost branching \& adaptive node selection good
- add only violated linearizations to (M) aster
- use MINTO's row management
... remove cuts that are inactive for 15 LPs
- range of cuts: extended cutting plane to full NLP surprise: ECP is best ... Kelly's cutting plane method!!!
... from extensive runs on 120+ MINLPs [Kumar Abhishek, 2007]

Compare to MINLP-BB \& BONMIN [IBM/CMU]

Performance profile

- fraction of problems solved within factor x of best solver
- time-limit: 4 desktop-hours

Overview

Introduction to Integer Nonlinear Optimization
Process Systems Design Example
MINLP Applications
Modeling Without Categorical Variables
Nonlinear Branch-and-Cut
Outer Approximation
Branch-and-Cut for MINLP
Numerical Experience
Theoretical and Computational Challenges
The Curse of Exponentiality
Simulation-Based MINLP
Conclusions \& Outlook

Nonconvex MINLPs

Nonconvex functions $f(x, y)$ or $c(x, y)$ add layer of complexity \Rightarrow linearizations \neq outer approximations

Baron: convex envelopes

- bilinear terms $x \cdot y$
- convex \& concave envelope
- McCormick; Sahinidis \&

Tawarmalani

Alternative: piecewise linear approximation (Martin, 2004)
... special-ordered sets, use automatic-differentiation?

Nonconvex MINLPs

Nonconvex functions $f(x, y)$ or $c(x, y)$ add layer of complexity \Rightarrow linearizations \neq outer approximations

Baron: convex envelopes

- bilinear terms $x \cdot y$
- convex \& concave envelope
- McCormick; Sahinidis \&

Tawarmalani

Alternative: piecewise linear approximation (Martin, 2004)
... special-ordered sets, use automatic-differentiation?

Nonconvex MINLPs

Nonconvex functions $f(x, y)$ or $c(x, y)$ add layer of complexity \Rightarrow linearizations \neq outer approximations

Baron: convex envelopes

- bilinear terms $x \cdot y$
- convex \& concave envelope
- McCormick; Sahinidis \&

Tawarmalani

Alternative: piecewise linear approximation (Martin, 2004)
... special-ordered sets, use automatic-differentiation?

The Curse of Exponentiality

Integer optimization has exponential complexity

Parallel MINLP

- 100s of processors get 80\% efficiency
- 100,000 processors
... research issues
- perfect speed-up only doubles problem size

Time vs number of integers
Parallel computing alone not enough: need new methods!

The Curse of Exponentiality

Traveling Salesman Problem (TSP):

- shortest route through n cities; complexity $(n-1)$!/2
- applications: transportation, genome-sequencing, ...
- benchmark problem

Historical progress on TSP:

- 1954: Dantzig solves 54 cities problem
- 2004: Applegate et al. solve 25k cities in 84 CPU years
... projected increase from Moore's law: only 6 cities
Impact of 100,000 node BG with perfect speedup:
25k cities in 30 hours; 27k cities in a week ... pitiful

Decomposition for MINLP

- network interdiction under uncertainty
- scenario-approach leads to large problem
- decompose into small subproblems
- coordinate linking variables in master

Decomposition for integer optimization:

- 2^{n} versus $k \cdot 2^{n / k} \ldots$ huge gap
- more complex master problem
- Chen vs IBM's feasibility pump:

	TR-7		TR-12	
	UBD	time	UBD	time
Chen	26.7	60	138.8	324
IBM	27.5	390	-	7200

Simulation-Based MINLP

Many DOE applications are simulation-based

- $\min f(x, y)$ where function evaluated from simulation
- no explicit functional form for $f(x, y) \Rightarrow$ no gradients
... pattern-search methods can be used

Pattern-search fails:

- search "discrete neighbors"
- fails for convex quadratic

Simulation-Based MINLP

Many DOE applications are simulation-based

- $\min f(x, y)$ where function evaluated from simulation
- no explicit functional form for $f(x, y) \Rightarrow$ no gradients
... pattern-search methods can be used

Pattern-search fails:

- search "discrete neighbors"
- fails for convex quadratic

Simulation-Based MINLP

Alternative: model-based optimization

- minimize model $m_{k}(x, y) \approx f(x, y)$ in trust-region
- models based on quadratic interpolation (UOBYQA et al.)
- models based on radial-basis functions (ORBIT, Shoemaker)
- more problem information: model defined everywhere

Open questions:

- lower bounds available \Rightarrow convergence for convex/quadratic MINLP?
- how to include constraints $c(x, y) \leq 0$?
- efficient implementation for MINLP?

Conclusions \& Outlook

Optimization is becoming more important as we move from simulation to design of complex system.

Discrete design choices create new challenges:

- theory \& solvers for integer nonlinear optimization
- rigorous decomposition methods for MINLP
- global solution of nonconvex MINLP
- derivative-free (simulation-based) MINLP
- support broad range scientific \& engineering applications
- modeling challenges of discrete choices
- modeling challenges of nonlinearities
- apply to complex systems $\left(\mathrm{CO}_{2}\right.$, fossil plants, ...)
- opportunities to leverage parallel resources

