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New Processors Means New Software 

•  Exascale will have chips with thousands of tiny processor 
cores, and a few large ones 

•  Architecture is an open question:  
–  Sea of embedded cores with heavyweight “service” nodes 
–  Lightweight cores are accelerators to CPUs 

•  Software managed memory and interconnect topology? 
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Challenges to Exascale 

1)  System power is the primary constraint 
2)  Concurrency (1000x today) 
3)  Memory bandwidth and capacity are not keeping pace 
4)  Processor architecture is open, but likely heterogeneous 
5)  Programming model heroic compilers will not hide this 
6)  Algorithms need to minimize data movement, not flops 
7)  I/O bandwidth unlikely to keep pace with machine speed  
8)  Reliability and resiliency will be critical at this scale 
9)  Bisection bandwidth limited by cost and energy 

Unlike the last 20 years most of these (1-7) are equally 
important across scales, e.g., 1000 1-PF machines 

Performance Growth 



To Virtualize or Not 

•  The fundamental question facing in the design of parallel 
programming models is: 

             What should be virtualized? 
•  Hardware has finite resources with complex structures: 

–  Processor count, register, link topology, is finite 
–  On chip memory is finite: caches hide this, local stores do not 

•  Does the programming model expose this or hide it?  
E.g., one thread per core, or many? 
–  Many threads may have advantages for load balancing, 

fault tolerance and latency-hiding 
–  But one thread is better for deep memory hierarchies, i.e., 

a many to few load balancer tends to work better on 
shared memory than distributed 

•  Which level is responsible for virtualizing? 



Virtualization of Processors 

•  Many possible tasks graphs, 
depending on how much 
parallelism is exposed 

•  Abstraction can constrain this 
•  Where does the mapping of the 

graph to a particular number of 
processors happen? 
–  The compiler: NESL, ZPL 
–  The runtime system : Cilk, Charm++, 

OpenMP, X10, Chapel 
–  The programmer: MPI, UPC 

•  Data decomposition then 
computation scheduling? 

•  Fairness and resource 
management are subtle 



Irregular vs. Regular Parallelism 

•  Computations with regular task graphs can be 
automatically virtualized / scheduled 
–  By a compiler or runtime system 

•  Fork/Join graphs (no out-of-band dependencies) 
can be scheduled 
–  By a runtime system (e.g., Cilk) 
–  A greedy scheduler (stealing or pushing) is optimal time 
–  Stealing is optimal in space (but slower to load balance) 

•  General DAGs are more complicated 
–  Either preemption or user awareness is needed 

•  Conclusion: If your computation is not regular, the 
runtime system should be dynamic, i.e., virtualize 
the processors 



Virtualizing Memory Structure 

•  Should we hide memory locality or make them 
visible to the programmer? 

– Can programmers optimize locality?  Not in OpenMP 
– Must the programmer optimize for locality?  MPI 
– Can it be optional? PGAS 

•  Can Cache-oblivious or over-partitioned approaches 
work at scale (locality costs at scale)? 
•  Can we have portable mechanisms for locality 
optimization that are good enough? 
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Load Balancing with Locality 

•  UPC uses a static threads (SPMD) programming model 
–  No dynamic load balancing built-in 

•  Berkeley compiler has some extensions 
–  Allows programmers to execute active messages (AMs) 
–  AMs have limited functionality (no messages except acks) to 

avoid deadlock in the network 
•  A more dynamic runtime would have many other uses 

–  Application load imbalance, OS noise, fault tolerance 
•  Two extremes are well-studied 

–  Dynamic parallelism without locality 
–  Static parallelism (with threads = processors) with locality 

•  What issues do we run into if we want dynamic threads 
with locality? 



Memory Constrained Scheduling 

•  Theoretical and practical problem: Memory deadlock 
–  Not enough memory for all tasks at once.   

•  (Each update needs two temporary blocks, a green and blue, to run.)  
–  If updates are scheduled too soon, you will run out of memory 
–  Allocate memory in increasing order of factorization:  

•  Don't skip any! 
–  Thread blocks until enough memory available 

some edges omitted 



What to Virtualize? 

•  Register count: hide  
– Compilers prove this, but need autotuners 

•  Separate address spaces: hide 
– PGAS proves this; Needs to show for GPUs 

•  Performance-partitioned memory: expose 
– For distributed memory needs to be exposed 

•  Number of cores: depends 
– On shared memory, we can virtualize 
– Distributed memory mostly not 
– Open question for non-SPMD PGAS 
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Aside: Communication-Avoiding 
Algorithms 

•  Sparse Iterative (Krylov Subpace) Methods 
–  Nearest neighbor communication on a mesh 
–  Dominated by time to read matrix (edges) from DRAM 
–  And (small) communication and global 

synchronization events at each step 
•  Can we lower data movement costs? 

–  Take k steps with one matrix read from 
DRAM and one communication phase 

•  Serial: O(1) moves of data  moves vs. O(k) 
•  Parallel: O(log p) messages vs.  O(k log p)  

•  Can we make communication provably optimal? 
–  Communication both to DRAM and between cores 
–  Minimize independent accesses (‘latency’) 
–  Minimize data volume (‘bandwidth’) 

Joint work with Jim 
Demmel, Mark 
Hoemman, Marghoob 
Mohiyuddin 



Optimizing for Communication ≠ 
Ignore Running Time 

Complexity of 2D Poisson Equation with N unknowns 
Algorithm  Serial   PRAM   Memory      #Procs 
Dense LU  N3   N   N2   N2 
Band LU  N2   N   N3/2   N 
Jacobi   N2   N   N   N 
Explicit Inv.  N2   log N   N2   N2 
Conj.Grad.  N 3/2   N 1/2 *log N  N   N 
RB SOR  N 3/2   N 1/2   N   N 
Sparse LU  N 3/2   N 1/2   N*log N  N 
FFT   N*log N  log N   N   N 
Multigrid  N   log2 N   N   N 
Lower bound  N   log N   N 

Good ideas taken to the extreme become bad: 
•  Don’t use dense LU where something smaller/faster will work 
•  Don’t use a dense matrix rather than sparse (but do fill in some 

zeros if that makes it faster) 



The UPC Experience 

•  Ecosystem:  
–  Users with a need (fine-grained random access) 
–  Machines with RDMA (not hardware GAS) 
–  Common runtime 
–  Commercial and free software 
–  Center procurements 
–  Sustained many-year funding  13 

1991 
Active Msgs 
are fast 

1992 
First Split-C 
(compiler GAS) 

1992 
First AC 
(accelerators + 
split memory) 

1993 
Split-C funding 
(DOE) 

1997 
First UPC 
Meeting 

“best of” AC, 
Split-C, PCP 

2001 
First UPC 
Funding 

2003? 
Berkeley 
Compiler 
release 

2001 
gcc-upc at 
Intrepid 

2006 
UPC in NERSC 
procurement 

2002 
GASNet 
Spec 

2010 
Hybrid MPI/UPC 

Other GASNet-based languages 



Conclusions 

•  Solve the problems that must be solved 
– Locality (how many levels are necessary?) 
– Heterogeneity 
– Vertical communication management  

•  Horizontal is solved by MPI (or PGAS) 
– Fault resilience, maybe  

•  Look at the 800-cabinet K machine 
– Dynamic resource management 

•  Definitely for irregular problems 
•  Maybe for regular ones on “irregular” machines 

– Resource management for dynamic 
distributed runtimes 14 



•  Sdf 
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Keeping the Users with Us 

Demise of 
flat MPI 

Demise of 
OpenMP “as 
we know it” 

Game 
programmers 

recruited 



We are both too early and too late for 
an exascale programming model 

 Focus in critical general challenges 
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