
Why Compilers Have
Failed To Support
HPC Programmers

and
What Can We Do About It

Saman Amarasinghe
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory

Impact of Languages
and Compilers

 Languages and Compilers have drastically
improved the programmer productivity
 Ease of expression and construction of large programs

 High Level Languages
 Object Oriented Languages

 Elimination of many classes of bugs
 Managed Memory
 Type Safety

 Fully portable across all hardware
 Instruction Level Parallelism

 …except in high performance programming!

Impact of Languages
and Compilers in parallelism

 Parallel programming still feels like
assembly level programming
 All the hardware features are fully exposed

 Need to explicitly manage no portability
 Many classes of nasty bugs

 Deadlocks, race conditions etc.

Success Criteria for a Compiler

1. Effective
2. Stable
3. Portable
4. Scalable
5. Simple

1: Effective

 Options are obscured
 Impossible to identify,

evaluate, select
�

 Options not available
 In a local minima
 Heroic effort needed to get out

�

 Compiler optimizations has to select the best choice among
all possibilities, but…

 To be effective compiler
 Restrict the choices when a property is hard to automate or constant

across architectures of current and future expose to the user
 Expose ones that are automatable and variable hide from the user

� ����
���

���
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

2: Stable

 Simple change in the program should not
drastically change the performance!
 Otherwise need to understand the compiler

inside-out
 Programmers want to treat the compiler as a

black box

3: Portable
 Work on the spectrum of current architectures

 Terrascale, petascale

 Need to be “Future-Proof”
 Ex: heterogeneous architectures

 Cannot hardcode parameters that’ll change

4: Scalable
 Works well on your small cluster is good
 …but will it work the same work on Jaguar?
 How about the exascale machines?

5: Simple
 Aggressive analysis and complex transformation lead to:

 Buggy compilers!
 Programmers want to trust their compiler!
 How do you manage a software project when the compiler is broken?

 Long time to develop

 Simple compiler ⇒ fast compile-times
 Current compilers are too complex!

Compiler Lines of Code
GNU GCC ~ 1.2 million

SUIF ~ 250,000

Open Research Compiler ~3.5 million

Trimaran ~ 800,000

StreamIt ~ 300,000

A Success Story: Register Allocation
 Effective

 Every architecture has registers at the bottom of the memory hierarchy
 All the registers were hidden from the users

 Early C let the users bound registers to variables, but now hidden from the user
 Users are exposed to identifying reg allocatable variables (i.e. with volatile)
 Allocating a variable to a register reduce mem bandwidth clear winner

 Stable
 Local optimization. If you miss one, no global consequence

 Portable
 Variations between hardware (# of regs, special purpose regs) is exposed

and managed by the compiler
 Scalable

 Local problem, out of Moore’s curve scaling is not an issue
 Simple

 Graph coloring and spilling heuristics is (now) trivial

The Dream:
Automatic Parallelization
 Identify loops where each

iteration can run in parallel
 DOALL parallelism

 What Matters
 Parallelism Coverage
 Parallelism Granularity

TDT = DT
MP1 = M+1
NP1 = N+1
EL = N*DX
PI = 4.D0*ATAN(1.D0)
TPI = PI+PI
DI = TPI/M
DJ = TPI/N
PCF = PI*PI*A*A/(EL*EL)

DO 50 J=1,NP1
DO 50 I=1,MP1

PSI(I,J) = A*SIN((
I-.5D0)*DI)*
SIN((J-.5D0)*DJ)
P(I,J) = PCF*(COS(2.D0)

CONTINUE

DO 60 J=1,N
DO 60 I=1,M

U(I+1,J) = -(PSI(I+1,J+1)
-PSI(I+1,J))/DY
V(I,J+1) = (PSI(I+1,J+1)-
PSI(I,J+1))/DX

CONTINUE

processors

TI
M

E

Why Automatic Parallelism Failed
 Lack of Effectiveness

 Sequential description obscures inherent parallelism
 Need heroic analysis

 Lack of Scalability
 Amdhal’s law: increased parallelism more parallelism coverage
 Need more heroic analysis

 Lack of Stability
 Granularity of Parallelism
 Small changes have a large impact

 Parallelize one additional statement change the granularity
 Needs even more heroic analysis

 Lack of Simplicity
 All these heroic analyses A hugely complex compiler

The Reality: MPI + X
 All the burden on the programmer

 Parallelization
 Computation and Data partitioning
 Communication orchestration

Why Compilers will not succeed with
MPI+X

 Lack of Effectiveness
 Programmer binds most important decisions
 Not too much choice exposed to the compiler

 Lack of Portability
 Data partitioning and communication orchestration

 Early binding to the given architecture
 Heroic analysis will be needed to change automatically

 MP+OpenMP+Cuda+???
 The partitioning match the current components
 Heterogeneous mix will change in the future

 Lack of Scalability
 Hard to scale when hard bound to current machines

If we have a Revolution, what should
it be?
 A new programming model/language that….

 Will take much of the burden of away from the programmer
 Managing the architectural features
 Tuning for performance

 Will make some classes of hard problems completely go away
 No race conditions or deadlocks

 Will make is possible for the compiler to “do the right thing”
 Able to optimize by taking advantage of all the capabilities
 Able to provide performance portability for current and future machines

 Will make is possible for experts to “help” the compiler
 A performance guru can provide patterns and transformations that are

specific to the given application

 A new compiler that will not let the programmers down!

Selecting between the programmer
and the compiler

 Let the programmer handle features that are
impossible to automate
But…make them constant across all current and
future architectures
 Get the programmers to expose maximum

concurrency inherent to the algorithm
 Get the programmers to over partition the data

(perhaps hierarchically)
 Get the programmer to provide more than one choice

of algorithm and data partition

Selecting between the programmer
and the compiler

 Let the compiler handle features that change
across architectures
 Managing parallelism
 Managing heterogeneity
 Managing data partitioning
 Managing communication orchestration

What happens if these are still too
hard for the compiler to handle?

 Provide hooks so expert performance gurus can
intervene when needed

 Invest in developing compiler technology
 Wait patiently until the compiler people get

it(hopefully!) working

Problem with High Performance
Languages

 There are no new ideas in high
performance languages
 No new constructs
 No new programming models

 Either…
 We have discovered all there is to find
 We have lost the capability to find new ones

Why it is hard to evolve a new
language (feature)
 Test languages are different from production languages

 Test language: experiment with a couple of features
 Production language: feature complete

 Integrate good features from multiple (test) languages

 Languages need to evolve
 Hard to get it right the first time
 Most user interface designs processes are set around rapid

evolution with ample user feedback

 Need input from programmers to evolve
 Need a lot of programmers to use the language

 Different programmers think differently
 Need programmers to use it for a long time

 First impression is not what makes a good language
 Measure the productivity of a trained programmer in the language

Why it is hard to evolve a new
language (feature)
 Market forces work against new languages

 Primary criteria for adoption is large number of existing users

 There is nothing in it for a programmer
 Hard to make a long-term investment

 The language may not last
 At best, it’ll keep changing

 Has to deal with bugs
 The compiler will be buggy

 Has to deal with incomplete systems
 Important features will be missing
 Tools will be missing

 More promise than reality
 Compiler optimizable does not mean optimizations will be

implemented…or works well.

My personal experience
 We developed the StreamIt language and compiler

 A high performance language for the static subset of the streaming domain
 A great optimizing compiler

 We did a extensive evaluation of the language
 65 programs
 34,000 lines of code
 Written by 22 students
 Over 8 year period

 An Empirical Characterization of Stream Programs and its Implications for
Language and Compiler Design [PACT2010]

 Extremely painful to do
 Could not get outside “users” (…but many compiler researchers)
 Had to find my own cadre of students (Meng and undergrad)
 Still none of them were domain experts or professional programmers

 This type of evaluation is very rare

Proposal: A National Center for
Programming Language Evaluation

 A Virtual Center
 Access to many professional programmers with difference skills
 Infrastructure for scientific and unbiased evaluation

 Evaluation process akin to Drug Trials
 Stage 1:

 Select 20 language/feature projects
 One week evaluation with 5 to 15 programmers
 Write a set of small kernels

 Stage 2:
 Down select 4 to 5 projects
 3 to 6 month evaluation by 20 to 40 programmers
 In one or two teams, develop a substantial application

 Stage 3:
 Down select 1 to 2 projects
 Provide support to build/improve the tools and the compiler
 One year effort by 50 to 100 programmers to port a real system

	Why Compilers Have�Failed To Support �HPC Programmers�and �What Can We Do About It�
	Impact of Languages �and Compilers
	Impact of Languages �and Compilers in parallelism
	Success Criteria for a Compiler
	1: Effective
	2: Stable
	3: Portable
	4: Scalable
	5: Simple
	A Success Story: Register Allocation
	The Dream:�Automatic Parallelization
	Why Automatic Parallelism Failed
	The Reality: MPI + X
	Why Compilers will not succeed with MPI+X
	If we have a Revolution, what should it be?
	Selecting between the programmer and the compiler
	Selecting between the programmer and the compiler
	What happens if these are still too hard for the compiler to handle?
	Problem with High Performance Languages
	Why it is hard to evolve a new language (feature)
	Why it is hard to evolve a new language (feature)
	My personal experience
	Proposal: A National Center for Programming Language Evaluation

