
July 28 2011 ASCR Exascale Programming Workshop

Richard A. Lethin, Reservoir Labs, Inc.

Reconceptualizing to Unshackle Programmers
from the Burden of Exascale Hardware Issues

1

Presenter
Presentation Notes
- Reservoir Labs develops high-performance compilers, SAT solvers, and security products, among other products and services

July 28 2011 ASCR Exascale Programming Workshop

• Reservoir team: Benoit Meister, Nicolas Vasilache, David
Wohlford, Muthu Baskaran, John Ruttenberg, Jordi Ros-
Giralt, Pete Szilagyi, Patrick Clancy, Jonathan Springer, Jim
Ezick, Ann Johnson, Stefan Freudenberger, Melanie Peters,
Nicole Bender, Trevor Serfass

• Sponsors: ACS, DARPA, DOE, DOD, Others

• Primes and Partners (UHPC team): Intel, UIUC, U Delaware,
ETI, SDSC

2

Acknowledgements

33

The Exascale Hardware
Opportunity
And Burden
For Programmers

4

Runnemede Cores
Pr

og
ra

m
 M

em
or

y CE

Control & Sync

Self Aware

Resiliency

Power
management

General Purpose
Control Engine

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

Large Regist

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

AcXE
DP FP x, +

Pr
og

ra
m

 M
em

or
y

XE
DP FP x, +, Int

Application-Class
Execution Engine

Pr
og

ra
m

 M
em

Large Local
Data Mem

Hierarchical interconnect fabric

Data
Locality

Low

Medium

High

Large Global
Data Mem

Borkar, Intel 2011

5

XE XE

Local Local

Global Shared Data Cache

Hierarchical
interconnect fabric

CE

Local

Control & Status

Block

(c)

Block 0

Block 7
Unit 1

Unit 2 Unit 3

Cluster 1

Cluster 2 Cluster 3

Module (Chip)

(d)

X Int

Double precision
ALU, Multiplier (Vector?)

Local (Large)
RF, Data Mem/CacheInstruction

Cache

Instruction
Decode
& Control

Application Class Execution Engine (XE)

(a)

Integer,
Boolean,

String

Local
Register FileI & D

Cache

Instruction
Decode
& Control

General Purpose Control Engine (CE)

(b)

Organization

6

Memory 0.35MB
0.17mm2 (50%)

CE or XE
0.17mm2 (50%)

~0.6mm 20mm
32-128 GB 32-128 GB

256GB/s 64-256b

DRAM 32-128 GB

10 cm

9 cm

Processor Module
Core

Processor Node

Cores/Module 1152

On-die Memory 400 MB

Vdd 0.41 V

Frequency 1.2 GHz

Peak perf. 2.5 TF

Power 26 to 87W

Energy efficiency 96 to 29
GF/Watt

Goal: 80GF/W

Logic transistors 2 M

Core memory 0.35 MB

Vdd 0.41 V

Frequency 1.2 GHz

Peak perf. 2.4 GF

Power 0.24 to 0.46W

DRAM Capacity 128-512 GB

DRAM Bandwidth 1 TB/s

Peak perf. 10 TF

DRAM Power 20 W

Total Power 124 to 368W

Energy efficiency 81 to 27
GF/Watt

Goal: 50GF/W

8nm Process Technology

Hardware Building Blocks

7

10 cm

High Density
Interconnect &

Package

9 cm

(a)Processor Node
10 TF Peak

19” PCB

(b) System Node
160 TF Peak

Runnemede Hardware System

4”

16 boards x 4” = 64”
Fits in 72” cabinet

(c) Cabinet
16 boards/cabinet
~1M cores
~2.5 PF Peak
~51 KW
50 GF/Watt

8

Voltage Scaling

0

0.2

0.4

0.6

0.8

1

0.3 0.5 0.7 0.9

Vdd (Normal)

N
or

m
al

iz
ed

0

2

4

6

8

10

Freq

Total Power
Leakage

Energy Efficiency

When designed to voltage scale

9

Near Threshold Logic

1

101

103

104

102

10-2

10-1

1

101

102

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Supply Voltage (V)

M
ax

im
um

 F
re

qu
en

cy
 (M

H
z)

To
ta

l P
ow

er
 (m

W
)

320mV

65nm CMOS,
50°C

320mV
Su

bt
hr

es
ho

ld
 R

eg
io

n

9.6X

65nm CMOS,
50°C

10-2

10-1

1

101

0

50

100

150

200

250

300

350

400

450

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Supply Voltage (V)

En
er

gy
 E

ffi
ci

en
cy

 (G
O

PS
/W

at
t)

Ac
tiv

e
Le

ak
ag

e
Po

w
er

 (m
W

)

H. Kaul et al, 16.6: ISSCC08

July 28 2011 ASCR Exascale Programming Workshop

• Low Power
• Near Threshold Voltage operation => parallelism “1000x”
• Maximizing locality
• Very high variation in transistor performance
• Explicit communications, synchronization
• Heterogeneous, hierarchical architecture

• Resilience
• More transistors, smaller transistors, operating at margins

• New features
• Reorganized / refactored memory system
• New collectives / programmable operators

10

Extreme Scale Programming Challenges (Part 1)

July 28 2011 ASCR Exascale Programming Workshop

• New Execution Model “e.g., Codelets”
• Fine-grained, event-driven, non-blocking
• Fuse “intra-node” and “inter-node” abstractions

– Global memory abstractions, RDMA

• Explicit and implicit communications
– All operands “ready” when codelet fires, results streamed

out after codelet finishes

• Dynamic load balancing, other advanced schedulers

11

Extreme Scale Programming Challenges (Part 2)

July 28 2011 ASCR Exascale Programming Workshop

• Not the Programmer!
• Expressing all of these considerations will make the

program longer, buggier
• Opaque to any semantic or dependence analysis needed for

optimization
• Will over-specify the program and bake it to one

architecture, defeating portability
• Exascale programming will be too complicated – VLIW

lessons

12

Who/what deals with this complexity?

July 28 2011 ASCR Exascale Programming Workshop

• Don’t put it in the libraries!
• Optimization through and across library calls is an essential

place to get performance
• Cross call fusion for locality
• Libraries cannot be opaque
• If they have this complexity in their code they will be

opaque

13

Who/what deals with this complexity?

July 28 2011 ASCR Exascale Programming Workshop

It can be done in a compiler

14

Sequential C
Kernel
Source

Your favorite
compiler

here.

OpenMP Cell DataFlow CUDA

Existing Automated
Optimizations

Parallelization
Locality optimization
Tiling
Placement
Distributed local memory opt
Memory promotion
Corrective array expansion
Layout optimization
Reshaping
Communication (DMA) generation
Multi-buffering
Synchronization generation
Thread generation
Hierarchical targets
Heterogeneous targets
Multiple execution models

VM Abstraction/Back End Compilers

Presenter
Presentation Notes
These optimizations address structural characteristics of emerging architectures.

July 28 2011 ASCR Exascale Programming Workshop 15

Loop transformations as scheduling

iteration space of a statement S(i,j)

j

i

22: ZZ →θ

t1

t2

Schedule θ maps iterations to multi-dimensional time

Loop transformations/synthesis mean generating code to execution iterations
of a loop in the lexicographical order of time

A feasible schedule must preserve dependencies

July 28 2011 ASCR Exascale Programming Workshop

• Joint parallelization + locality + contiguity optimization
• Can generate nested parallelism (nested OpenMP)
• Explicit management of scratchpad memories
• Virtual scratchpads
• Explicit communication generation and optimization
• Integrated scheduling plus placement/layout optimization
• Hierarchical scheduling
• Placement
• Task formation
• Granularity selection
• Heterogeneous targets
• Hybrid static / dynamic scheduling
• …

16

Scheduling state of the art 2011

(Reservoir, UIUC, OSU, PSU, Rice, UCB, USC/ISI, CU …)

July 28 2011 ASCR Exascale Programming Workshop

• High-level, semantics-rich programming approaches
• Math languages, Ptolemy, …
• Specify the “what” not the how
• Commutability, reassociability, …
• Accuracy requirements
• Reformulation algebras
• Numerical methods ontology
• Domain knowledge (symmetry, structure, bounds, …)

• Separate tuning languages from application language
• E.g., Intel Concurrent Collections
• Auto-generate tuning languages

17

The answers

July 28 2011 ASCR Exascale Programming Workshop

• Optimizability

• Understandability

• Verifiability

• Longevity

• Portability

• Composability

18

High-level semantics-rich (and architecture-lite)
expression provides

July 28 2011 ASCR Exascale Programming Workshop

• Writing programs in CUDA, OpenMP, … directly, or hybrids.
• Programmers should not touch these forms – they are

TOXIC to automatic portability, optimization,
parallelization, and will be costly in the long run.

• These forms should be (and can be EASILY) auto-generated
(and auto-tuned) from high-level, semantics-rich high level
form.

19

This is NOT!

July 28 2011 ASCR Exascale Programming Workshop

• Semantic pragmas

• Not mapping pragmas

• Selective rewrites to high-level, semantics-rich form

20

Migration path for existing codes

July 28 2011 ASCR Exascale Programming Workshop

• High-level semantics rich expression languages.

• Automated transformations to utilize them.

• Automated transformations to address exascale hardware
issues.

21

Needed exascale research

These benefit all levels of extreme scale
systems – Tera, Peta, Exa -- UBIQUITOUS

July 28 2011 ASCR Exascale Programming Workshop

• Can system check proof that an application’s
implementation is correct with respect to dynamism, faults,
precision?

• Use this as a litmus test for the programming language,
annotation system, tools, runtime, and hardware.

• E.g., should we off-the-bat be reasoning about
asynchrony?

• Uncertainty Quantification on steroids

• Proof, logic, knowledge

22

Verification as a driver

July 28 2011 ASCR Exascale Programming Workshop 23

Dynamic
Machine
Model

Irregular / Amorphous
Algorithm Compiler

Polyhedral Optimizer
Proof

Assistant

Numerical
Algorithms
Ontology

Math
Ontology

Algorithm/Formulation Exploration

Proof
Preserving

Parallel
Intermediate

Representation

Online Parmeterized Mapping
Projector

Security and
Resilience
Checker

High Level Applications
Specification

(Math language)

Correctness
Proof

Assertions

Correctness
Checker

Applications Spec

Compiler

Runtime Online Profiler

Next Generation Compiler

Mapping
Annotations
(Hierarchical
Tilings, etc.)

July 28 2011 ASCR Exascale Programming Workshop

• Intel Concurrent Collections (CnC) [Knobe]

• Dynamic single assignment – maximal algorithmic
parallelism “Domain Expert”

• Separate tuning language “Tuning Expert”
– Granularity selection, placement, scheduling

• Runtimes for multi-core, distributed systems

24

Supporting New Execution Models

[X: i]

<TA: i>

(A: i) [Y: i] (B: i) [Z: i]

<TB: i>

July 28 2011 ASCR Exascale Programming Workshop

• We’ve built a proof of concept auto-generator for CnC
• Can express more parallelism than possible with OpenMP
• Get the benefit of adaptive load balancing from runtime
• Expressions in CnC are significantly more succinct than

OpenMP

• Provides a natural framework to integrate optimization of
algorithm structure and data structures (irregular,
unstructured)

• Graphs, sparse matrices, meshes

• Natural implementation that is fault tolerant

25

Why CnC?

July 28 2011 ASCR Exascale Programming Workshop

• CnC Hierarchical affinity groups (Knobe, Sarkar)
• Express tuning/mapping as constraints and affinities
• Research question: how can we produce schedules more

dynamic and less constrained than polyhedral θ

Supporting new directions in tuning languages

(sally: i) [w] (sonia:i, j) (Sanjay: i, j) (Simon: i, j)[x] [y] [z] (sam: i)

<tony: i>

<tom: i, j>

26

July 28 2011 ASCR Exascale Programming Workshop 27

Data Layout / Placement / Format / Notations

Hierarchically Tiled Arrays (HTA)
(Padua/Garzaran)
Format for dense matrix algs
Associated programming notations
Recursive algorithms
Cache oblivious algorithms

Research challenges
Automatic Scheduling + Data
layout optimization?
Dynamic – Massive Challenge
High level notations->recursive
formulations
New Data Structures (NDS)

July 28 2011 ASCR Exascale Programming Workshop 28

Improved runtime schedulers

J-Machine 8x8x16 = 1024 “cores”
circa 1990

Questions about regulation of “clouds”
of computation relate to today’s efforts
to more tightly couple CPU+NW, queues.

Research topic
How can we make modern task scheduler
technology incorporate network
regulation constraints?

Need compiler

July 28 2011 ASCR Exascale Programming Workshop

• You can’t raise the level of abstraction too high.

• Semantics-rich, high-level programming is the way to go.

• Much research to be done, but the right path is clear:

• Each step in the high-level direction facilitates automatic
compiler and runtime solutions to increase parallelization,
performance, efficiency, confidence, lifetime…

• …and will save tons of money, ubiquitously.

29

Reconceptualizing

	Reconceptualizing to Unshackle Programmers from the Burden of Exascale Hardware Issues
	Acknowledgements
	Slide Number 3
	Runnemede Cores
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Voltage Scaling
	Near Threshold Logic
	Extreme Scale Programming Challenges (Part 1)
	Extreme Scale Programming Challenges (Part 2)
	Who/what deals with this complexity?
	Who/what deals with this complexity?
	It can be done in a compiler
	Loop transformations as scheduling
	Scheduling state of the art 2011�
	The answers
	High-level semantics-rich (and architecture-lite) expression provides
	This is NOT!
	Migration path for existing codes
	Needed exascale research
	Verification as a driver
	Slide Number 23
	Supporting New Execution Models
	Why CnC?
	Supporting new directions in tuning languages
	Data Layout / Placement / Format / Notations
	Improved runtime schedulers
	Reconceptualizing

