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Project Goals

• General goal
Hybrid numerical methods that combine particle 

simulations and continuum fluid solvers.

• Specific goals
Hybrid methods for Coulomb collisions in plasmas and 

applications to plasma kinetics, e.g., edge regions in 
fusion plasmas

Methods that combine particles and continuum throughout 
space (complementary to domain decomposition)
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Outline
• Particle collisions in  rarefied gas dynamics (RGD)

– Boltzmann equation vs. fluid eqtns
– DSMC and its limitations
– Hybrid method for RGD

• Coulomb collision in plasmas
– Monte Carlo methods: Takizuka & Abe and Nanbu
– ICEPIC

• Hybrid method for Coulomb collisions
– Thermalization and dethermalization
– Numerical Results

• Conclusions
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Particles vs. Continuum
Particle description
• Discrete particles
• Motion by particle velocity
• Interact through collisions
• Statistical description 
through Boltzmann equation

Fluid (continuum) description
• Density, velocity, temperature
• Evolution following fluid eqtns
(Euler or Navier-Stokes)
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Boltzmann equation for RGD
• Rarefied gas dynamics (RGD)

– RGD required when effects of individual collisions are significant
– Computational bottleneck in many simulations

• Boltzmann equation for density function f in phase space 
(position x, velocity v) at time t

– ε = Knudsen number = mean free path / characteristic length scale
– Q represents effect of binary collisions

• Fluid Limit
– ε → 0, f → M(v;ρ,u,T)

– ρ,u,T satisfy Euler (or Navier-Stokes)

( , , )f f v x t=
1 ( , )tf v f Q f fε −+ ∇ =

3 2 2( ) (2 ) exp( ( ) 2 )M T Tρ π − /= − − /v v u
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Collisional Effects in the Atmosphere
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DSMC
• DSMC = Direct Simulation Monte Carlo

– Invented by Graeme Bird, early 1970’s
– Represents density function as collection of particles

– Directly simulates RGD by randomizing collisions
• Collision v,w →v’,w’ conserving momentum, energy
• Random choice of collision angles (ε,θ)

– Particle advection

• Limitation of DSMC
– DSMC becomes computationally intractable near fluid 

regime, since collision time-scale becomes small

1
( ) ( ( )) ( ( ))
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Hybrid method
• IFMC=Interpolated Fluid Monte Carlo

– Combines DSMC and fluid methods
– Representation of density function as combination of Maxwellian and 

particles

• ρ, u, T solved from fluid eqtns, using Boltzmann scheme for CFD
• α = 0  ↔ DSMC
• α = 1  ↔ CFD

– Remains robust near fluid limit

• Comparison to domain decomposition
– Fluid description in some regions, RGD in others
– Hybrid method uses mixture of fluid/RGD throughout

(1 )

1
( ) ( ) ( ( ))

N

k
k

F v M v m v v t
α

α δ
−

=

= + −∑
3/ 2 2( ) (2 ) exp( ( ) / 2 )M v T v u Tρ π −= − −
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Thermalization Approximation

• Wild expansion

– fk includes particles having k collisions

• Themalization approximation 
– Replace particles having 2 or more collisions in 

time step dt by Maxwellian M
– Resulting evolution over dt

1( ) (0)f t Af Bf CMΔ = + +

(1 )A τ= − (1 )B τ τ= − 2C τ=

0
( ) k k

k
f t fτ

∞

=

Δ =∑



OASCR AMR PI Meeting, 24 May 2007
15

Relxation to Equilibrium
• Spatially homogeneous, Kac model
• Similarity solution (Krook & Wu, 1976)
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Comparison of DSMC (blue) and IFMC (red) for a 
shock with Mach=1.4 and Kn=0.019 

Direct convection of Maxwellians
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Comparison of DSMC (contours with num values) 
and IFMC (contours w/o num values) 

for the leading edge problem. 
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Interactions of Charged Particles 
in a Plasma

• Long range interactions 
– r > λD          (λD =  Debye length)
– Electric and magnetic fields (e.g. using PIC)

• Short range interactions
– r < λD
– Coulomb interactions
– Fokker-Planck equation

21( ) ( ) ( ) : ( ) ( )
2col d

f f f
t

∂ ∂ ∂
= − +

∂ ∂ ∂ ∂
F v v D v v

v v v

1 1
( ')( ) 2 '
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Monte Carlo Particle Methods 
for Coulomb Interactions

• Test particle - nonlinear field representation 
– Mannheimer, Lampe & Joyce, JCP 138 (1997)
– Particles feel drag and diffusion

• Particle-particle representation
– Takizuka & Abe, JCP 25 (1977), Nanbu, PRE 55 (1997)

• T&A implemented in ICEPIC by Birdsall, Cohen and Procassini 1980’s
• Nanbu implemented in ICEPIC

– Binary particle “collisions”, from collision integral 
interpretation of FP equation

– Comparison of Nanbu and T&A in poster of CM Wang.

dd dt d= +v F D b
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Kinetic Effects in Fusion Plasma Devices
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Test Problems for This Project

Normal-incidence collisional sheath

Edge electron transport

Collisional oblique-incidence gyrosheath

Relaxation of anistropic Maxwellian
and bump on tail
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Takizuka & Abe Method
• T. Takizuka & H. Abe, J. Comp. Phys. 25 (1977).
• T & A binary collision model is equivalent to the collision term in Landau-

Fokker-Planck equation
– The scattering angle  θ is chosen randomly from a Gaussian random variable δ

– δ has mean 0 and variance  

– Parameters
• Log Λ = Coulomb logarithm
• u = relative velocity

• Simulation
– Every particle collides once in each time interval 

• Scattering angle depends on dt
• cf. DSMC for RGD: each particle has physical number of collisions 

– Implemented in ICEPIC by Birdsall, Cohen and Procassini.

tan( 2)δ θ≡ /

2 2 2 2 2 3
0( log 8 )Le e n m u tα β αβδ πε= Λ/ Δ
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Nanbu’s Method
• Combine many small-angle collisions into one aggregate collision

– K. Nanbu. Phys. Rev. E. 55 (1997)
• Scattering in time step dt

– χN = cumulative scattering angle after N collisions
– N-independent scattering parameter s

– Aggregation is only  for collisions between two given particle velocities
• Steps to compute cumulative scattering angle:

– At the beginning of the time step, calculate s

– Determine A from

– Probability that postcollison relative velocity is scattered into dΩ is

– Implemented in ICEPIC by Wang & REC

2

2

sin ( / 2 (1 ) / 2

/ 2

s
N e

s N
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θ

−≅ −
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3
3 (ln )s c u t−= Λ Δ
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Accelerated Simulation Methods
for Coulomb collisions

• Domain decomposition
• δf methods: f = M + δf

– simulate (small) correction to approximate result (Kotschenruether 1988)
– δf can be positive or negative
– Particle weights: “quiet” & partially linearized methods (Dimits & Lee 1993)
– Stability problems

• New hybrid method
– Hybrid representation (as in RGD)

• m = equilibrium component (Maxwellian)
• g = kinetic (nonequilibrium) component

– Thermalization rate must vary in phase space
• α = α(x,v) = fraction of particles in m
• (um, Tm) ≠ (uF, TF) 

( )F v m g= +
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Variable thermalization across 
phase space

• Bump-on-tail
– Persistent because 

Coulomb cross section 
decreases as v increases
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Thermalization/Dethermalization Method

• Hybrid representation (as in RGD)

• Thermalization and dethermalization (T/D)
– Thermalize particle (velocity v) with probability pt

• Move from g to m

– Dethermalize particle (velocity v) with probability pd
• Move from m to g

( )F v m g= +
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T/D Hybrid Collision Algorithm
• Hybrid representation (as in RGD)

– g represented by particles

• Collisions
– m-m: leaves m unchanged
– g-g: as in DSMC
– m-g: select particle from g, sample particle from m, then perform 

collision
• T/D step

– Particle from g is thermalized (moved to m) with probability pt

– Particle sampled from m is dethermalized (moved to g) with 
probability pd

• Change (ρm, um, Tm) to conserve mass, momentum, energy
• Implemented in ICEPIC 

( )F v m g= +

1
( ( ))

n

k
k

g v v tδ
=

= −∑
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Choice of Probabilities pd and pt
• T/D step

– Fn = F(n dt) = mn + gn
– One step

• Detailed balance requirement

– Assuming uM = um = 0
• Simple choice

– pt = 1 for v < v1    (i.e., complete thermalization)
– pd = 1 for v > v2   (i.e., complete dethermalization)

1 0 0

1 0 0

(1 )
(1 )

d t

d t

m p m p g
g p m p g
= − +
= + −

0 1

2

(1 )
( / )
(1 / )

(1 / ) exp( / )

d t

d t

d t

d t

F M m g F M m g
g p m p g
g p p m
M p p m

p p c v τ

= = + → = = +
⇒ = + −
⇒ =
⇒ = +

⇒ + =
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Alternative: S Hybrid Collision Algorithm

• Thermalization for particle pairs v, v1 that are 
“strongly colliding”
– Strength measured by Nanbu parameter s

• u=|v-v1|,  N = # aggregated collisions

• Implementation in ICEPIC
– Move particles v, v1 into Maxwellian m, if s>6
– Alternative to  thermalization/dethermalization (T/D) 

probabilities 

• Future work: formulate s-dependent T/d probabilities

3 2
3 (ln ) / 2s c u t N θ−= Λ Δ ≅
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Relaxation of Bump on Tail
• Bump disjoint from Maxwellian

– vbump=5*sqrt(temp)
– mbump=0.1 * mtotal

– Hybrid method is initially all particles
• after brief transient 2/3 mass in equilibrium component

Initial data 
Nanbu Hybrid

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Electron distribution from T/D Hybrid Method

v: t=0

de
ns

ity

 

 
f(v

x
)

M(v)
kinetic(v

x
)

therm(v
x
)



OASCR AMR PI Meeting, 24 May 2007
31

Relaxation of Bump on Tail

t =.705Nanbu Hybrid

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Electron distribution from Nanbu Method t=0.705

v 

de
ns

ity

 

 
f(v

x
)

M(v)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Electron distribution from T/D Hybrid Method

v: t=0.705

de
ns

ity

 

 
f(v

x
)

M(v)
kinetic(v

x
)

therm(v
x
)



OASCR AMR PI Meeting, 24 May 2007
32

Sheath Calculation
• Steady boundary layer

– Ions represented as particles
– Electrons in a background Maxwellian
– Maxwellian influx of ions at left
– Absorbing bdry at right
– E & M fields

• Parameters
– Injection drift velocity=0 (subcritical)
– Background drift velocity = 0
– Flux of particles at left = 16.5 (large)
– Coulomb collision parameter = 200 (small)

Initial data 
Sheath geometry

Particle density vs. z
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Sheath Calculation
• Application of hybrid method 

– Collisions as in relaxation problems
– Advection of particle components
– Advection of Maxwellian m by sampling and moving 

particles
• Future: fluid solver for Maxwellian component 

Parallel velocity distribution function from hybrid methods: T/D (left) and s (right) from poster of Wang.
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Conclusions and Prospects
• Hybrid method for RGD that performs uniformly in 

the fluid and near-fluid regime
– Applications to aerospace, materials, MEMS

• Extension of hybrid method to Coulomb collisions
– Thermalization/dethermalization probabilities
– Probabilities vary in phase space (x,v)

• Application
– Relaxation of anistropic Maxwellian
– Relaxation of bump-on-tail
– Ionic sheath


