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Outline

e Motivation: XMHD and the tyranny of scales

e Parabolization of XMHD: key for SCALABILITY

e Resistive MHD

e Hall MHD

e Migration to unstructured FE: status report (with SNL)

e Spatial adaptivity: Implicit + AMR (with B. Philip, LANL LDRD)
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“The tyranny of scales”
(SBES report, 2006)

Typical Time Scales in a next step experiment
withB=10T,R=2m,n, =104 cm3, T =10 keV
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(b) Length scales in a typical fusion
plasma (Tang, Phys. Plasmas, 9
(5), 2002)

"The tyranny of scales will not be simply defeated by building bigger

and faster computers" (SBES report, p. 30)
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Algorithmic challenges in XMHD

XMHD has mixed character, with strongly hyperbolic and parabolic components.
Numerically, XMHD is a nonlinear algebraic system of very stiff equations:

— Elliptic stiffness (diffusion): x(J) ~ 25 > 1
— Hyperbolic stiffness (linear and dlsperswe waves): k(J) ~ At wyest ~

AtCFL > 1
Brute-force algorithms will not be able to cover the span between disparate time/length

scales, regardless of computer power (SBES report).
Key algorithmic requirement: SCALABILITY [CPU ~ O(N/n,)]!

— Minimize number of degrees of freedom N: spatial adaptivity.
— Follow slowest time scales (application dependent): implicit time stepping.

Scalable implicit methods require MULTILEVEL approaches:

N log(N
CPU~O< o8 )>,@,§1
np?
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XMHD and multilevel approaches

e A fundamental component of iterative ML methods is the SMOOTHER.

e XMHD is strongly hyperbolic = smoothing is a serious challenge
(diagonally submissive for At > Atcpy).

— Previous attempts to use multilevel methods (two-level NKS, MG-NKS) on XMHD
have failed to demonstrate a scalable XMHD solver.

Our solution: parabolize XMHD! (multilevel-friendly)
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Parabolization and Schur complement: an example
PARABOLIZATION EXAMPLE:

8tu = 8x”U ) 875'1) = (%gu.

u" T = " + Ataxvn—H, T = + At@xun—H.

(I — At26mx)un+1 = u" + Atdgv"

e PARABOLIZATION via SCHUR COMPLEMENT:

Dy U | |1 UD;? D1 -UD;'L 0 I 0

L Dy | [0 I 0 Dy py'L 1 |
Stiff off-diagonal blocks L, U now sit in diagonal via Schur complement D, — UD;lL.
The system has been “PARABOLIZED.”

D, —UD;'L = (I — At*8,,)
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Our approach to a successful fully implicit algorithm for XMHD

e Even if a smoother exists, MG is remarkably temperamental.
e Combination of Krylov methods and MG is optimal:

— MG provides scalability (as a preconditioner)
— Krylov provides robustness

We seek to develop a successful algorithm for XMHD based on

Newton-Krylov-MG

e Proof the concept in resistive MHD, and then move to XMHD.
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Jacobian-Free Newton-Krylov Methods

Objective: solve nonlinear system G (2" ') = 0 efficiently (scalably).

Converge nonlinear couplings using Newton-Raphson method:

Jacobian-free implementation:

Krylov method of choice: GMRES (nonsymmetric systems).

8 —
—| 0T = —G(Z) .
8_’ T (ch)

T

Right preconditioning: solve equivalent Jacobian system for 6y = P,ox:

Jp P, P = —Gy
57

APPROXIMATIONS IN PRECONDITIONER DO NOT AFFECT ACCURACY OF

CONVERGED SOLUTION; THEY ONLY AFFECT EFFICIENCY!
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Implicit resistive MHD solver
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Resistive MHD model equations

Op
— V - (pv) =0,
o T (p?)
dB .
— 4+ V X E =0,
ot
o(pv S B2
(p?) + V- [pﬁ’_’— BB — pvVJd+ <7>(10—|——) = 0,
ot 2
orT .

e Plasma is assumed polytropic p o« n”.

e Resistive Ohm’s law:

— —

E=—-8xB+nV xB
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Resistive MHD Jacobian block structure

e The linearized resistive MHD model has the following couplings:

Sp = L,(5p,87)
8T = L (8T, 57)
8B = Lg(6B,0)
60 = L,(63,6B,8p,5T)

e Therefore, the Jacobian of the resistive MHD model has the following coupling struc-

ture:
D, o o U, | [ s )
o1

Joxr = R
0 0 Dp Uys 0B

L,, Lr, Lg, D, \517 )

e Diagonal blocks contain advection-diffusion contributions, and are “easy” to invert using

MG techniaues. Off diagonal blocks L and U contain all hyperbolic couplings.
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PARABOLIZATION: Schur complement formulation

e We consider the block structure:

( :‘i> cog=| 67 | s M=| o Dy o0
0v o

M U
J5£:[

L Dy

e M is “easy” to invert (advection-diffusion, MG-friendly).

Schur complement analysis of 2x2 block J yields:

B I 0 M~ 0 I —M~'U
| —LMY T 0o Pl 0 I ’

Ps.hur = Dy — LM 'U .

—1
M U
L D,

e EXACT Jacobian inverse only requires M ' and P, .

e Schur complement formulation is fundamentally unchanged in Hall MHD!
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Physics-based preconditioner (I)

The Schur complement analysis translates into the following 3-step EXACT inversion
algorithm:

. — % —1
Predictor : 40y = -M G,
Velocity update : 67 = P

Corrector : 6§ =63 — M 'Usv

MG treatment of Pg.p.., is impractical due to M .

Need suitable simplifications (SEMI-IMPLICIT)!

We consider the small-flow-limit case: M ' ~ At

This approximation is equivalent to splitting flow in original equations.
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Physics-based preconditioner (ll)

e Small flow approximation: M ~* ~ At in steps 2 & 3 of Schur algorithm:

5yt = —-M'G,

(%)
cl
&

Py [-G, — Lé65*] ; Ps; = D, — AtLU

57 57* — AtUST

Q

where:

Ps; = p" [?/At + 6(vy - VI +T1. Vvy — V”V2<7>)] + At0°W (B, po)

— — <~ — — <~ — <«—> <~
W(Bo,po) = Bo x VXV X [I xBg]—joxVx[I xBg]—=V[I -Vpg+~ypoV - I]

e Pg;is block diagonally dominant by construction!

e We employ multigrid methods (MG) to approximately invert Ps; and M: 1 V(4,4) cycle
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Efficiency: At scaling (2D tearing mode)

32 X 32

At | Newton/At | GMRES/At | CPU(s) | CPU.,,/CPU | At/Atcrr

2 5.9 20.9 115 3.1 354

3 5.9 25.6 139 3.8 531

4 6.0 30.5 163 4.3 708

6 6.0 34.7 184 5.8 1062

128 x 128

At | Newton/At | GMRES/At | CPU(s) | CPU.,,/CPU | At/Atcrr
0.5 4.9 8.4 764 8.0 380
0.75 5.7 10.2 908 10.0 570
1.0 5.0 11.5 1000 12.7 760
1.5 5.6 14.7 1246 14.6 1140
Y

==
» Los Alamos
NATIONAL LABDRATORY

Luis Chacon, chacon@lanl.gov



Efficiency: grid scaling

At =~ 1100Atcrr, 10 time steps

Grid | At | Newton/At | GMRES/At | CPU | CPU
32x32 | 6 6.0 34.7 184 | 5.3
64x64 | 3 5.8 229 468 | 20.4

128x128 | 1.5 5.6 14.8 1246 | 84.2

‘ Why does GMRES/At decrease with resolution? I
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Effect of spatial truncation error

Residual history vs. GMRES it. # with fixed time step Dt=1
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Implicit extended MHD solver
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Extended MHD model equations

op
£ V - (p¥) = 0,
5 T (p7)
OB + V X E=0
ot -
O(pv o B2
(p?) + V- [m—)’_’— BB — pvV4d+ <T>(p—|——) =0,
Ot 2
oT. . .
&t VL 4 (v = DLV -5 =0,

e Plasma is assumed polytropic p o< n”.

e We assumecoldionlimit: T; < T, = | p = pe |

e Generalized Ohm’s law:

E=—-UxB+nV XxB——(jxXB-—Vp.)
P
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Extended MHD Jacobian block structure

e The linearized extended MHD model has the following couplings:

§p = L,(8p,07)
ST = Lr(8T,57)
8B = Lg(6B,87,6p,6T)
60 = L,(60,8B,8p,8T)

e Jacobian coupling structure:

Joxr =

e We have added off-diagonal couplings.
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Extended MHD Jacobian block structure (cont.)

e The coupling structure can be substantially simplified if we note (p ~ p.):

and therefore:

_, L o= n(T) - Dv
EF~—vx B+ VXxB—d—
o Dt
e This transforms jacobian coupling structure to:
D, 0 0 Uup ( dp \
0 D 0 U, oT
JOT ~ r R r . .
0 0 Dp Uxr+Ug 0B
va LTv LBv Dv \ 0v )
‘ We can therefore reuse ALL resistive MHD PC framework! I
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Extended MHD preconditioner

e Use same Schur complement approach.

e 1/ block contains ion scales only! Approximation M ~' ~ At is very good in extended
MHD (ion scales do NOT contribute to numerical stiffness).

e Additional block U,ﬁg results, after the Schur complement treatment, in systems of the

form:
0,07 — d; By X (V X V X %) = rhs

e This system supports dispersive waves w ~ k!

e We have shown analytically that damped JB is a smoother for these systems!

‘ We can use classical MG! I
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Preliminary efficiency results (2D tearing mode)

d; = 0.05

1 time step, At = 1.0, V(3,3) cycles, mg_tol=1e-2

Grid Newton/At | GMRES/At | CPU (s) | CPU.,,/CPU | At/Ates,
32x32 5 22 25 0.44 110
64x64 5 12 66 1.4 238

128x128 5 8 164 6.2 640
256x256 4 7 674 30 3012

‘ Again, GMRES/At decreases with resolution! I
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Effect of spatial truncation error

Residual history vs. GMRES it# with fixed time step Dt=1

0% T T T T T

log10(Relative residual)

32x32, CFL= 110 —+—

128x128, CFL= 625 ---%--- -
256x256, CFL=3050 ---&--
NL tolerance
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Parallel performance with PETSc Toolkit
(unpreconditioned, 3D, weak scaling with 32° nodes per processor)

Speedup
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30 ) // *
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Migration to unstructured FE

(In collaboration with J. Shadid, R. Pawlowski, J. Banks, SNL)
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Currently: Initial Single Fluid Resistive MHD Unstructured FE Formulation

U Lo
— +VeF+S=0 E=e+3|vI"
ot -

p pv 0 _ 1 5

pv pvv—LB@B T+ 5-|B|*1 0 Z,o,_pE+2]—(0||B||

U= F = 0 <10 S =
Zror PEv—-T-v+ExB+q 0 +Q 1 me dJ
B viB-B®v— 1% (VB—VBT) 0 E=—vxB4nJ+—(Jx B—VPe)+e:;eE.
Hall Inertia

Project Goals:

- Develop stable, accurate, physics compatible, scalable and efficient fully-implicit
computational formulations for xMHD and PTR (e.g. SNL Cray XT3 12.5K nodes, 25K cores)

- Develop and evaluate scalable physics-based preconditioners, based on multi-level methods

* Produce comprehensive accuracy, convergence, stability and scalability studies employing

challenging prototype problems.

- Produce first-of-a-kind large-scale computational demonstrations on selected science /
technology problems

- Science

- Magnetic Reconnection Studies

+ Hydro-Magnetic Rayleigh-Taylor (e.g. Z-pinch [HEDP])
- Technology (e.g. advanced materials processing)

- Plasma arc jet CVD, Plasma CVD/ Etching

(J. N. Shadid, R. P. Pawlowski, J. W. Banks - SNL) @

Sandia

National _
Laboratories



Currently:
+ 2D & 3D Incompressible Resistive MHD
- Unstructured Stabilized Finite Elements
- 2D Vector Potential; 2D&3D Projection Method;
* Fully-implicit 1st & 2nd order (BE, TR, BDF2);
- Direct to Steady State; Continuation;
- Parallel Newton-Krylov:
- Additive Schwarz DD w/ Variable Overlap;

- Aggressive Coarsening Block AMG for
Systems (w/ R. Tuminaro, P. Lin -SNL);

Soon:

- Physics Based Preconditioning
(w/ L. Chacon LANL)

- Compressible Resistive / Extended MHD
* Monotone Hyperbolic Solver (FE-TVD/FCT)

- Compatible Discretizations
(e.g De Rham complex - w/ P. Bochev SNL)

Example Unstructured Mesh Solutions

Flux Expulsion
Rotating Cyl.
5000 RPM
(steady state)

Fluid Velocity
Magnitude

Vector
Potential

VECTOR

POTENTIAL

5.000e-01
2 -01 I
5 5000

Island
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Forced Equil.
Solution

Vector
Potential

B-Vector




Implicit NK-AMR

B. Philip, M. Pernice, and L. Chacén, Lecture Notes in Computational Science and Engineering, accepted (2006).
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Current-Vorticity Formulation of Reduced Resistive MHD!

(O +u-V—nA)YJ+AE; = B:-Vw+{d ¥V}
(Ot+u-V—-—vA)w+S, = B-VJ
AP = w
AV = J

u=zxVd, B=2zZx VU
{®, U} = 2[Puy(Vow — Pyy) — Vo (Paa — Dyy)]

Preconditioner is an extension of
Chacédn, Knoll and Finn, JCP, 178 (2002).

1Strauss and Lonacope. JCP, 147, 1998
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Implicit Structured Adaptive Mesh Refinement
(SAMRAI-PETSc-hypre)

e Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a
union of logically rectangular meshes.

e The mesh is organized as a hier-

achy of refinement levels.

e Each refinement level defines a

region of uniform resolution.

::g o
= B o e
S

i

e Each refinement level is the

union of logically rectangular
patches.

AMR-grids and multilevel methods are fundamentally compatible approaches! I
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Performance (tearing mode)

e Generalized 2D reduced MHD PC [Chacon et al., JCP (2002)] for SAMR (MG=-FAC).

NNI NLI
Levels 1 2 3 4 5 1 2 3 4 3
32 x 32 15120 20|21 |25 | 34 79 | 12.0 | 19.3 | 33.7
64 X 64 1.8 120 20| 24| - 6.5 | 11.7 | 19.1 | 33.2 —
128 x 128 | 1.8 | 20 | 24 | - - | 125 | 20.1 | 27.2 — —
256 x 256 | 1.9 | 20 | - — - | 199 | 275 — — —
512 x 512 | 1.9 | - — — — | 26.3 — — — —

At = 1 (fixed), ng = 0.1, €,0; = €4ps = 1077, 2 Sl iterations, V(3,3) cycles

e Fixed implicit time step (problem gets harder with refinement)

e Performance does not degrade with grid-refinement levels
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Island Coalescence Results at t=8

- Los Alamos

Luis Chacon, chacon@lanl.gov



Tilt Instability Results at t=7

2.0 2.0
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Conclusions

Developed a scalable, multilevel-based, fully implicit NK-MG solver for XMHD.

Key algorithmic breakthrough: PARABOLIZATION + MG.

Equivalence between parabolization and the Schur decomposition:

— Provides a rigorous foundation for the parabolization step.
— Provides a path to generalize approach when more complete XMHD models are
considered.

Demonstrated algorithmic viability of implicit AMR by generalizing single-grid precon-
ditioning approaches for MHD.

Future work:

— Massively parallel test of 3D resistive MHD algorithm (NERSC).

— Bring Hall MHD to production stage (high-order dissipation required).
— Implicit AMR on 3D resistive MHD (B. Philip).

— Multilevel-based PC on unstructured FE (SNL).
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