

... for a brighter future

Argonne Leadership Computing Facility

ALCF

UChicago > Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Trends in Architecture

William Gropp (for Ray Bair, Director of ALCF)

What is the ALCF?

- The Argonne Leadership Computing Facility is a new division at Argonne
 - A peer of the Mathematics and Computer Science Division
 - A home for Petascale computing at ANL
 - ACLF is currently home to a 1k node (5.6 TF) BG/L; deploying next generation BlueGene this fall
 - DOE INCITE Program awards time to open science projects; 9 currently awarded 10M CPU Hours (on BG/L at ANL and IBM)
- Announced Plans

2007

- Increased to 9 INCITE projects; continue development projects
- Install 100 teraflops next gen Blue Gene system (late 2007)

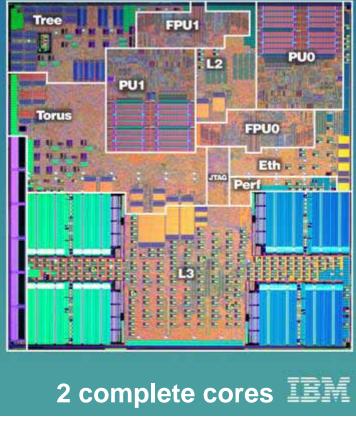
2008

- Begin support of INCITE projects on next generation Blue Gene
- Add 250-500 Teraflops Blue Gene system

Processor

– PPC440x5 Processor Core – 700 MHz

- Superscalar: 2 instructions per cycle
- Out of order issue and execution
- Dynamic branch prediction, etc.
- Two 64-bit floating point units
 - SIMD instruct. over both register files
 - Parallel (quadword) loads/stores
 - 2.8 GFLOPS/processor


Interconnect

3 Dimensional Torus

- Virtual cut-through hardware routing
- 1.4Gb/s on all 12 node links
- 1 μs latency bet. neighbors, 5 μs to farthest Global Tree
 - One-to-all broadcast, reduction functionality
 - 2.8 Gb/s of bandwidth per link
 - Latency of one way tree traversal 2.5 μs
- Low Latency Global Barrier and Interrupt
 - Latency of round trip 1.3 μs
- Ethernet
 - All external comm. (file I/O, control, etc.)

BlueGene/L Chip

BLC DD 2.0

Argonne National

Laboratorv

Old and New Conventional Wisdom

- Memory wall is old conventional wisdom observation dates from 1995 (Wulf and McKee)!
- Cache coherency is required
 - Long history of oscillations (at the high end)
 - Hard to support at scale
 - In practice, hard even for 2-4 cores; many examples of either correctness or performance bugs
 - Relaxed consistency models may work, particularly with programming model support. Algorithms can help.
- General purpose machines exist
 - All machines optimized for some workload which is not yours
- Heterogeneity is coming
 - Its already here!
 - PCs contain multiple processors
 - Game engines (the PS2 was heterogeneous)

Crystal Ball Gazing

- Power remains a constraint on everything (CPU speed, memory, etc.)
 - Algorithms need higher memory density (more accuracy/word)
- Compute Notes
 - Massive parallelism (10⁷), modest memory per node.
 - May overprovision for faults during manufacture and operation
 - Increasing number of functional units/CPU
 - But see power
 - Increasing numbers of CPUs/node
 - May not be cache coherent over entire node
 - Heterogeneous processing elements
 - Multicore is (already!) commodity
 - Just about the only practical route to continued performance increases without radical (though already prototyped) alternatives

Crystal Ball Gazing con't

Interconnect

- 1/2-2 usec message latency (comparable to main memory latency so unlikely to be much faster); good shared interconnect bandwidth at the cost of faster individual links
 - Algorithms need to support concurrency in communication per node
- Support for remote memory operations
- Support for some form of remote atomic operation
 - More than compare-and-swap; perhaps remote thread or split operation
 - What is the right operation? The world wonders
- Support for relatively fast subsets of collective operations (e.g., Allreduce on COMM_WORLD)
 - But still not fast enough at the largest scales
- Needs higher degree at massive scale
 - Work needed on hierarchical algorithms
 - Quiz: Is the time complexity of MPI_Bcast O(nlog p) for long messages?

Crystal Ball Gazing con't

I/O

- I/O for parallel jobs is collective. File systems will come recognize and exploit that ... or die
- Effective parallel file systems exploiting precise, non-POSIX semantics (related to memory consistency rules, already known to be unscalable)
- Commodity processors are already multicore
 - Two phases for multicore:
 - Small scale, where simple, task parallelism works
 - Large scale (O(1000) cores), where fine grain parallelism is required
 - Because of memory, each core may need to support dozens to hundred of threads
- Increasing challenge for the software in supporting scaling and per-node performance. Longer term will push all of the above; may exploit/integrate/switch to techniques used in graphics processors.
- The machine of 2016 is probably more of the same, but with more concurrency and bandwidth. Beyond that...

Disruptive Technologies

- Compound interest
 - 10⁶ x improvement in CPU performance was evolutionary. This is bad?
- Integrated CPU and memory
 - 10-100X bandwidth to local memory (e.g., PIM, IRAM)
 - Basic op is not a word, rather a line (e.g., 128 words or more)
- Commodity lightweight threads
 - Practical mechanism for hiding latency
 - One form already in use in Graphics processors
- Reversible logic
 - Theoretical advantages in power
 - Many practical problems (achieved clock rate is one)
- Quantum Computing
 - Someone had to say it
 - Not a panacea
 - Does some things much better, doesn't help with others
 - Google "limits of quantum computing"
- Automatic Software

