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Motivation - Geophysics

Rocks have different electrical properties

Rock Resistivity (Ω/m)
Clay 1-20

Sand wet to moist 20-200
Shale 1-500

Porous limestone 100-1,000
Dense limestone 1,000-1,000,000

Metamorphic rocks 50-1,000,000
Igneous rocks 100-1,000,000

Oil 0.1
Water 0.05
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The problem

Given some measurements di of the fields ui(x)
recover the model function m(x) given

A(m)ui − qi = 0 i = 1, . . . , N
di = Qui + noise



Solution through optimization

Solve by minimizing

min
1
2

∑
‖Qui − di‖2 + αR(|∇m|)

s.t. A(m)ui − qi = 0 i = 1, . . . , N

A(m) Maxwell operator
m conductivity
Q projection
u fields
R regularization



Geophysical prospecting - applications

Hydrology

Oil exploration

Reservoir monitoring

Mineral exploration



Part I - The forward problem

Part II - The inverse problem



Maxwell’s equations

∇× µ−1∇× ~E + σ~Et = ~s on Ω

~n × ~E = 0 on ∂Ω

~E electric field
σ conductivity - usually jumpy
µ magnetic permeability
~s source

Challenge:
(Numerically) solve the system in a scalable fashion
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OcTree discretization
Needed

I Easy to mesh and use
I Adjust the grid to local smoothness
I Deal with large padding (infinite domains)
I Quick assembly of the matrix
I Mimicking properties

Possibilities

I Finite elements
Complicated geometries but large meshing time

I Finite volume
Short meshing time but simple geometries

I Finite volume OcTrees
Not so simple geometries and short meshing time
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OcTree vs FEM discretization

OcTree discretization for Poisson like [Edwards 96, Ewing,
Lazarov & Vassilevski 91, Losasso, Fedkiw & Osher 06 ]
OcTree discretization for Maxwell [Lipnikov, Morel &
Shashkov 04, H. & Heldmann 06]



Discretization of Maxwell’s equations

Use implicit time stepping method (usually BDF2)

∇× µ−1∇× ~E + σα~E = ~s

View in variational form

min
∫

Ω

1
2µ
|∇ × ~E|2 +

σα

2
|~E|2 − ~E·~s dx



OcTree discretization of Maxwell’s
equation

I Similar to FEM we discretize the variation
principle

I Unlike FEM we use finite difference and
midpoint/trapezoidal method

I In 1D Varga 62



OcTree discretization of the curl and
mass matrix

(∇× ~E)2
z = (∂y~Ex − ∂x ~Ey)

2

Use only short differences and averages O(h2)



OcTree discretization of the forward
problem

Discrete approximation∫
Ω

1
2µ
|∇ × ~E|2 +

σα

2
|~E|2 − ~E·~s dx =

1
2

e>(A + αM)e− e>s +O(h2)

Theorem: Our discretization yields

(e− P~E)>(A + αM)(e− P~E) = O(h2)



Solution of the linear system

(A + αM)e = s

I Can be difficult to solve due to the null space of
the curl ∇× ∇ = 0 ↔ AD> = 0

I Use (discrete) Helmholtz decomposition
e = a + D>φ

0 = Da Culomb gauge condition

I Obtain a stable system(
A + D>D + αM αMD>

αDM DMD>

) (
a
φ

)
=

(
s

Ds

)
I Multigrid preconditioner Ascher & Aruliah 02, H. &

Ascher 01



Example

N = 163

µ1/µbg σ1/σbg iterations
101 102 9
102 104 10

N = 323

µ1/µbg σ1/σbg iterations
101 102 10
102 104 12

N = 643

µ1/µbg σ1/σbg iterations
101 102 11
102 104 14



Part II - The inverse problem



Inverse problem through optimization

min
m,u

1
2

∑
i

‖Qui − di‖2 + αR(|∇m|) dx

s.t. A(m)ui − qi = 0 i = 1, . . . , N

Comments

I Use R =
∫

ρ(|∇m|)dx
I Choose ρ(t) = Huber(t, θ) to obtain

discontinuities
I Regularization parameter α needs to be

determined



The discrete optimization problem

Discretize then Optimize

min
m,u

1
2

∑
‖Qui − di‖2 + αR(|∇hm|)

s.t. A(m)ui − qi = 0 i = 1, . . . , N

Solve using reduced space SQP

I Major cost, forward and adjoint
I Fine mesh → large scale
I Bad conditioning but well posed!



Grid sequencing

→ →

I Major idea - solve on a sequence of grids [Mor̀e
02, Ascher & H 01, Nash & Sofer 01, Borzi & Kunish 03, Benzi
Hanson & H 06 & many more ]

I For smooth parameter estimation with FE
[Bangerth 04, Becker, Becker Kapp 03 & Rannacher 03]

I Need very few iterations on the finest grid
I Potentially avoid local minima



Why local refinement?

→ →

I The cost of the optimization is dominated by the
size of the forward problem

I For the forward problem, a factor of 10 reduction
can be obtained

I For solutions with large gradients, ”zoom in” on
the discontinuity



Discretization of the objective function

R(|∇m|) =
∑
cells

∫
cell

ρ(|∇m|) dx

Evaluate∫
cell

ρ(|∇m|) dx =

∫
cell

ρ
(√

m2
x1

+ m2
x2

)
dx

∂m
∂x1

(x0) =
m2 + m3 − 2m1

3h
+O(h)



∫
cell

ρ(|∇m|) =
∫

cell
ρ

(√
m2

x1
+ m2

x2

)
dx ≈

Vcellρ


√

1
2

(
m2 + m3 − 2m1

3h

)2

+
1
2

(
m4 −m1

2h

)2

+ aprx (mx2)2



R(m) = v>ρ
(√

Ac
f (∇hcm)2

)
.



Solving the discrete problem

Given an OcTree evaluate m, u by solving the
optimization problem.

The Euler Lagrange equations:

A(m)>λi = Q>
i (di −Qiui), i = 1, . . . , N

A(m)ui = qi , i = 1, . . . , N∑
k

G(m, uk)>λk + α∇h
>Σ(m)∇h m = 0,
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Solving the discrete problem

Work within the reduced problem

Use L-BFGS and rank 2 update Quasi-Newton
methods for the solution of the problem

The solution can have large smooth areas. Use
Adaptive Multilevel Refinement
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Adaptive Multilevel Refinement (AMR)

I The cost of the optimization process is impacted
by the size of the problem and initial guess.

I Adaptive multilevel refinement methods achieve
a low-cost good starting guess

I AMR reduce the size of the discrete fine grid
problem



Guidelines for Adaptive Multilevel
Refinement

A(m)>λi = Q>i (di −Qiui), i = 1, . . . , N
A(m)ui = qi , i = 1, . . . , N∑

k

G(m, uk)>λk + α∇h
>Σ(m)∇h m = 0,

We solve for uj, m, λj on grids Suj , Sm , Sλj .

I If Suj 6= Sλj then the forward operator is not the
discrete adjoint of the operator for λj.

Set the grids Suj = Sλj

I If Sm is finer than Suj then homogenization is
needed.

Set Sm ⊆ Suj .
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Refinement criteria for m

We minimize

1
2

∑
‖Qui − di‖2 + αR(m)

Based on the evaluation of the integral R(m)

The controversy: we may need to refine m in regions
where u changes very slowly



Initializing and refining the grid for u

Rule of thumb: the u grid must be fine enough to
represent the data d

If the u grid is too coarse then d = QA(m)−1q is
biased by numerical errors → large errors in m.



Numerical Experiments
The model and experiment



Reconstruction
True model 163 U-grid

323 OT grid 643 OT grid



Grids

Level u grid m grid
L1 5656 4096
L2 10356 6014
L3 21342 16199

The number of unknowns on the finest grid is roughly
12 times smaller than the number of unknowns we
would obtain by using the full 643 grid.



Conclusions

I By using AMR we can gain a factor in
computational time

I Allows to deal with complex geometries and
infinite domains

I AMR requires special discretization
I Different grids for m and u, λ

I Can we learn about regularization effects (bias)
using AMR?
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