
Evolutionary Support for Revolutionary
Programming Models and Runtime Systems

Pavan Balaji

Argonne National Laboratory

Pavan Balaji, Argonne National Laboratory

Presentation Layout

 State of Programming Models and Runtime Systems

 Application Requirements for the Exascale Era

 (Example) Key Challenges for Interoperable Runtimes

 Concluding Remarks

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Current State of Programming Models and Runtime
Systems
 (Too) Many programming models and runtime systems have

been proposed recently
– Why? No single model seems to provide everything applications need

• Diverse application needs dictate many programmability constraints

– Each model provides unique capabilities, but comes with its set of
challenges as well

 Several categories of these exist:
– High-level Compilers/Languages

• UPC, Chapel, CAF, X10, …

– High-level Libraries
• Global data space models (Global Arrays, Global Trees) and Global

computation space models (ADLB, Scioto, Charm++)

– Low-level Runtime Systems
• MPI, ARMCI, GASNET, OSPRI, accelerator models (OpenCL, CUDA), …

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Usage of Programming Models and Runtime Systems

 Many of these models have aimed at “revolutionizing” the
programming interfaces for applications (not interoperable
with legacy code)
– Provide a rich set of capabilities

– Allow applications to easily express their requirements

 So what’s stopping applications from using these models?
– Biggest drawback: there is no transition path for existing applications!

• Very few applications will be written from scratch (without reusing
anything from the past: e.g., math libraries, load balancing tools)

• Incremental transition is critical for real applications; validation and
verification done on application codes is too expensive to throw away

– “Revolutionary” programming models are, well, “revolutionary”

– Many of these models require almost a complete rewrite of
applications

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Multi-model Programming Might be the Future

 For multimodule applications primarily based on MPI, how can a new

module be written using alternate models such as UPC or CAF in such a

way that it can interoperate with the rest of the application?

 How can an application written in Cray Chapel or IBM X10 utilize math

libraries written in MPI, such as PETSc, that have had close to a hundred

man-years of development invested in them?

 Can an MPI application directly move data from a local accelerator device

to another physical node without explicitly using accelerator programming

models to stage data locally before using MPI to move it outside the

node?

 Can OpenMP and Intel TBB co-exist within the same application?

 If you have an ADLB or Charm++ application using work stealing and task

migration, can it interact with Global Arrays to provide a globally

accessible data region?

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Application Usage

 Applications have so far relied on more-or-less a single model

– Most applications use MPI (either directly or through high-level domain-

specific libraries); many moving to hybrid MPI+OpenMP model

– Some applications use alternate models such as Global Arrays

(NWChem) or UPC (NSA applications)

 As we move forward to exascale, applications will need more!

– While the programming models that exist today lack capabilities to

handle exascale challenges, we are not yet at a point where we need a

completely new model

• Each model has its flaws, but each model has its strengths too

• Each model is very good at the set of things it is built for

– Instead of redesigning a completely new programming model, we should

leverage the strengths of the different models

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Runtime Challenges for Interoperability

 Unfortunately, using multiple programming models is not

possible today

– Programming models are not interoperable today because their

runtime systems do not cooperate

– UPC and CAF use the GASNet runtime system; Global Arrays uses

ARMCI; MPI uses its own internal runtime system; OpenMP and TBB

uses their own separate thread management layers

– Impossible to inter-mix these different runtime systems without they

knowing of each other

• Resource conflicts

• Progress deadlocks

• Data corruption because of data access contention

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Current State: A Separate Runtime System for each
Application
 Each application packaged with its own high-level programming library

(GA, Charm++, ADLB, MADNESS runtime) on top of a different low-level
runtime (MPI, ARMCI, GASNET)

 This model is fundamentally not sustainable at Exascale

– Interoperability between application models is difficult – underlying runtime
infrastructure has to be either interoperable or integrated

– Research optimizations are either redundant or not interoperable

• GA, GT, Data Spaces, etc., mostly do the same optimizations

• For what’s not repeated (e.g., if GA does something DS doesn’t), they are not
interoperable

– Commercial support impractical – vendors will not support five runtime
libraries – hard enough to get support for MPI + <anything else>

NWChem

Global Arrays

ARMCI MPI

NAMD

Charm++

Converse

GFMC

ADLB

MPI

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Presentation Layout

 State of Programming Models and Runtime Systems

 Application Requirements for the Exascale Era

 (Example) Key Challenges for Interoperable Runtimes

 Concluding Remarks

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Application Requirements for the Exascale Era

 Applications need to deal with two dimensions of problems:

– The science they are trying to solve is becoming more complex (hence

the need for exascale computing)

• More data requirements, more computation

– Hardware architectures are becoming more complex (hierarchical

architectures, heterogeneous systems)

• Current machines cannot just scale up because of cost and power

constraints

 Current computation and communication methodologies

used by applications cannot just migrate to exascale

architectures

– Too many variables here; everything will not magically scale

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

N-Body Coulomb Interactions

 Current applications have been looking at small-to-medium
molecules consisting of 20-100 atoms
– Amount of computation per data element is reasonably large, so

scientists have been reasonably successful decoupling computation and
data movement

 For exascale systems, scientists want to study molecules of the
order of a 1000 atoms or larger
– Coulomb interactions between the atoms is much stronger in the

problems today than what we expect for exascale-level problems

– Larger problems will need to support short-range and longer-range
components of the coulomb interactions (possibly using different solvers)

• Diversity in the amount of computation per data element is going to increase
substantially

• Regularity of data and/or computation would be substantially different

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Quantum mechanical interactions are near-sighted
(Walter Kohn)

ASCR Programming Models Workshop (07/28/2011)

Traditional quantum chemistry studies lie within the nearsighted range where
interactions are dense:

Future quantum chemistry studies expose both short- and long-range
interactions:

Range of interactions between particles

Note that the figures are phenomenological. Quantum chemistry methods
treat correlation using a variety of approaches and have different short/long-
range cutoffs.

distance

Interaction strength

Courtesy Jeff Hammond, Argonne National Laboratory

Pavan Balaji, Argonne National Laboratory

*=

*=

TILING

Current: Regular Dense Computation

 Traditional models such as MPI or GA alone have been

sufficient for this model of computation

– Fetch data locally and compute

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

*=

?

= *

Exascale: Irregular Dense/Sparse Computation

 Traditional models “individually” are no longer sufficient
– MPI or GA like model is good for dense parts of the data (fetch data

locally and compute)

– Charm++, ADLB or Scioto like model is good for the sparse parts

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Another Motivating Example: GFMC

 Green’s Function Monte Carlo -- the “gold standard” for ab initio
calculations in nuclear physics at Argonne

– A non-trivial master/slave algorithm, with assorted work types and priorities; multiple
processes create work; large work units

– Uses ADLB for task management, the Asynchronous Dynamic Load Balancing Library
(written in MPI)

 Scaled to 2000 processors on BG/L a little over two years ago, then hit
scalability wall

 Need to get to 10’s of thousands of processors at least, in order to carry
out calculations on 12C, an explicit goal of the UNEDF SciDAC project

 The algorithm has had to become even more complex, with more types
and dependencies among work units, together with smaller work units

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Memory Scalability of GFMC

 GFMC’s view of ADLB is that of a “generalized master-worker”
– Each worker provides tasks to the “master” (physically distributed set of

servers), and other workers can steal this work

– Issues related to task dependencies/load-balancing are handled within
ADLB (GFMC gives hints, but doesn’t explicitly handle it)

 As GFMC moved to larger elements, the memory available to
each task was no longer sufficient (factorial of atomic weight)

 First solution was MPI + OpenMP: allowed GFMC to scale to C-12

 Next steps forward are C-14 and O-16, and a simple task-based
model such as ADLB is no longer sufficient
– We need to investigate using ADLB in conjunction with GA or UPC, …

– MPI to move data within an address space, but GA or UPC to expand the
address space available to each process (global space)

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

GFMC (Future) Working Model

ASCR Programming Models Workshop (07/28/2011)

Task Pool

Small
Task

Big Task

Physical
Node

Small
Task

Physical
Node

Physical
Node

Physical
Node

Physical
Node

Big Task

Physical
Node

Physical
Node

Physical
Node

Medium
Task Physical

Node

Physical
Node

Some mixture of high-level task-parallel model (ADLB, Charm++) in conjunction with some form of global data
space model (GA, UPC, CAF) would be required to scale GFMC to the next problem of interest: Oxygen-16

Pavan Balaji, Argonne National Laboratory

Presentation Layout

 State of Programming Models and Runtime Systems

 Application Requirements for the Exascale Era

 (Example) Key Challenges for Interoperable Runtimes

 Concluding Remarks

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Unistack: One Possible Model for a Unified and
Interoperable Programming Infrastructure

NWChem

Global Arrays

ARMCI MPI

NAMD

Charm++

Converse

GFMC

ADLB

MPI

Decoupled Stacks
Unified Interoperable Infrastructure (Unistack)

Quantum Chemistry
(e.g., NWChem)

Nuclear Physics
(e.g., GFMC)

Molecular Dynamics
(e.g., NAMD)

Source compilers
(e.g., UPC, Chapel, TCE, X10, CAF)

High-level Libraries
(e.g., GA, GT, ADLB, Charm++)

Communication
Libraries

(e.g., MPI, ARMCI,
GASNET, OSPRI, XOR)

Threading
Runtimes

(e.g., OpenMP
runtime)

H/W Management
Runtimes

(Topology, GPUs)

Blue Gene Cray Intel NVIDIA

The key is to provide a unified and interoperable architecture with multiple levels of
capabilities and ALLOW APPLICATIONS TO BREAK THE LAYERING transition path for

applications!
ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Several Challenges in Allowing Multiple
Programming Models to Co-exist
 Co-existing is hard! Semantics, not just programming them

 Defining “interoperability”
– Using data from one model in a different model is messy

• But often cannot be avoided: Data is King!

– Completion semantics, safe use of data buffers

– Using data objects on other models: MPI using GASNet allocated
buffers

 Resource contentions
– Buffer management, progress semantics (asynchronous agents) to

avoid deadlocks/livelocks, compute resources (e.g., using OpenMP
and TBB in the same applications)

 Tools
– Debugging with one model is hard enough

 And many others!

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

This is not a completely new concept!

 Different forms of ad-hoc interactions do exist

 MPI + OpenMP (or other threading models)
– Well defined in the specifications

– Many optimizations done by researchers all around the world

 MPI + UPC
– Hard problem because MPI is a runtime library, and UPC has compiler

capabilities; some work done by various groups in this area

 ADLB + MPI
– (Almost) trivial interoperability because of a layered model (ADLB is

layered on top of MPI)

 But we need a more truly interoperable (drag-and-drop) model
– Migration path for applications to start using other models (any other

model!) in conjunction with what they are already doing

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Presentation Layout

 State of Programming Models and Runtime Systems

 Application Requirements for the Exascale Era

 (Example) Key Challenges for Interoperable Runtimes

 Concluding Remarks

ASCR Programming Models Workshop (07/28/2011)

Pavan Balaji, Argonne National Laboratory

Concluding Remarks

 Several programming models out there, but many of them are

too “revolutionary” for applications to move to them

– Too much initial migration effort required

 We need to make the path to these “revolutionary” models

more “evolutionary”

– The jump cannot be so drastic

 Interoperability with what exists is the key!

– While there has been some work that performs ad-hoc interactions

between select model, we need a focused effort in combining the

capabilities of many (or all) of these models

– Applications should be able to pick and choose what they want to use

based on application characteristics and requirements

ASCR Programming Models Workshop (07/28/2011)

	Evolutionary Support for Revolutionary Programming Models and Runtime Systems
	Presentation Layout
	Current State of Programming Models and Runtime Systems
	Usage of Programming Models and Runtime Systems
	Multi-model Programming Might be the Future
	Application Usage
	Runtime Challenges for Interoperability
	Current State: A Separate Runtime System for each Application
	Presentation Layout
	Application Requirements for the Exascale Era
	N-Body Coulomb Interactions
	Quantum mechanical interactions are near-sighted (Walter Kohn)
	Current: Regular Dense Computation
	Exascale: Irregular Dense/Sparse Computation
	Another Motivating Example: GFMC
	Memory Scalability of GFMC
	GFMC (Future) Working Model
	Presentation Layout
	Unistack: One Possible Model for a Unified and Interoperable Programming Infrastructure
	Several Challenges in Allowing Multiple Programming Models to Co-exist
	This is not a completely new concept!
	Presentation Layout
	Concluding Remarks

