
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energyʼs National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

How I Learned to Stop Worrying and
Love New Models of Computation

Richard C. Murphy
Scalable Computer Architectures Department

Sandia National Laboratories
Affiliated Faculty, New Mexico State University

July 27, 2011

Wednesday, July 27, 2011

A Computer Architect’s View of the World

The trouble with programmers is that you can
never tell what a programmer is doing until it's

too late.
- Seymour Cray

Wednesday, July 27, 2011

A Computer Architect’s View of the World

The trouble with programmers is that you can
never tell what a programmer is doing until it's

too late.
- Seymour Cray

OR

A(B(I)) = C(D(I))

Wednesday, July 27, 2011

DOE Has Over-constrained the Exascale Problem

Step 1: Choose your favorite MIT Alumni’s Computer from the
early 1990s as your compute node... errr swim lane

Wednesday, July 27, 2011

DOE Has Over-constrained the Exascale Problem

Step 2: Pick your favorite MIT Alumni’s network topology and wire
up whatever bandwidth you think you can afford

Wednesday, July 27, 2011

DOE Has Over-constrained the Exascale Problem

Step 3: Mix in MPI... and a touch of your favorite MIT Alumni’s
Alternative Programming Model

Wednesday, July 27, 2011

DOE Has Over-constrained the Exascale Problem

We all know this approach is subject to criticism...
(I personally think it’s a disaster)

Wednesday, July 27, 2011

•This results in a tremendously sub-par platform, capable
(if you’re lucky) of running LINPACK in the power
envelope

•This eliminates the tight coupling between processor,
memory, and network necessary to do codesign
–How else can one do a system-wide power optimization?

•A new approach:
–Codesign has to begin somewhere, either from the bottom-up

(technology) or the top-down (applications)
–Programming Methods allow us to introduce concrete parallel

patterns for codesign
•How well does it match the application writer’s needs?
•Can the hardware implement it in a performant, energy-efficient
fashion?

Impact

Wednesday, July 27, 2011

Everything Old is New Again (Vintage Computing?)
•Early Petaflops Effort
(1996-1999)
– NSF, DARPA, NASA, NSA
– DOE stayed out because the

mission need could be met with
commodity (but we’re paying the
price now)

•One of 8 NSF-sponsored
petaflops design points in a 6
month study

•We were able to get to
petascale a decade later
– Without addressing the

fundamental energy issues
– Without programming model

innovation, which we know we
need

– Without broad agreement between
government agencies

•Consider the power envelopes:
– 2007 HTMT Design Point: 2.4 MW

• Scaled (unfairly) by Moore’s Law: <
1.2MW

– 2008 Road Runner PF/s: 2.4 MW
– 2008 Jaguar PF/s: 7 MW

Key concepts from HTMT drive today’s Exascale research agenda
(threads, message-driven computation, global shared memory)

Wednesday, July 27, 2011

This is no time for Ease and Comfort...
It is time to Dare and Endure

Today 2012 2013 2014 2015 2016 2017 2018 2019 2020

Feature Freeze for the Processor
(We’re done giving input!)

Move to production and FCSWindow of Opportunity

Who Endures?

Wednesday, July 27, 2011

Given this grim picture...
•Anything you want from a programming model needs to
appear today in:
–Chapel, X10, Fortress
–SHMEM, GASnet, UPC/CoArray Fortran
–Maybe MapReduce or some other business thing

•The problem is:

Wednesday, July 27, 2011

Chapel
•Background: Brad Chamberlain, Dave Callahan, and
Burton Smith’s view of how to program a petascale system
–Burton was fundamentally right about the architecture (see my

first slide) and the challenges of interconnecting them
–Thinking that’s decades ahead of the “multicore” community

•What does Chapel express (and how can it migrate into
Fortran)?
–Tasks (with threads as an execution vehicle)
–Data-oriented synchronization (sorely missing from today’s

CPUs)
–Rich arrays (multidimensional, strided, sparse, associative,

unstructured)
•User-specified layout and distribution
•NOTE: the execution model has to understand more about data
structures to meet energy/performance goals

–Data-parallel constructs (forall, promotion of scalars, etc.) that
are compatible with tasks (“multiresolution programming”)

Wednesday, July 27, 2011

What about Fortress and X10?
•X10

–There’s something in
Phasers that Vivek Sarkar can
explain (and is beyond a
hardware simpleton like me)

–The name alone should
establish it’s importance

–I’m not sure why we’re doing synchronization for the sake of
synchronization

•Fortress
–The object model is interesting
–Frosting

•LaTeX style rendering
•Support for units
•Etc.

–Probably more productivity oriented
Wednesday, July 27, 2011

What’s important from the hardware perspective?
•Execution Model

–We implement primitives, not high-level constructs in hardware
–What is it?

•Jack Dennis called it “an API for the machine” at the PRMHTS-2
workshop in April

•This is insufficient, the current execution model is not “MPI”
• It must also include how the machine is programmed (or a
performance model?) AND a Memory Model

–Today that’s MPI + BSP (+ TSO)
–Five Elements

• Concurrency
• Coordnation
• Movement (of data, of work)
• Naming
• Introspection

Wednesday, July 27, 2011

What’s the X in MPI+X?
•Again, too constrained a question... it should be “what
comes next as a superset of MPI”?

•Nothing that exists today properly approximates “X”
•It’s easier to point out out what X is not

–We absolutely have to break BSP to make the energy numbers
work out

•We have some ideas, but we have to apply codesign to
figure it out... we’re taking the following approach
–Proffer an execution model (ParalleX)
–Perform application, programming methods, architecture

analysis of ParalleX
–Use the key metrics of performance (in time and energy) and

programmability to evaluate ParalleX
–Repeat in a codesign loop (while concurrently optimizing across

the stack)

Wednesday, July 27, 2011

ParalleX
Element ParalleX GPUs Stylized CSP PGAS

Concurrency Threads/Codelets SIMD/lock-step
threads

Ranks/
Processes

Processes

Coordination Lightweight Control
Objects
(fine-grained)

Local Memory/
Explicit

BSP BSP

Movement of Work: Parcels
of Data: PGAS and
Bulk

Bulk Data Transfer
(weak memory
system)

Bulk Data
Transfer

Data Only (load +
store)

Naming Global Name Space
Global Address
Space

Global Address
Space

Explicit by
Rank

Global Address
Space

Introspection and
Adaptivity

System Knowledge
Graph/Dynamic

None/Static None/Static None/Static

Wednesday, July 27, 2011

Where does it depart from the roadmap?
Element ParalleX GPUs MPI + BSP PGAS + BSP

Concurrency Threads/Codelets SIMD/lock-step
threads

Ranks/
Processes

Processes

Coordination Lightweight Control
Objects
(fine-grained)

Local Memory/
Explicit

BSP BSP

Movement of Work: Parcels
of Data: PGAS and
Bulk

Bulk Data Transfer
(weak memory
system)

Bulk Data
Transfer

Data Only (load +
store)

Naming Global Name Space
Global Address
Space

Global Address
Space

Explicit by
Rank

Global Address
Space

Introspection and
Adaptivity

System Knowledge
Graph/Dynamic

None/Static None/Static None/Static

Wednesday, July 27, 2011

Some Problematic Attitudes from People
I Deeply Respect

Wednesday, July 27, 2011

“We only have to worry about the on-node
programming model for exascale...”

•If I have to break the BSP model for hardware reasons
your local problem just became a global problem

•As Culler observed in 1992:
–“a high performance network is required to minimize the

communication time and it sits 90% idle [to achieve a high
computation to communication ratio]”

–How do we smooth this out in the most energy efficient manor?
•Today’s model may allow principally local “thinking” but at
the cost of energy which we can no longer afford
–Worse, the long distance links we’re talking about are the most

energy expensive in the system
–This may be THE optimization problem for exascale

•What are the right processor/memory/NIC interactions?

Wednesday, July 27, 2011

“My physics code works great in the current model”

•We run the codes that the platforms support
–What science are we missing out on because we can’t run the

algorithms in an MPI+BSP model? Is it important?
•Good example: Graphs

–Fundamental to mathematics
–Potentially represent a much larger market than all of HPC

(business analytics, medical informatics, cybersecurity)
–Don’t run well today on any computer, even for simple analytics
–Google is based on what you can do with a graph using

MapReduce
•Surely the lamest of programming models
•Very limited in the kinds of analytics (PageRank)
•Worth billions of dollars

–Jackie Chen

Our job in HPC is to be at the leading edge, not the trailing edge!

Wednesday, July 27, 2011

“Why are you experimenting with all those failed (DoD)
programming models like work moving and ActiveMessages?”

•Most Active Messages implementations are too limiting
–Things changed since Culler’s 1992 paper and we likely want to create

threads upon the receipt of an AM rather than “integrate the code into
the running computation”

•Maybe the J-machine WAS hard to program, but we’ve got two
decades of improved compilers and hardware

•Low-cost thread creation from the NIC (or better, work-queue
based processors) solves a critical MPI problem

•Making processors more J-machine like will fix several
commercial threading problems
–The work queue model already exists in many OS and runtime

interfaces (TBB, qthreads, etc.)
–The runtime needs the flexibility to manage parallelism for energy

efficiency

Tighter NIC/Processor Integration is CRITICAL for energy
efficiency, but do we know how to program it?

Wednesday, July 27, 2011

“Why Failed Models (continued)?”
•Analysis of SNL Physics and Informatics Applications shows

–1-2 orders of magnitude more concurrency exposed by work
moving

–5-400x improvement in data movement over the application suite
• THIS IS WHERE YOUR ENERGY GOES!

–Reduced thread state size (15% of a modern register file)
•Significant room for data partitioning improvement

–5-10x reduction in energy possible vs. programmer partitionings
• (Today’s partitionings look more like random)

•Cheap synchronization required to make it work
–Today that synchronization happens in the (power hungry)

reservation stations of a modern processor
–It needs to be programmer exposed and processor controlled

•Perfect example of how programming methods work impacts
architecture!

Wednesday, July 27, 2011

“You want new... we’ve got PGAS... isn’t that sufficient?”
•PGAS isn’t new, it’s actually quite mature with many
implementations

•Which PGAS are you talking about (CoArrays, UPC, etc.)?
–Each of them brings a slightly different and nuanced set of thinking
–Are you using an ActiveMessages based implementation or

something else?
–What kind of something else (they’re non-standard)?
–What EXACTLY should we support in hardware?

•As far as I know there’s been no analysis of PGAS vs. MPI in
terms of energy-performance, and our time-performance
measures are at best anecdotal

•PGAS also isn’t the focus of Chapel, which is where you’ll
get your “new” stuff

Wednesday, July 27, 2011

“We know how to do data movement well, you should
base your architecture on that”

•No, we don’t... but we might if we got the processor to let
us hook in at the right place

•How do you define well?
–Yes, we support BSP applications
–No, we are by no means energy-efficient (which is THE defining

problem for exascale)
–Large data transfers force us into the BSP model, whereas small

data transfers promote asynchrony
•What we need for small messages (MPI, PGAS, work
moving, etc.) is the same from the network
–Higher message rates
–Tighter integration between processor, memory, and NIC
–Work sharing between the NIC, Processor, and Memory

•Do the operation at the lowest energy place
–LOTS more bandwidth than exists on the roadmap

Wednesday, July 27, 2011

Commodity Nodes are More Cost Effective
•Really? Power costs $1M/Megawatt-Year

–$100-$250M to buy the machine
–At 125 MW in 2018, $625M for power (not including cooling, etc.)
–And we probably want 2-3 of them: $1.7-$2.7B

•So what’s that worth?
–If you can reduce power by 50% for a single machine for less

than $300M, it’s probably worth it!
–If you can reduce power by 75% for $450M, it’s probably worth

it!
•We’ve never built a commodity node for a capability
machine (this is DOE mythology)
–At Sandia: nCube, Intel Paragon, ASCI Red, Red Storm
–At LLNL: BlueGene (full custom except for the core!)
–At LANL: RoadRunner

Wednesday, July 27, 2011

Worldwide Impact
"Total power used by servers [in 2005] represented ... an amount
comparable to that for color televisions. "

-ESTIMATING TOTAL POWER CONSUMPTION BY SERVERS IN THE U.S. AND THE WORLD,
Jonathan G. Koomey

3741e9 KW-Hrs Total US power consumption

* 3-4% used by computers (>2% servers,
>1% household computer use)

= 112 - 150e9 KW-Hrs US Computer power consumption

* $0.1 $/KW-Hr Retail cost, US Average 2009

= $11 - $15 Billion US$ in compute power

* 3-5
in 2005 US was roughly 1/3 of
servers, by power. This has
probably decreased

= $33 - $75 Billion US$ in worldwide computer
power

= - Yearly GDP of Qatar to Burma

Wednesday, July 27, 2011

Worldwide Impact

3741e9 KW-Hrs Total US power consumption

* 3-4% used by computers (>2% servers,
>1% household computer use)

= 112 - 150e9 KW-Hrs US Computer power consumption
* $0.1 $/KW-Hr Retail cost, US Average 2009
= $11 - $15 Billion US$ in compute power

* 3-5 in 2005 US was roughly 1/3 of
servers, by power.

= $33 () - $75 () Billion US$ in worldwide computer
power

* 15-35% DRAM memory power

= $5 () - $25 () BIllion in US$ in DRAM power

"Total power used by servers [in 2005] represented ... an amount
comparable to that for color televisions. "

-ESTIMATING TOTAL POWER CONSUMPTION BY SERVERS IN THE U.S. AND THE WORLD,
Jonathan G. Koomey

Wednesday, July 27, 2011

Conclusions
•Being wimps about actually taking on the risk necessary
to build a meaningful exascale platform does not benefit:
–National Competitiveness
–National Security
–DOE or other government agencies
–Anybody’s application base

•We need a tightly integrated processor, NIC, memory
model
–And a programming model that takes advantage of that

•We need to get started NOW, especially on the software
part

Wednesday, July 27, 2011

A Call to Action
•We need to focus on execution models and exposing low-
energy (and energy-aware) capabilities to the programmer

•We need to manage massively more parallelism
–3-orders of magnitude just to get to exascale
–(by my estimate) 2-orders of magnitude more to do what we do

today at lower energy
•Mechanisms need to be fine-grained
•There are three major hurdles:

–We have threads, but they don’t interoperate well (fix
synchronization)

–Today’s message rates are insanely low
–BSP may occupy the memory system 100% of the time, but has

spiky processor and NIC properties (bad for energy)

Wednesday, July 27, 2011

Thank you!

Wednesday, July 27, 2011

