Adaptive mesh refinement for parameter identification and application to electromagnetic inverse problems

Eldad Haber
contributors: Stefan Heldmann, Jan Modersitzki, Uri Ascher, Doug Oldenburg, Rosemary Knight

Motivation - Geophysics

Rocks have different electrical properties

Rock	Resistivity (Ω / m)
Clay	$1-20$
Sand wet to moist	$20-200$
Shale	$1-500$
Porous limestone	$100-1,000$
Dense limestone	$1,000-1,000,000$
Metamorphic rocks	$50-1,000,000$
Igneous rocks	$100-1,000,000$
Oil	0.1
Water	0.05

Geophysical prospecting

induced eddy currents at progressively later times after turnoff

Geophysical prospecting

TDEM-forward

Geophysical prospecting

TDEM-data

The problem

Given some measurements \mathbf{d}_{i} of the fields $u_{i}(\mathbf{x})$ recover the model function $m(\mathbf{x})$ given

$$
\begin{aligned}
& A(m) u_{i}-q_{i}=0 \quad i=1, \ldots, N \\
& \mathbf{d}_{i}=Q u_{i}+\text { noise }
\end{aligned}
$$

Solution through optimization

Solve by minimizing

$$
\begin{aligned}
\min & \frac{1}{2} \sum\left\|G u_{i}-d_{i}\right\|^{2}+\alpha R(|\nabla m|) \\
\text { s.t. } & A(m) u_{i}-q_{i}=0 \quad i=1, \ldots, N
\end{aligned}
$$

A(m) Maxwell operator
m conductivity
Q projection
u
fields
R
regularization

Geophysical prospecting - applications

Hydrology
Oil exploration
Reservoir monitoring
Mineral exploration

Part I - The forward problem

Part II - The inverse problem

Maxwell's equations

$$
\begin{array}{rlrl}
\nabla \times \mu^{-1} \nabla \times \vec{E}+\sigma \vec{E}_{t} & =\vec{s} & \text { on } \Omega \\
\vec{n} \times \vec{E} & =0 & & \text { on } \partial \Omega
\end{array}
$$

$\vec{E} \quad$ electric field
σ conductivity - usually jumpy
$\mu \quad$ magnetic permeability
\vec{S}

source

Maxwell's equations

$$
\begin{array}{rlrl}
\nabla \times \mu^{-1} \nabla \times \vec{E}+\sigma \vec{E}_{t} & =\vec{s} & \text { on } \Omega \\
\vec{n} \times \vec{E} & =0 & & \text { on } \partial \Omega
\end{array}
$$

\vec{E}	electric field
σ	conductivity - usually jumpy
μ	magnetic permeability
\vec{S}	source

Challenge:
(Numerically) solve the system in a scalable fashion

OcTree discretization

Needed

- Easy to mesh and use
- Adjust the grid to local smoothness
- Deal with large padding (infinite domains)
- Quick assembly of the matrix
> Mimicking properties

OcTree discretization

Needed

- Easy to mesh and use
- Adjust the grid to local smoothness
- Deal with large padding (infinite domains)
- Quick assembly of the matrix
> Mimicking properties

Possibilifies

> Finite elements
Complicated geometries but large meshing time

- Finite volume

Short meshing time but simple geometries

- Finite volume OcTrees

Not so simple geometries and short meshing time

OcTree vs FEM discretization

OcTree discretization for Poisson like (Edwards 96, Ewing, Lazarov \& Vassilevski 91, Losasso, Fedkiw \& Osher 06) OcTree discretization for Maxwell (Lipnikov, Morel \& Shashkov 04, H. \& Heldmann 06)

Discretization of Maxwell's equations

Use implicit time stepping method (usually BDF2)

$$
\nabla \times \mu^{-1} \nabla \times \vec{E}+\sigma \alpha \vec{E}=\vec{s}
$$

View in variational form

$$
\min \int_{\Omega} \frac{1}{2 \mu}|\nabla \times \vec{E}|^{2}+\frac{\sigma \alpha}{2}|\vec{E}|^{2}-\vec{E} \cdot \vec{s} d x
$$

OcTree discretization of Maxwell's equation

- Similar to FEM we discretize the variation principle
- Unlike FEM we use finite difference and midpoint/trapezoidal method
- In 1D Varga 62

OcTree discretization of the curl and mass matrix

$$
(\nabla \times \vec{E})_{z}^{2}=\left(\partial_{y} \vec{E}_{x}-\partial_{x} \vec{E}_{y}\right)^{2}
$$

Use only short differences and averages $\mathcal{O}\left(h^{2}\right)$

OcTree discretization of the forward problem

Discrete approximation

$$
\begin{gathered}
\int_{\Omega} \frac{1}{2 \mu}|\nabla \times \vec{E}|^{2}+\frac{\sigma \alpha}{2}|\vec{E}|^{2}-\vec{E} \cdot \vec{s} d x= \\
\frac{1}{2} \mathbf{e}^{\top}(A+\alpha M) \mathbf{e}-\mathbf{e}^{\top} \mathbf{s}+\mathcal{O}\left(h^{2}\right)
\end{gathered}
$$

Theorem: Our discretization yields

$$
(\mathbf{e}-P \vec{E})^{\top}(A+\alpha M)(\mathbf{e}-P \vec{E})=\mathcal{O}\left(h^{2}\right)
$$

Solution of the linear system

$$
(A+\alpha M) \mathbf{e}=\mathbf{s}
$$

- Can be difficult to solve due to the null space of the curl $\nabla \times \nabla=0 \leftrightarrow A D^{\top}=0$
- Use (discrete) Helmholtz decomposition

$$
\begin{aligned}
& \mathbf{e}=\mathbf{a}+D^{\top} \phi \\
& 0=D \mathbf{a} \text { Culomb gauge condition }
\end{aligned}
$$

- Obtain a stable system

$$
\left(\begin{array}{cc}
A+D^{\top} D+\alpha M & \alpha M D^{\top} \\
\alpha D M & D M D^{\top}
\end{array}\right)\binom{\mathbf{a}}{\phi}=\binom{\mathbf{s}}{D \mathbf{s}}
$$

- Multigrid preconditioner Ascher \& Aruliah 02, H. \& Ascher 01

Example

$N=16^{3}$		
$\mu_{1} / \mu_{\mathrm{bg}}$	$\sigma_{1} / \sigma_{\mathrm{bg}}$	iterations
10^{1}	10^{2}	9
10^{2}	10^{4}	10

$N=32^{3}$		
$\mu_{1} / \mu_{\mathrm{bg}}$	$\sigma_{1} / \sigma_{\mathrm{bg}}$	iterations
10^{1}	10^{2}	10
10^{2}	10^{4}	12
$N=64^{3}$		
$\mu_{1} / \mu_{\mathrm{bg}}$	$\sigma_{1} / \sigma_{\mathrm{bg}}$	iterations
10^{1}	10^{2}	11
10^{2}	10^{4}	14

Part II - The inverse problem

Inverse problem through optimization

$$
\begin{array}{ll}
\min _{m, u} & \frac{1}{2} \sum_{i}\left\|Q u_{i}-\mathbf{d}_{i}\right\|^{2}+\alpha R(|\nabla m|) d \mathbf{x} \\
\text { s.t. } & A(m) u_{i}-q_{i}=0 \quad i=1, \ldots, N
\end{array}
$$

Comments

- Use $R=\int \rho(|\nabla m|) d x$
- Choose $\rho(t)=\operatorname{Huber}(t, \theta)$ to obtain discontinuities
- Regularization parameter α needs to be determined

The discrete optimization problem

Discretize then Optimize

$$
\begin{array}{cl}
\min _{m, u} & \frac{1}{2} \sum\left\|Q u_{i}-\mathbf{d}_{i}\right\|^{2}+\alpha R\left(\left|\nabla_{h} m\right|\right) \\
\text { s.t. } & A(m) u_{i}-q_{i}=0 \quad i=1, \ldots, N
\end{array}
$$

Solve using reduced space SQP

- Major cost, forward and adjoint
- Fine mesh \rightarrow large scale
> Bad conditioning but well posed!

Grid sequencing

- Major idea - solve on a sequence of grids (Moìe 02, Ascher \& H 01, Nash \& Sofer 01, Borzi \& Kunish 03, Benzi Hanson \& H 06 \& many more)
- For smooth parameter estimation with FE
(Bangerth 04, Becker, Becker Kapp 03 \& Rannacher 03)
- Need very few iterations on the finest grid
> Potentially avoid local minima

Why local refinement?

> The cost of the optimization is dominated by the size of the forward problem

- For the forward problem, a factor of 10 reduction can be obtained
- For solutions with large gradients, "zoom in" on the discontinuity

Discretization of the objective function

$$
R(|\nabla m|)=\sum_{\text {cells }} \int_{\text {cell }} \rho(|\nabla m|) d \mathbf{x}
$$

Evaluate

$$
\int_{\text {cell }} \rho(|\nabla m|) d \mathbf{x}=\int_{\text {cell }} \rho\left(\sqrt{m_{x_{1}}^{2}+m_{x_{2}}^{2}}\right) d \mathbf{x}
$$

$$
\frac{\partial m}{\partial x_{1}}\left(\mathbf{x}_{0}\right)=\frac{m_{2}+m_{3}-2 m_{1}}{3 h}+\mathcal{O}(h)
$$

$$
\int_{\text {cell }} \rho(|\nabla m|)=\int_{\text {cell }} \rho\left(\sqrt{m_{x_{1}}^{2}+m_{x_{2}}^{2}}\right) d \mathbf{x} \approx
$$

$$
V_{\text {cell }} \rho\left\{\sqrt{\frac{1}{2}\left(\frac{m_{2}+m_{3}-2 m_{1}}{3 h}\right)^{2}+\frac{1}{2}\left(\frac{m_{4}-m_{1}}{2 h}\right)^{2}+\operatorname{aprx}\left(m_{x_{2}}\right)^{2}}\right\}
$$

$$
R(\mathbf{m})=\mathbf{v}^{\top} \rho\left(\sqrt{\mathbf{A}_{f}^{c}\left(\nabla_{h c} \mathbf{m}\right)^{2}}\right) .
$$

Solving the discrete problem

Given an OcTree evaluate m, u by solving the optimization problem.

Solving the discrete problem

Given an OcTree evaluate m, u by solving the optimization problem.

The Euler Lagrange equations:

$$
\begin{aligned}
& A(m)^{\top} \lambda_{i}=Q_{i}^{\top}\left(\mathbf{d}_{i}-Q_{i} u_{i}\right), \quad i=1, \ldots, N \\
& A(m) u_{i}=q_{i}, \quad i=1, \ldots, N \\
& \sum_{k} G\left(m, u_{k}\right)^{\top} \lambda_{k}+\alpha \nabla_{h}^{\top} \Sigma(m) \nabla_{h} m=\mathbf{0}
\end{aligned}
$$

Solving the discrete problem

Work within the reduced problem

Solving the discrete problem

Work within the reduced problem
Use L-BFGS and rank 2 update Quasi-Newton methods for the solution of the problem

Solving the discrete problem

Work within the reduced problem
Use L-BFGS and rank 2 update Quasi-Newton methods for the solution of the problem

The solution can have large smooth areas. Use Adaptive Multilevel Refinement

Adaptive Multilevel Refinement (AMR)

- The cost of the optimization process is impacted by the size of the problem and initial guess.
- Adaptive multilevel refinement methods achieve a low-cost good starting guess
- AMR reduce the size of the discrete fine grid problem

Guidelines for Adaptive Multilevel Refinement

$$
\begin{aligned}
& A(m)^{\top} \lambda_{i}=Q_{i}^{\top}\left(\mathbf{d}_{i}-Q_{i} u_{i}\right), \quad i=1, \ldots, N \\
& A(m) u_{i}=q_{i}, \quad i=1, \ldots, N \\
& \sum_{k} G\left(m, u_{k}\right)^{\top} \lambda_{k}+\alpha \nabla_{h}^{\top} \Sigma(m) \nabla_{h} m=\mathbf{0},
\end{aligned}
$$

We solve for u_{j}, m, λ_{j} on grids $\mathcal{S}_{u_{j}}, \mathcal{S}_{m}, \mathcal{S}_{\lambda_{j}}$.

Guidelines for Adaptive Multilevel Refinement

$$
\begin{aligned}
& A(m)^{\top} \lambda_{i}=Q_{i}^{\top}\left(\mathbf{d}_{i}-Q_{i} u_{i}\right), \quad i=1, \ldots, N \\
& A(m) u_{i}=q_{i}, \quad i=1, \ldots, N \\
& \sum_{k} G\left(m, u_{k}\right)^{\top} \lambda_{k}+\alpha \nabla_{h}^{\top} \Sigma(m) \nabla_{h} m=\mathbf{0},
\end{aligned}
$$

We solve for u_{j}, m, λ_{j} on grids $\mathcal{S}_{u_{j}}, \mathcal{S}_{m}, \mathcal{S}_{\lambda_{j}}$.
$>$ If $\mathcal{S}_{u_{j}} \neq \mathcal{S}_{\lambda_{j}}$ then the forward operator is not the discrete adjoint of the operator for λ_{j}.

Guidelines for Adaptive Multilevel Refinement

$$
\begin{aligned}
& A(m)^{\top} \lambda_{i}=Q_{i}^{\top}\left(\mathbf{d}_{i}-Q_{i} u_{i}\right), \quad i=1, \ldots, N \\
& A(m) u_{i}=q_{i}, \quad i=1, \ldots, N \\
& \sum_{k} G\left(m, u_{k}\right)^{\top} \lambda_{k}+\alpha \nabla_{h}^{\top} \Sigma(m) \nabla_{h} m=\mathbf{0},
\end{aligned}
$$

We solve for u_{j}, m, λ_{j} on grids $\mathcal{S}_{u_{j}}, \mathcal{S}_{m}, \mathcal{S}_{\lambda_{j}}$.
$>$ If $\mathcal{S}_{u_{j}} \neq \mathcal{S}_{\lambda_{j}}$ then the forward operator is not the discrete adjoint of the operator for λ_{j}.

Set the grids $\mathcal{S}_{u_{j}}=\mathcal{S}_{\lambda_{j}}$

Guidelines for Adaptive Multilevel Refinement

$$
\begin{aligned}
& A(m)^{\top} \lambda_{i}=Q_{i}^{\top}\left(\mathbf{d}_{i}-Q_{i} u_{i}\right), \quad i=1, \ldots, N \\
& A(m) u_{i}=q_{i}, \quad i=1, \ldots, N \\
& \sum_{k} G\left(m, u_{k}\right)^{\top} \lambda_{k}+\alpha \nabla_{h}^{\top} \Sigma(m) \nabla_{h} m=\mathbf{0},
\end{aligned}
$$

We solve for u_{j}, m, λ_{j} on grids $\mathcal{S}_{u_{j}}, \mathcal{S}_{m}, \mathcal{S}_{\lambda_{j}}$.
$>$ If $\mathcal{S}_{u_{j}} \neq \mathcal{S}_{\lambda_{j}}$ then the forward operator is not the discrete adjoint of the operator for λ_{j}.

Set the grids $\mathcal{S}_{u_{j}}=\mathcal{S}_{\lambda_{j}}$
$>$ If \mathcal{S}_{m} is finer than $\mathcal{S}_{u_{j}}$ then homogenization is needed.

Guidelines for Adaptive Multilevel Refinement

$$
\begin{aligned}
& A(m)^{\top} \lambda_{i}=Q_{i}^{\top}\left(\mathbf{d}_{i}-Q_{i} u_{i}\right), \quad i=1, \ldots, N \\
& A(m) u_{i}=q_{i}, \quad i=1, \ldots, N \\
& \sum_{k} G\left(m, u_{k}\right)^{\top} \lambda_{k}+\alpha \nabla_{h}^{\top} \Sigma(m) \nabla_{h} m=\mathbf{0},
\end{aligned}
$$

We solve for u_{j}, m, λ_{j} on grids $\mathcal{S}_{u_{j}}, \mathcal{S}_{m}, \mathcal{S}_{\lambda_{j}}$.
> If $\mathcal{S}_{u_{j}} \neq \mathcal{S}_{\lambda_{j}}$ then the forward operator is not the discrete adjoint of the operator for λ_{j}.

Set the grids $\mathcal{S}_{u_{j}}=\mathcal{S}_{\lambda_{j}}$
$>$ If \mathcal{S}_{m} is finer than $\mathcal{S}_{u_{j}}$ then homogenization is needed.

Set $\mathcal{S}_{m} \subseteq \mathcal{S}_{u_{j}}$.

Refinement criteria for m

We minimize

$$
\frac{1}{2} \sum\left\|Q u_{i}-\mathbf{d}_{i}\right\|^{2}+\alpha R(m)
$$

Based on the evaluation of the integral $R(m)$
The controversy: we may need to refine m in regions where u changes very slowly

Initializing and refining the grid for u

Rule of thumb: the u grid must be fine enough to represent the data d

If the u grid is too coarse then $\mathbf{d}=\operatorname{SA}(\mathrm{m})^{-1} q$ is biased by numerical errors \rightarrow large errors in m.

Numerical Experiments

The model and experiment

Reconstruction

True model

16^{3} U-grid
32^{3} OT grid

64^{3} OT grid

Grids

The number of unknowns on the finest grid is roughly 12 times smaller than the number of unknowns we would obtain by using the full 64^{3} grid.

Conclusions

Conclusions

> By using AMR we can gain a factor in computational time

Conclusions

- By using AMR we can gain a factor in computational time
- Allows to deal with complex geometries and infinite domains

Conclusions

- By using AMR we can gain a factor in computational time
- Allows to deal with complex geometries and infinite domains
- AMR requires special discretization

Conclusions

- By using AMR we can gain a factor in computational time
- Allows to deal with complex geometries and infinite domains
- AMR requires special discretization
- Different grids for m and u, λ

Conclusions

- By using AMR we can gain a factor in computational time
- Allows to deal with complex geometries and infinite domains
- AMR requires special discretization
- Different grids for m and u, λ
- Can we learn about regularization effects (bias) using AMR?

