Fast Iterative Solution of Models of Incompressible Flow

Howard Elman University of Maryland

In collaboration with:

- Victoria Howle
- David Kay
- Daniel Loghin
- Milan Mihajlovic
- John Shadid
- Robert Shuttleworth
- David Silvester
- Ray Tuminaro
- Andy Wathen

Sandia National Laboratories University of Sussex University of Birmingham University of Manchester Sandia National Laboratories University of Maryland University of Manchester Sandia National Laboratories University of Oxford

Outline

- General approach: Block preconditioners for Navier-Stokes problems
- 2. Performance in an applied setting: MPSalsa
- 3. Application: Microfluidics
- 4. Ongoing / future research

General Statement of Problem: Incompressible Navier-Stokes Equations

$$\alpha u_{t} - \nu \nabla^{2} u + (u \cdot \text{grad})u + \text{grad} p = f$$
$$-\operatorname{div} u = 0$$

 $\alpha = 0 \rightarrow$ steady state problem $\alpha = 1 \rightarrow$ evolutionary problem

Discretization and linearization \longrightarrow Matrix equation $\begin{pmatrix} F & B^T \\ B & -C \end{pmatrix} \begin{pmatrix} \delta u \\ \delta p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix} \qquad \mathcal{A}x = b$

Goal: Robust general solution algorithms Easy to implement Derived from subsidiary building blocks Adaptible to a variety of scenarios (steady / evolutionary / Stokes / Boussinesq) ³

General Approach to Preconditioning

Solving
$$\begin{pmatrix} F & B^T \\ B - C \end{pmatrix} \begin{pmatrix} \delta u \\ \delta p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix} \longleftrightarrow \mathcal{A}x = b$$

Use preconditioner of form

$$\mathcal{Q} = \begin{pmatrix} Q_F & B^T \\ 0 & -Q_S \end{pmatrix}$$

Solve right-preconditioned system $[AQ^{-1}][\hat{x}] = b, \quad x = Q^{-1}\hat{x}$ using Krylov subspace method (GMRES)

$$\mathcal{A}Q^{-1} = \begin{pmatrix} F & B^T \\ B - C \end{pmatrix} \begin{pmatrix} Q_F & B^T \\ 0 & -Q_S \end{pmatrix}^{-1} = \begin{pmatrix} FQ_F^{-1} & (FQ_F^{-1} - I)B^TQ_S^{-1} \\ BQ_F^{-1} & (BQ_F^{-1}B^T + C)Q_S^{-1} \end{pmatrix}$$

General Approach to Preconditioning

$$\mathcal{A}Q^{-1} = \begin{pmatrix} F & B^T \\ B & -C \end{pmatrix} \begin{pmatrix} Q_F & B^T \\ 0 & -Q_S \end{pmatrix}^{-1} = \begin{pmatrix} FQ_F^{-1} & (FQ_F^{-1} - I)B^TQ_S^{-1} \\ BQ_F^{-1} & (BQ_F^{-1}B^T + C)Q_S^{-1} \end{pmatrix}$$
$$\stackrel{Q_F = F}{=} \begin{pmatrix} I & 0 \\ BF^{-1} & (BF^{-1}B^T + C)Q_S^{-1} \end{pmatrix} \stackrel{Q_S = S}{=} \begin{pmatrix} I & 0 \\ BF^{-1} & I \end{pmatrix}$$
$$\stackrel{S}{=} \begin{pmatrix} S \\ BF^{-1} & I \end{pmatrix}$$
Eigenvalues $\equiv 1 \rightarrow$ Convergence in two steps

Seek approximation to inverses of

 $F \sim$ convection-diffusion operator

S = Schur complement matrix

Key point: Build using methods for scalar operators, use existing (multigrid) code

Two Strategies for Preconditioning S⁺

$$Q = \begin{pmatrix} Q_F & B^T \\ 0 & -Q_S \end{pmatrix}$$

1. **Pressure Convection-Diffusion Preconditioner** $Q_S^{-1} \equiv M_p^{-1}F_pA_p^{-1}$

$$A_p$$
 = Discrete pressure Poisson operator
 F_p = Discrete convection-diffusion operator on pressure space
 M_p = Pressure mass matrix

2. Least Squares Commutator $Q_S^{-1} \equiv (BM_u^{-1}B^T)^{-1}(BM_u^{-1}FM_u^{-1}B^T)(BM_u^{-1}B^T)^{-1}$

Comments:

- main cost: pressure Poisson solve
- PCD (1): requires (user) specification of auxiliary operators
- LSC (2): user independent

Derivation of these Methods

- 1. PCD: start with commutator of operators $\nabla(-\nu\nabla^2 + w\cdot\nabla)_p \approx (-\nu\nabla^2 + w\cdot\nabla)_u\nabla$ \wedge Requires pressure convection-diffusion operator Discrete analogue: $M_u^{-1}B^T M_p^{-1}F_p \approx M_u^{-1}F M_u^{-1}B^T$ $\Rightarrow BF^{-1}B^T \approx Q_s \equiv BM_u^{-1}B^T F_p^{-1}M_p$ $\leftarrow A_p \rightarrow$
- 2. LSC: *define* F_p to minimize

$$\left\| (M_u^{-1}F)(M_u^{-1}B^T) - (M_u^{-1}B^T)(M_u^{-1}F_p) \right\|_{M_u}$$

$$\Rightarrow Q_S^{-1} \equiv (BM_u^{-1}B^T)^{-1}(BM_u^{-1}FM_u^{-1}B^T)(BM_u^{-1}B^T)^{-1}$$

7

Properties of these Methods

Implementation:

To implement in GMRES: need action of $Q^{-1} = \begin{pmatrix} Q_F & B^T \\ 0 & -O_S \end{pmatrix}^{-1}$

Convection-diffusion solve for Q_F^{-1} Both approximated Poisson solve(s) for Q_S^{-1} Both approximated using "off-the-shelf" algebraic MG

Convergence properties:

- PCD: convergence rate independent of discretization mesh size
- LSC: some dependence on mesh size, but often faster
- Both: mild dependence on Reynolds number (steady-state) no dependence on Re (transient)

Relation to SIMPLE

Semi-Implicit Method for Pressure-Linked Equations Patankar & Spaulding, 1972

$$\begin{pmatrix} F & B^{T} \\ B & 0 \end{pmatrix} = \begin{pmatrix} F & 0 \\ B & -BF^{-1}B^{T} \end{pmatrix} \begin{pmatrix} I & F^{-1}B^{T} \\ 0 & I \end{pmatrix}$$

$$\xrightarrow{\approx} \begin{pmatrix} Q_{F} & 0 \\ B & -B\hat{F}^{-1}B^{T} \end{pmatrix} \begin{pmatrix} I & \hat{F}^{-1}B^{T} \\ 0 & I \end{pmatrix}$$

 Q_F : approximate convection-diffusion solve \hat{F} : diagonal part of FN.B. Does not take convection into account Many variants (SIMPLEC: $\hat{F} = diag(row-sum(F))$)

Benchmarking using MPSalsa

MPSalsa (Shadid, Salinger, Hennigan, Pawlowski, Smith, Wilkes, O'Rourke)

General purpose parallel code

- models low Mach number, incompressible and variable density fluid flows
- coupled with heat transport, multi-component species transport
- discretizes using biquadratic Petrov-Galerkin (Galerkin least squares) finite elements on unstructured grids
- offers Krylov subspace solvers with ILU/domain decomposition

Task:

- Integrate and test block preconditioner within MPSalsa
- Build using existing Sandia software

Benchmark Problems

- 1. 2D Driven Cavity
- 2. 3D Driven Cavity

3. 2D flow over a diamond obstruction Inflow-outflow b.c., unstructured grid

Benchmark Problems

4. 3D flow over a cube obstruction

Criteria used in Numerical Experiments

Solving nonlinear algebraic system
$$\begin{pmatrix} F(u) & B^T \\ \hat{B} & -C \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$

Using Newton's method. Stop when iterate $\begin{pmatrix} u \\ p \end{pmatrix}$ satisfies
 $\left\| \begin{pmatrix} f \\ g \end{pmatrix} - \begin{pmatrix} F(u) & B^T \\ \hat{B} & -C \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} \right\| \le 10^{-4} \left\| \begin{pmatrix} f \\ g \end{pmatrix} \right\|$
Nonlinear residual
Jacobean system: $\begin{pmatrix} F & B^T \\ \hat{B} - C \end{pmatrix} \begin{pmatrix} \delta u \\ \delta p \end{pmatrix} = \begin{pmatrix} r_f \\ r_g \end{pmatrix}$

14

Criteria used in Numerical Experiments

Solve system using Pressure Convection-Diffusion (PCD) preconditioned GMRES

Stop GMRES iteration when

$$\begin{pmatrix} r_f \\ r_g \end{pmatrix} - \begin{pmatrix} F & B^T \\ B & -C \end{pmatrix} \begin{pmatrix} \delta u^{(k)} \\ \delta p^{(k)} \end{pmatrix} \leq 10^{-5} \begin{pmatrix} r_f \\ r_g \end{pmatrix}$$

Report average { iterations CPU times } over Newton run

Computations done on Sandia National Laboratories' *Institutional Computing Cluster*, with up to 64 dual Intel 3.6GHz Xenon processors with 2GB RAM each.

Results: 2D Cavity

Re	Mesh size	PCD		SIMPLE		1-level DD		Procs
		Iters	Time	Iters	Time	Iters	Time	
10	64 x 64	19.4	17.2	41.8	32.9	79.4	19.4	1
	128 x 128	21.2	28.4	66.0	78.9	220.6	79.8	4
	256 x 256	23.0	69.3	104.3	229.2	467.2	619.4	16
	512 x 512	23.2	257.2	164.0	619.4	1356.8	2901.9	64
100	64 x 64	35.0	28.7	52.0	50.8	86.5	26.4	1
	128 x 128	34.9	59.5	71.8	87.9	300.3	130.2	4
	256 x 256	41.3	102.1	109.8	410.5	528.8	593.1	16
	512 x 512	41.0	345.7	169.4	941.2	NC	NC	64
1000	64 x 64	NC	NC	NC	NC	NC	NC	1
	128 x 128	126.4	570.9	142.0	1220.4	352.5	275.8	4
	256 x 256	126.6	1207.6	251.6	3494.2	839.5	2009.6	16
	512 x 512	143.2	2563.2	401.2	7598.2	NC	NC	64

Results: 3D Cavity

Re	Mesh size	PCD	SIMPLE	1-level DD	Procs
		Iters Time	Iters Time	Iters Time	
10	32 x 32 x 32	28.0 802.3	30.5 1205.6	67.0 634.6	1
	64 x 64 x 64	28.4 865.2	50.8 2034.1	159.8 1507.5	8
	128 x 128 x 128	31.1 1249.0	280.8 12490.5	356.2 4529.3	64
50	32 x 32 x 32	40.2 946.9	33.3 1302.6	62.2 615.5	1
	64 x 64 x 64	47.8 1061.6	52.5 2457.6	162.6 1533.2	8
	128 x 128 x 128	50.1 2101.2	291.2 14987.2	385.5 6460.9	64
100	32 x 32x 32	56.0 1232.7	40.8 1884.4	67.0 730.7	1
	64 x 64x 64	62.1 1697.8	61.6 3184.4	159.8 2131.6	8
	128 x 128 x 128	64.2 3019.2	299.1 17184.2	356.2 6953.9	64

Results: 2D Flow over Diamond Obstruction

Re	Unknowns	PCD		SIMPLE		1-level DD		Procs
		Iters	Time	Iters	Time	Iters	Time	
10	62K	21.7	138.8	52.8	502.2	110.8	186.6	1
	256K	22.6	192.7	83.6	1203.9	282.6	1054.9	4
	1M	25.6	252.3	130.8	1845.3	890.2	6187.4	16
	4M	29.7	397.5	212.6	5834.6	NC	NC	64
25	62K	34.9	248.0	66.5	760.5	101.7	198.8	1
	256K	40.4	384.6	104.7	1920.3	273.8	1118.6	4
	1M	43.6	445.9	160.8	2985.2	864.5	6226.0	16
	4M	49.1	736.6	402.1	8241.3	NC	NC	64
40	62K	64.6	565.8	74.8	1278.7	70.4	267.2	1
	256K	68.9	975.2	113.6	2718.9	203.9	1269.3	4
	1M	72.7	1039.2	260.9	7535.0	770.0	6933.5	16
	4M	78.3	1528.6	410.1	11992.2	NC	NC	64

Results: 3D Flow over Cube Obstruction

Re	Unknowns	PCD Iters Time		SIMPLE Iters Time		1-level DD Iters Time		Procs
							_	
10	270K	20.7	997.7	45.2	1897.1	67.2	859.8	1
	2.1M	21.7	1507.5	79.3	4593.2	151.2	2004.0	8
	16.8M	24.7	1997.7	118.7	19907.1	667.2	20908.0	64
50	270K	35.9	1209.7	49.2	2109.2	69.4	889.2	1
•••	2.1M	38.7	1797.7	84.9	3201.3	132.4	2676.1	8
	16.8M	44.7	2397.7	140.2	28156.1	637.2	18646.0	64

Graphical Depiction of these Results

Implementation Issues

- 1. Solving subsidiary scalar problems (convection-diffusion and Poisson equations) using "off-the-shelf" algebraic multigrid software **ML** (smoothed aggregation).
- 2. Solving these systems "inexactly".
- 3. Other components of the code built using Sandia tools, (Trilinos, Meros, Epetra, Aztec, CHACO, NOX), which handle nonlinear and Krylov subspace solvers and all parallelism.

Application: Topology of MicroFluidics Devices

High level problem statement:

- Mix two liquids at low Re
- Flow driven by electrokinetic means: induced charge electro-osmosis (ICEO), via charge on interior obstacles
- Goal: choose shape and topology of obstructions to optimize "mixing metric"

Collaboration with SNL's Thermal/Fluid Science & Engineering ₂₂ Group (M. P. Kanouff, J.Templeton)

Computational Procedure

Given topology of device (38 parameters):

Electric field on obstacles obtained by solving the Laplace equation for electric potential φ , tangential component of E= $\nabla \varphi$ defines velocity b.c. along obstructions

Solve incompressible NS equations

Use computed velocity \boldsymbol{u} to obtain mass fraction of solute $-D\nabla^2 m + (\boldsymbol{u} \cdot \text{grad})m = 0$

Calculate mixing metric = measure of extent of mixing $M = \frac{\int (m - \overline{m})^2 dV}{V}$

23

Computational Procedure

Optimization loop:

Minimize M with respect to 38 design parameters

Optimization performed using derivative-free asynchronous parallel pattern search, via **APPSPACK** (Gray, Griffen, Hough, Kolda, Torczon)

Software environment:

SUNDANCE (K. Long)

Results: Use PCD-Preconditioned GMRES

Iteration Counts	CPU time
64.0	21765.1
62.1	20831.1
67.1	21874.1
66.1	20923.9
68.2	20643.1
69.2	20173.8
60.4	20515.5
67.3	20488.9
66.3	20898.2

Examples of Flow Fields Computed

Original M = 0.0287106

M = 0.0233216

M = 0.032451

Ongoing Efforts

- Extension of these ideas to *spectral element methods* Build using additive Schwarz methods with *fast diagonalization methods* on subdomains
- 2. Use of these ideas for *stability analysis* of flows: solve

$$\begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} w \\ q \end{pmatrix} = \lambda \begin{pmatrix} M_u & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w \\ q \end{pmatrix}$$

3. Extension of approach to handle thermal / chemical effects E.g. Boussinesq model $\rightarrow \begin{pmatrix} F_u & G & B^T \\ H & F_T & 0 \\ R & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta_u \\ \delta_T \\ \delta_p \end{pmatrix} = \begin{pmatrix} f \\ g \\ h \end{pmatrix}$