$$
\begin{aligned}
& \text { Pauselthodster }
\end{aligned}
$$

- David Day
- Jonathan Mu
- Rich Lehoucq
- Denis Ridzal
- Allen Robinson
- John Shadid
- Chris Siefert
- Ray Tuminaro
- Max Gunzburger, Florida State
- Mac Hyman, Los Alamos
- Misha Shashkov, Los Alamos
- Pave Solin, UTEP
- Kate Trapp, U. Richmond

Fl

Research Drivers

Discretization
 $L u=f \rightarrow \mathbf{A x}=\mathbf{b}$

model reduction, accompanied by loss of information that can be:

Acceptable\Rightarrow physically meaningful, accurate and stable solutions.

- Trivial \Rightarrow spectacular failure that is easy to detect.
$\stackrel{\otimes}{\otimes}$ Malicious \Rightarrow subtle failure, imperceptible in the "eye ball" norm.

Research goals:

D Develop "compatible" discretizations to manage information loss

- Use these discretizations and their properties to
a) Formulate and analyze new numerical methods for PDEs
b) Support the development of better iterative solvers
c) Guide the design of better software tools for PDEs

Focus of this talk is on b) and c)

External

Impact

$\square 2$ short courses: Von Karman Institute (2003), VA Tech (2005)
$\square 1$ book: Proceedings IMA workshop, Springer IMA series 142. (Arnold, Bochev,Lehoucq, Nicolaides, Shashkov, eds.)
$\square 2$ book chapters
$\square 14$ papers in peer reviewed journals

- 15 talks (invited and plenary)
$\square 14$ colloquium talks
\square Originator and organizer:
- 2007 SIAM CS/E (with M. Shashkov)
- 2007 FE Fluids (with M. Gunzburger)
- 2006 CSRI PDE workshop (with R. Lehoucq and M. Gunzburger)
- 2004 IMA Workshop on compatible discretizations (Arnold, Lehoucq,Nicolaides, Shashkov)
- 2003 SIAM CS/E (with R. Tuminaro)

Internal

\square Compatible methods for x-MHD - with J. Shadid, L. Chacon (LANL)
\square z-pinch modeling and simulation in Alegra - with A. Robinson
\square Device modeling and simulation in CHARON - with J. Shadid, R. Pawlovski
\square ML solvers for Maxwell's - with R. Tuminaro, J. Hu, C. Siefert
困

Research Approach

- Use homological ideas to identify formal mathematical structures ("analytic home") that allow to encode a representative set of PDEs
- Translate analytic structures into "compatible" discrete structures ("discrete home") that inherit their key properties
- Manage loss of information by translating PDEs into compatible discrete models that live in the "discrete home"

Overview of my talk:

- A compendium of failed discretizations
\square Analytic \rightarrow discrete translation
- Based on two fundamental operators: Reduction and reconstruction
\square Mimetic properties:
- Vector calculus and discrete cohomology
- Payback:
- New infrastructure for interoperable software tools for FEM, FV, and FD discretizations
- More efficient AMG solvers via reformulation of the discrete Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =f \text { in } \Omega \\
\nabla \phi+\mathbf{u} & =0 \text { in } \Omega \\
\phi & =0 \text { on } \Gamma
\end{aligned}
$$

Deall or No Deal?

$$
\begin{aligned}
\sigma \mathbf{E}+\nabla \times \nabla \mu^{-1} \times \mathbf{E} & =0 \text { in } \Omega \\
\mathbf{n} \times \mathbf{E} & =0 \text { on } \Gamma
\end{aligned}
$$

Trivial failure: Mixed Galerkin and nodal (collocated) FEM

Malicious failure: Ritz-Galerkin and nodal (collocated) FEM

compatible

Deal or No Deal?

$$
\begin{aligned}
\nabla \cdot \mathbf{u} & =0 \text { in } \Omega \\
\mathbf{u} & =0 \text { on } \Gamma
\end{aligned}
$$

Another malicious failure: false transient (spatially regularized nodal FE)

Common wisdom: $\quad \Delta t \rightarrow 0 \Rightarrow$ more accurate results

True solution is time independent!
Bochev, Gunzburger, Lehoucq, IJNMF, 2007

Why Homological Ideas?

In the examples, there was nothing wrong with the approximation properties of the FEMs or the formal consistency of the methods.

However, key relationships between differential operators and function spaces, necessary for the well-being of the PDE, were "lost in translation"

Wesseek a discrete framework that mimices these relationships and providesesmutuallyy consistrent notions of derivative, integral, inner product , Hodgege theoryy, etce.

Cohomology: Describes structural relationships relevant to PDEs
Differential forms: Provide tools for abstraction of physical models leading to PDEs:

Integration:	\rightarrow	an abstraction of the measurement process	
Differentiation:	\rightarrow	gives rise to local invariants	
Poincare Lemma:	\rightarrow	expresses local geometric relations	
Stokes Theorem:	\rightarrow	gives rise to global relations	

An (incomplete) Historical Survey,

In finite elements

1977-Fix, Gunzburger and Nicolaides: GDP (a discrete Hodge decomposition) is necessary and sufficient for stable and optimally accurate mixed Galerkin discretization of the Poisson equation \Rightarrow first (!) example of application of homological ideas in FEMs.
1989 - Bossavit: reveals connection between Whitney forms and stable elements for mixed methods for diffusion and eddy currents

1997 - Hiptmair: uses exterior calculus to develop uniform definitions of FEM spaces
1999 - Demkowicz, Ainsworth, et al: develop hp-DeRham polynomial spaces
2002 - Arnold et al.: uses homological ideas to find stable FEMs for mixed elasticity
2003 - White et al.: FEMSTER, a software realization of polynomial differential forms

Elsewhere: Discrete vector calculus structures

1980s - Shashkov, Samarskii - Support operator method
1992 - Nicolaides - direct covolume discretization for div-curl and incompressible flows
1990s - Hyman, Scovel, Shashkov, Steinberg - Mimetic finite difference methods
1997 - Mattiussi - connection between FV and FEM
2004 - Bochev and Hyman - Algebraic topology approach: includes FV, FD and FEM

Analytic \Rightarrow Discrete

Framework for mimetic discretizations (IMA Proceedings, 2006)

- Exterior Derivative
- Metric structure
- Adjoint derivative
- Natural operations
- Discrete inner product
- Derived operations
induced by 2 basic operations

Discrete Operations for $\mathbf{R}: \Lambda^{k} \Rightarrow C^{k_{k}}$

Natural derivative
Natural inner product
Adjoint derivative

$$
\begin{array}{ll}
\delta: C^{k} \mapsto C^{k+1} & \langle\delta a, \sigma\rangle=\langle a, \partial \sigma\rangle \\
(\cdot, \cdot)_{k}: C^{k} \times C^{k} \rightarrow \mathbf{R} & (a, b)_{k}=(I a, I b)_{k} \\
\delta^{*}: C^{k+1} \mapsto C^{k} & \left(\delta^{*} a, b\right)_{k}=(a, \delta b)_{k+1}
\end{array}
$$

Provides a second set of grad, div and curl operators.

Derivative choice depends on encoding:
scalars $\rightarrow 0$ or 3 -forms
vectors $\rightarrow 1$ or 2 -forms.

Discrete Laplacian

$$
D: C^{k} \mapsto C^{k}
$$

$$
D=\delta^{*} \delta+\delta \delta^{*}
$$

Natural wedge product
Flat and sharp -
$\wedge: C^{k} \times C^{l} \mapsto C^{k+l}$
$a \wedge b=R(I a \wedge I b)$
can be defined using the inner product

Derived operations help to avoid internal inconsistencies between the discrete operations:

- I is only approximate inverse of R and natural definitions will clash.

Discrete Vector Calculus

Poincare lemma (existence of potentials in contractible domains)

$$
d \omega_{k}=0 \Rightarrow \omega_{k}=d \omega_{k+1} \quad \longrightarrow \quad \delta c^{k}=0 \Rightarrow c^{k}=\delta c^{k+1}
$$

Stokes Theorem

$$
\left\langle d \omega_{k-1}, c_{k}\right\rangle=\left\langle\omega_{k-1}, \mathcal{D} c_{k}\right\rangle
$$

$$
\Rightarrow \quad\left\langle\delta c^{k-1}, c_{k}\right\rangle=\left\langle c^{k-1},{c_{k}}\right\rangle
$$

Vector Calculus

$$
\begin{aligned}
& d d=0 \\
& \omega \wedge \eta=(-1)^{k l} \eta \wedge \omega \\
& d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
\end{aligned}
$$

$$
\Rightarrow \quad \begin{aligned}
& \delta \delta=\delta^{*} \delta^{*}=0 \\
& a \wedge b=(-1)^{k l} b \wedge a \\
& \delta(a \wedge b)=\delta a \wedge b+(-1)^{k} a \wedge \delta b
\end{aligned}
$$

Mimetic $=$ Key properties of the analytic structures inherited by the discrete structures. First used by Hyman and Scovel (1988)

11

Discrete Cohomology

R is a chain map: preserves co-boundaries and co-cycles

$$
\begin{array}{rll}
d \omega=0 & \Rightarrow & \delta R \omega=0 \\
\text { Co-cycles of }\left(\Lambda^{0}, \Lambda^{1}, \Lambda^{2}, \Lambda^{3}\right) & \xrightarrow{R} \text { co-cycles of }\left(C^{0}, C^{1}, C^{2}, C^{3}\right)
\end{array}
$$

Natural inner product induces combinatorial Hodge theory on cochains:
Discrete Harmonic forms

$$
H^{k}(\Omega)=\left\{\eta \in \Lambda^{k}(\Omega) \mid d \eta=d^{*} \eta=0\right\} \quad H^{k}(K)=\left\{c^{k} \in C^{k} \mid \delta c^{k}=\delta^{*} c^{k}=0\right\}
$$

Discrete Hodge decomposition

$$
\omega=d \rho+\eta+d^{*} \sigma
$$

$$
\rightarrow \quad a=\delta b+h+\delta^{*} c
$$

Theorem (IMA Proc., 2006)
$\operatorname{dimker}(\Delta)=\operatorname{dimker}(D)$
Remarkable property of the mimetic D - kernel size is a topological invariant!
"Roof"

$$
\Lambda^{k}(\Omega)=\operatorname{Range}\left(d_{k-1}\right) \oplus H^{k} \oplus \operatorname{Range}\left(d_{k+1}^{*}\right)
$$

$$
H^{k}=\left\{\omega \in \Lambda^{k} \mid d \omega=d^{*} \omega=0\right\} \quad \operatorname{ker}\left(\Delta_{k}\right)=H^{k} \quad H^{k}=\operatorname{ker}\left(d_{k}\right) / \operatorname{Range}\left(d_{k-1}\right)
$$

"Bricks"

"Foundation"
$\Lambda^{k}(\Omega): x \rightarrow \omega(x) \in \operatorname{Alt}^{k}\left(T_{x} \Omega\right) \quad\left(\Lambda^{0}(\Omega), \Lambda^{1}(\Omega), \Lambda^{2}(\Omega), \Lambda^{3}(\Omega)\right) \quad$ Smooth differential forms

The Tenants

"Laplacians"

$$
\min _{\Lambda^{n}} \frac{1}{2}\left(\|d u\|^{2}+\left\|d^{*} u\right\|^{2}\right)-(f, u) \quad \Rightarrow d^{*} d u+d d^{*} u=f \quad \Rightarrow\left\{\begin{array}{r}
-\Delta u=f \\
\nabla \times \nabla \times u-\nabla \nabla \cdot u=f
\end{array}\right.
$$

"Incomplete Laplacians"

$$
\left.\begin{array}{c}
\min _{\Lambda^{*}} \frac{1}{2}\left(\|u\|^{2}+\|d u\|^{2}\right)-(f, u) \\
\min _{\Lambda^{*}} \frac{1}{2}\left(\|u\|^{2}+\left\|d^{*} u\right\|^{2}\right)-(f, u)
\end{array}\right\} \quad\left\{\begin{array}{l}
d d^{*} u+u=f \\
d^{*} d u+u=f
\end{array}\right\} \quad \rightarrow\left\{\begin{array}{r}
-\Delta u+u=f \\
\nabla \times \nabla \times u+u=f \\
-\nabla \nabla \cdot u+u=f
\end{array}\right.
$$

"Div-curl systems"
$\min _{\Lambda^{k}} \frac{1}{2}\left(\|d u\|^{2}+\left\|d^{*} u\right\|^{2}\right)-(f, u)$

$$
\begin{aligned}
d u+d^{*} p & =f \\
d^{*} u & =0 \\
d^{*} u+d p & =f \\
d u & =0
\end{aligned} \quad \Longrightarrow\left\{\begin{array}{r}
\nabla \times u+\nabla p=f \\
\nabla \cdot u=f
\end{array}\right.
$$

Div of a vector field

$$
\Rightarrow d^{*}(u)=(\star d \star)(\bar{u}) \quad \square \quad \nabla \cdot u
$$

Placing a PDE in the Discrete Home

Theorem (IMA Proc.,2006)
Let $R: \Lambda^{k} \rightarrow C^{k}$. Direct and pullback reconstructions yield equivalent methods.
\Rightarrow There's only "one" low-order compatible method

Abstraction for 00 Software Design

This prompts a fresh look at software design for compatible discretizations:
\Rightarrow Different methods are defined by choosing a specific reconstruction operator I:

Direct:
Pullback:
\Rightarrow There's no fundamental reason not to have simultaneous access to both...

IXteroperable Tools for Rapid dEveloPment of compatlble Discretizations

Anticipated Applications

CHARON - X-MHD

……* will enable side by side comparisons of FV and mimetic div free methods and FEM using vector potential and B-projection, and discretization tools for extended MHD modeling and simulation (Shadid, Banks, Chacon).

CHARON - DEVICE

 and control problems, and as a discretization library (Pawlovski, Shadid, Bartlet)

ALEGRA

 on general polyhedral cells (Robinson, Shashkov, Lipnikov)

Org. 1641 (HEDP Theory)

 (Hanshaw, Brunner, Robinson)

External:

\Rightarrow LANL Theoretical Division T-7 (Shashkov)
\Rightarrow Center for computation \& technology, Louisiana State University
\Rightarrow HERMES project, UT EI Paso (Solin)
困

Reformulation of Maxwell's equations

Recall the mimetic discretization of the primal equation

Relevant operators acting on 1-cochains:
$\mathbf{D}_{1}^{*} \mathbf{D}_{1}=\mathbf{D}_{1}^{T} \mathbf{M}_{2} \mathbf{D}_{1} \quad$ A curl-curl operator
$\mathbf{D}_{0} \mathbf{D}_{0}^{*}=\mathbf{M}_{1} \mathbf{D}_{0} \mathbf{M}_{0}^{-1} \mathbf{D}_{0}^{T} \mathbf{M}_{1} \quad$ A grad-div operator
$\left.\begin{array}{c}\mathbf{D}_{1}^{*} \mathbf{D}_{1} \\ + \\ \mathbf{D}_{0} \mathbf{D}_{0}^{*}\end{array}\right\}=\left\{\begin{array}{c}\mathbf{D}_{1}^{T} \mathbf{M}_{2} \mathbf{D}_{1} \\ + \\ \mathbf{M}_{1} \mathbf{D}_{0} \mathbf{M}_{0}^{-1} \mathbf{D}_{0}^{T} \mathbf{M}_{1}\end{array} \quad\right.$ A Hodge Laplacian
Requires specialized AMG solvers to deal with $\operatorname{Ker}(c u r l)$

Sandia app: Z-pinch TIFF (LZW) decompressor are needed to see this picture.

$$
e^{1}=\mathbf{D}_{0} p^{0}+\mathbf{D}_{1}^{*} b^{2} \quad \text { A Hodge decomposition }
$$

Why Reformulate?

ML methods work well for Laplacians \Rightarrow make curl-curl more "Laplace"-like

Reformulate and then discretize: first add grad div and then discretize Misconception: reformulation allows to use collocated methods, e.g., nodal FE Major issue: scaling of the Laplacian when σ varies orders of magnitude

curl curl completely dominates grad div when $\sigma \approx 0$
\square Discretize and then reformulate: our approach - add discrete grad div
Key idea: use different inner product for the Hodge decomposition of 1-cochains

$$
\begin{aligned}
& {\left[e^{1}=\mathbf{D}_{0} p^{0}+\tilde{\mathbf{D}}_{1}^{*} b^{2}=\mathbf{D}_{0} p^{0}+\tilde{\mathbf{M}}_{1}^{-1} \mathbf{D}_{1}^{T} \mathbf{M}_{2} b^{2}\right.} \\
& \\
& \longrightarrow \mathbf{D}_{1}^{T} \mathbf{M}_{2} \mathbf{D}_{1}+\tilde{\mathbf{M}}_{1} \mathbf{D}_{0} \mathbf{M}_{0}^{-1} \mathbf{D}_{0}^{T} \tilde{\mathbf{M}}_{1} \approx \nabla \times \mu^{-1} \nabla \times-\nabla \gamma^{-1} \nabla .
\end{aligned}
$$

$\tilde{\mathbf{M}}_{1}$ is scaled by 1!
\mathbf{M}_{0} is scaled by $\gamma=\mu$
\square Issue: does this "mismatched" Laplacian have the same null-space as the true one?

Why not Reformulate and Then Discretize?

Assume a general unstructured grid without a topologically dual

Reformulated problem

$$
(\nabla \times \mathbf{E}, \nabla \times \hat{\mathbf{E}})_{\mu^{-1}}+(\nabla \cdot \sigma \mathbf{E}, \nabla \cdot \sigma \mathbf{E})_{r^{-1}}=0 \quad \forall \hat{\mathbf{E}} \in H(\Omega, \text { div }) \cap H(\Omega, \text { curl })
$$

Conforming discretization

The problem: in 3D H^{1} can have infinite co-dimension in $H($ div $) \cap H$ (curl)
Reformulate and discretize approaches that work need additional structure:

- Single mesh: Manteuffel et. al. - using potentials for E,J,B,H (potentials are more regular)
- Primal-dual: Haber et al. - using Yee scheme (curl on primal, div on dual)

Discretize and Then Reformulate:

Theorem

Assume that e^{1} solves the discrete Maxwell's equation and let $e^{1}=\mathbf{D}_{0} p^{0}+\tilde{\mathbf{D}}_{1}^{*} b^{2}$. The pair (a^{1}, p^{0}), where $a^{1}=\tilde{\mathbf{D}}_{1}^{*} b^{2}$, solves the reformulated Maxwell's equation

$$
\left\lfloor\begin{array}{cc|c|c}
\mathbf{M}_{1}+\mathbf{D}_{1}^{T} \mathbf{M}_{2} \mathbf{D}_{1}+\tilde{\mathbf{M}}_{1} \mathbf{D}_{0} \mathbf{M}_{0}^{-1} \mathbf{D}_{0}^{T} \tilde{\mathbf{M}}_{1} & \mathbf{M}_{1} \mathbf{D}_{0} & a^{1} \\
\mathbf{D}_{0}^{T} \mathbf{M}_{1} & \mathbf{D}_{0}^{T} \mathbf{M}_{1} \mathbf{D}_{0} \perp p^{0}
\end{array}\right]=\left[\begin{array}{c}
f \\
g
\end{array}\right]
$$

Theorem

Kernels of the mismatched and standard Laplacian have the same dimension

$$
\operatorname{dimker}\left(\mathbf{D}_{1}^{T} \mathbf{M}_{2} \mathbf{D}_{1}+\tilde{\mathbf{M}}_{1} \mathbf{D}_{0} \mathbf{M}_{0}^{-1} \mathbf{D}_{0}^{T} \tilde{\mathbf{M}}_{1}\right)=\operatorname{dimker}\left(\mathbf{D}_{1}^{T} \mathbf{M}_{2} \mathbf{D}_{1}+\mathbf{M}_{1} \mathbf{D}_{0} \mathbf{M}_{0}^{-1} \mathbf{D}_{0}^{T} \mathbf{M}_{1}\right)=0
$$

Proof uses that mimetic spaces inherit the cohomology of the analytic spaces and so: $\quad \operatorname{dimker}(\Delta)=\operatorname{dimker}(D) \quad$ for contractible domains.

Exercise: try proving this directly using only linear algebra!

Related approaches:

\Rightarrow Hiptmair, Xu, Kolev, Vassilevski: auxiliary space preconditioners use the socalled regular decomposition of H (curl) instead of the Hodge decomposition;
\Rightarrow Bossavit: same edge inner product, uses lumped mass over dual volumes 둔

Solver Performance

Because the blocks of the reformulated system are the edge Laplacian and node Laplacian, we can apply a standard AMG for the Laplace eq. to solve the problem (after applying edge to node interpolant to 1-1 block).

A-slot regression test problem: ALEGRA (C. Siefert)

\Rightarrow mesh refinement 1,4,8 times
\Rightarrow conductivity: $\sigma=1$ (void); $\sigma=6^{*} 10^{6}$ (material))

METH	ML-edge elements		Reformulated	
	2 Cheb.	3 Cheb.	2 Cheb.	3 Cheb.
2,300	28	18	$21(15 \%)$	$17(6 \%)$
140,528	43	35	$33(28 \%)$	$26(28 \%)$
$1,123,696$	66	53	$54(12 \%)$	$41(23 \%)$

QuickTime ${ }^{\text {TM }}$ and a TIFF (LZW) decompressor are needed to see this pictur
\Rightarrow ML = specialized, highly tuned AMG for edge elements (Trilinos)
\Rightarrow Reformulated $=$ off the shelf $A M G$ for Poisson equation, few tricks!
困
Sandia National laboratories

Solver Performance

σ sensitivity:

	σ_{2}					
Grid	cmplx	10^{0}	10^{-2}	10^{-4}	10^{-6}	10^{-8}
9^{2}	1.07	7	7	7	7	7
27^{2}	1.20	12	12	12	12	12
81^{2}	1.25	15	16	16	16	16
243^{2}	1.27	17	18	18	18	18

μ sensitivity:

		μ_{2}						
Grid	cmplx	10^{0}	10^{-1}	10^{-2}	10^{-3}	10^{1}	10^{2}	10^{3}
9^{2}	1.07	7	7	7	7	7	8	9
27^{2}	1.34	12	12	13	12	12	13	13
81^{2}	1.24	15	18	19	20	19	21	21
243^{2}	1.27	17	22	25	26	24	29	31

ML trivia

The new solver has been run in parallel to ~ 2000 processors with about a 65% (weak scaling) efficiency on a model problem.

Under the hood

\Rightarrow The edge Laplacian has the right null-space but lives on the edges - needs to be transferred to a nodal Laplacian before we apply OTS AMG.
\Rightarrow Trick 1: piecewise edge constants on first fine level only (theory "says" that's OK) are used to define a cheap grid transfer to nodes to avoid complexity.
\Rightarrow Trick 2: the fine grid smoother ignores the discrete gauge term! Hence we never need to form it explicitly, effectively it gauges the coarse grid operator.

Conclusjons

- Compatible discretizations inherit key structural properties of analytic spaces \& operators
- discrete models are physical \Rightarrow have intrinsic control over information loss
\square We presented a framework for compatible discretizations where:
- All operations are defined by two mappings: reduction R and reconstruction /
- The central concept is the natural inner product

The framework has two basic operation types

- Natural derivative, inner product, wedge product,...
- Derived adjoint derivative, Hodge Laplacian,...

The framework has important mimetic properties:

- discrete vector calculus
- combinatorial Hodge theory

The framework helped us to

- Recognize that differences between FV, FD and FE are largely superficial
- Derive a powerful abstraction of the discretization process and use it to develop new software design for interoperable discretization tools
- Reformulate the discrete Maxwell's equations so as to make them better suited for ML solvers

雷

