
Architecture Trends and
Implications for
Algorithms

William Gropp
www.mcs.anl.gov/~gropp

Argonne National
Laboratory AMR PI Meeting

Power Dissipation Trends
Or, why I can’t just wait for computers to get faster

Argonne National
Laboratory AMR PI Meeting

Peak CPU speeds are stable

From
http://www.tomshardware.com/2005/11/21/the_mother_of_all_cpu
_charts_2005/

Argonne National
Laboratory AMR PI Meeting

Why is achieved performance on a single
node so poor?

1

10

100

1000

Aug-76 Aug-80 Aug-84 Aug-88 Aug-92 Aug-96 Aug-00

Date of Introduction

C
lo

ck
 R

at
e

(n
s)

Supercomputer (Cray, NEC) RISC (HP, MIPS) CISC (Intel) Memory

DRAM
Performance

Floating
point

relevant
Floating
point
irrelevant

Argonne National
Laboratory AMR PI Meeting

Fixing the Performance Gap
Large gap in performance forces a design to “impedance match”
CPU to memory
Computer systems have complex, multilevel memory hierarchies
Complexity results in nonlinear behavior for simple operations

This diagram
leaves off the
most important
information -
latency between
components

Stated values
are never
observed by the
programmer

Argonne National
Laboratory AMR PI Meeting

Challenges in Creating a Performance Model Based on Memory
Accesses

Different levels of the memory
hierarchies have significantly
different performance
Time (work) is a nonlinear
function of copy size
– Source of “superlinear”

speedup - that is real
Cache behavior sensitive to
details of data layout
Still no good calculus for
predicting performance
– But all hope is not lost

Data Size (Bytes)
103 104 105 106 107 1081000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

U UVV UVV V UU VV V UUU VVV V UU V UVV VV UV UVUV VV UVU UVU VV UVU UVUV

STREAM
performance
in MB/s
versus data
size

Interleaved data causes
data to be displaced while
still needed for later steps

Argonne National
Laboratory AMR PI Meeting

All this makes prediction hard
But in best applied math tradition, bounds are possible and valuable
Example: Sparse Matrix-Vector Product
– Common operation for optimal (in floating-point operations)

solution of linear systems
– Sample code (in C):

for row=1,n
m = i[row] - i[row-1];
sum = 0;
for k=1,m

sum += *a++ * x[*j++];
y[i] = sum;

– Data structures are a[nnz], j[nnz], i[n], x[n], y[n]

Argonne National
Laboratory AMR PI Meeting

Simple Performance Analysis

Memory motion:
– nnz (sizeof(double) + sizeof(int)) +

n (2*sizeof(double) + sizeof(int))
– Assume a perfect cache (never load same data twice; only

compulsory loads)
Computation
– nnz multiply-add (MA)

Roughly 12 bytes per MA
Typical WS node can move 1-4 bytes/MA
– Maximum performance is 8-33% of peak

Argonne National
Laboratory AMR PI Meeting

More Performance Analysis

Instruction Counts:
– nnz (2*load-double + load-int + mult-add) +

n (load-int + store-double)
Roughly 4 instructions per MA
Maximum performance is 25% of peak (33% if MA overlaps one
load/store)
– (wide instruction words can help here)

Changing matrix data structure (e.g., exploit small block structure)
allows reuse of data in register, eliminating some loads (x and j)
Implementation improvements (tricks) cannot improve on these
limits

Argonne National
Laboratory AMR PI Meeting

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0
100
200
300
400
500
600
700
800
900

SP T3E Ultra II

Theoretical Peak
Oper. Issue Peak
Mem BW Peak
Observed

Argonne National
Laboratory AMR PI Meeting

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

SP Origin T3E Pentium Ultra II Power4 Xeon

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

Argonne National
Laboratory AMR PI Meeting

Realistic Measures of Peak Performance
Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz)

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

Thanks to Dinesh Kaushik;
ORNL and ANL for compute time

Argonne National
Laboratory AMR PI Meeting

Comments
Simple model based on memory performance gives good bounds
on performance
– Detailed prediction requires much more work; often not

necessary or relevant to the algorithm designer
What do you do if observed performance is far short of predicted
performance?
– Take a closer look at the memory motion
– Perfect cache assumption is often violated; nonlinear

performance behavior gives significant cost to any miss
– Define algorithm in terms of nested amounts of memory - create

a family of algorithms
• For example, in terms of blocks (matrices and meshes)
• Note that they may not be numerically identical to the

unblocked algorithm, so analysis is needed
– One idea is Cache oblivious algorithms

• Contain no parameters (or only a single minimum size)
• Successful for dense matrix-matrix multiply

Argonne National
Laboratory AMR PI Meeting

Adapting the Algorithm to Architecture
Problem:
– u ∈ℜn, F(u) = 0, representing nonlinear PDE on Domain Ω .

Discretize.
Typical Algorithmic decomposition:
– Nonlinear problem →

Newton method →
Linear system involving Jacobian matrix →

Solve linear system in parallel
However, limited temporal locality for linear solves, particularly for
solvers such as multigrid
One Solution: Cross - iteration algorithms
– Think in blocks involving time/iteration, not just slices
– Examples - CG methods, Nonlinear Schwarz

Argonne National
Laboratory AMR PI Meeting

Nonlinear Schwarz Brings Back
Memory Reuse

An alternate approach:
– Divide Ω into overlapping domains Ωi, boundaries ∂Ωi Let ui be u

restricted to Ωi. ∂Ωi ∩Ω set from Ωj

– For k=0, ...
Solve F(u1

k+1,u2
k) = 0 for u1

k+1on Ω1,
Solve F(u1

k,u2
k+1) = 0 for u2

k+1 on Ω2, …

Each subdomain involves local (cache resident) solve
– Choose Ωi to fit in fast memory
– Nonlinear methods are not (yet) O(1)

• Permit temporal locality
– Linear solvers used are O(1)

Memory hierarchy handled through multilevel version
– Solve F(u1

k+1,u2
k) = 0 for u1

k+1on Ω1with nonlinear Schwarz, etc.
For an intro to memory issues for algorithm designers, see

– Karp in SIAM Review 1996
– McGeoch, AMS Notices March 2001

Argonne National
Laboratory AMR PI Meeting

The Dimensions of a Typical Cluster
6.1 m x 2.1 m x 1m
1-norm size (airline baggage
norm) = 9.2m
At 2.4Ghz, =
74 cycles
(49 x 17 x 8)
Real distance is greater
– Routes longer
– Signals slower than light in a

vacuum
PRAM (Parallel Random Access
Memory) model is not helpful
– Like using Newtonian mechanics

for predicting behavior of near
lightspeed particles

– It is too simple

Argonne National
Laboratory AMR PI Meeting

Two Challenges for Scalable
Computing

Amdahl’s law
– Maximum speed up = 1/(1-(Ts/(Ts+Tp)) = 1/(1-serial_fraction)
– For applications that require every bit of available memory (so called weak

scaling), the serial_fraction is very small
– For applications with fixed problem size (strong scaling), this is often already a

problem
Little’s law

– From queueing theory
• In a stable system, the arrival rate * the residency time equals the number in

the queue
– For memory, we have

• Residency time = memory latency
• Arrival rate = 1/clock
• Thus number = memory latency in clocks

– This number is the number of outstanding operations, such as loads, or the
number of concurrent operations needed to avoid waiting on memory

– Typical values are 100-250

Argonne National
Laboratory AMR PI Meeting

Achieving Good Scaling
Solve a 3-D Poisson Problem as
part of a larger application
Algorithm is Multigrid
preconditioned CG
One system shows good
(predicted) scaling
The other eventually shows a
slowdown
Why?
– System 1 has a special

network for MPI_Allreduce.
Cost is low and nearly constant

– System 2 does not. Cost is
(relatively) high

Time for 3-D Poisson Solve

0

20000

40000

60000

80000

100000

120000

8 9 10 11 12 13 14
log2(p)

Sys1
Sys2

Argonne National
Laboratory AMR PI Meeting

Reorganizing Conjugate Gradient for
High Performance

Problem:
– Solve a linear system Ax = b

Conjugate Gradient Method:
– Iterate, computing Ap(n) at the nth step
– Form new approximate solution using dot products and vector

operations
Performance Problems
– Dot products cause synchronization
– Sparse matrix-vector products strain memory system

Argonne National
Laboratory AMR PI Meeting

Effect of Inner Products

Typical Krylov method
β = rTz
ρ = β/ βold
βold = β

p = z + ρ p
z = Ap
α = β/pTz
x = x + α p
r = r − α z
z = Mr

Not numerically identical (compiler must not do this)
Deeper pipelining possible by further loop unrolling (also
not numerically identical)

Rearange to
start β = rTz
z1 = Az
end β = rTz
ρ = β/ βold
βold = β
p = z + ρp
z = z1 + ρz (=Az + ρApold=Ap)
α = β/pTz
x = x + α p
r = r − α z
z = Mr

Argonne National
Laboratory AMR PI Meeting

Comments
No claim that this is the right thing to do
– Illustrates the opportunities

Must analyze tradeoffs
– More floating point operations
– More data motion
– Less waiting for inner product

General Ideas
– Overlap communication with useful work
– Consider cross (sub)step and cross iteration transformations
– Initiate early, wait late

This is a simple algebraic approach
– The real solution is to apply these principles at the algorithmic

level to gain much greater benefit

Argonne National
Laboratory AMR PI Meeting

Massive Scale
Load Balancing
– Work virtualization

• Give the system flexibility to allocate resources
Fault Management
– Fault detection

• Check, do not impose, conservation properties
• Symmetries imply conservation principles - exploit them
• “Assessing Fault Sensitivity in MPI Applications," SC2004 Best

Technical Paper
– Fault Recovery

• Compact representations for checkpointing
– E.g., do you need every bit for a valid simulation, or could you

store a set of coefficients for a FE representation to the
computational accuracy? Is there a natural different
representation that could be stored?

• What is the minimum amount of information that is needed?
– Don’t forget to cost-weight the information!

• Is there redundant information that can be used to reconstruct lost
data?

Argonne National
Laboratory AMR PI Meeting

Not Everything is PetaScale computing
Make better use of otherwise idle processors for laptop/deskktop
computations
– Error estimates and bounds
– Sensitivity and Uncertainty Quantification
– Serendipity

• Data mine previous results
Ubiquitous computing
– Low power - results per watt-second (Joule) may be more important

What Does Multicore/Manycore Imply?
– It is and is not SMP

• Very high bandwidth, relatively low latency for memory “on chip”
• Same problems (or worse!) to off-chip memory

– Using the extra processors with the same (on chip) memory
• Helper threads
• Concurrent computation on same data

Argonne National
Laboratory AMR PI Meeting

Is Performance Everything?
“In August 1991, the Sleipner A, an oil and gas platform built in Norway
for operation in the North Sea, sank during construction. The total
economic loss amounted to about $700 million. After investigation, it
was found that the failure of the walls of the support structure resulted
from a serious error in the finite element analysis of the linear elastic
model.” (http://www.ima.umn.edu/~arnold/disasters/sleipner.html)

Even better, more accurate computations not only predicted the failure,
they predicted the depth at which the structure would fail within 5%

Argonne National
Laboratory AMR PI Meeting

What Can You Do?
Re-examine old algorithms

– Performance costs have changed
– Increase memory efficiency of algorithms (higher order, better analysis instead of

resolution refinement, …)
– But some algorithms are still bad ideas

Use performance bounds that include memory, CPU, and instruction mix
– Consider performance an interval or a distribution, not a single number
– Insist on relevant work bounds (estimates) in research papers and text books

Reconsider problem decompositions
– Overly simple decompositions (e.g., stratified solvers) waste CPU resources
– Design around memory motion

• All machines suffer from memory wall
– Techniques to deal with memory wall differ but none eliminate it

– Split operations that make use of “far away” resources
Create families of algorithms that adapt to memory and concurrency

– These provide a way for CS folks to help adapt the algorithm to the complexities
of the hardware

