
"Evolutionary Support for Revolutionary Programming Models and Runtime Systems"

Evolutionary Support for Revolutionary Programming Model

Runtime Systems

Abstract:

Various parallel programming models and runtime systems have been developed over the years to
revolutionize the programming capabilities on large-scale parallel platforms. Each model comes with its
own unique capabilities and advantages. So what is holding back applications from moving to these new
models? One of the primary disadvantages of these "revolutionary" programming models is that, well,
they are "revolutionary". That is, applications have to move as a whole to the new model. There is no
piece-wise migration or transition path for applications to slowly move to newer models. The runtime
systems of one model, for example, is unaware of the runtime systems of other models and therefore
may not interoperate well if used together. As a result, combining multiple programming models at
present is often not possible or may lead to deadlocks, unpredictable behavior, or suboptimal resource
usage and performance loss.

Arguably, the only way to allow applications to start using these new "revolutionary" models is make
them more "evolutionary". That is, their runtime systems should understand each other to allow an
application to move some parts to newer models while retaining code that used older models. For
example, applications written with MPI may need to use some threading model for exploiting the shared
memory within a node more effectively; multimodule applications written in Unified Parallel C (UPC) or
Coarray Fortran (CAF) may need to use math libraries written in MPI, such as PETSc, that have had
hundreds of programmer-years of development invested in them; and applications written with Global
Arrays may need to use load-balancing tools written in Charm++. The need to combine multiple models
has also become evident in recent years when trying to scale applications in nuclear physics (GFMC),
chemistry (NWChem), climate, nuclear reactor design, biology, and other multiphysics applications.

In this talk, I will describe some of the challenges associated with runtime systems where assumptions
made so far with respect to the programming models they support are no longer true as we move to

exascale. The talk will focus on where current runtime systems are, what they are missing, and what we
as a community have to focus on to get this working in the exascale timeframe.

