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Hierarchy of Reduced Applications

1

One person can rewrite it, 
but anybody can understand it

Takes 100 people to rewrite
but only two people understand it
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NERSC SSP Applications
Single vs. Dual Core Performance

(wallclock time at fixed concurrency and problem size)
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Memory Contention
Time Spent in Memory Contention
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Contribution of FLOPs to exec 
time for NERSC SSP apps
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Back to the Future:
Functional Languages and Nouveau Dataflow 

to Tackle Asynchrony and Parallelism



Dataflow 2.0:
Will it work this time?



DAG!  Its Dataflow Again!
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• Discuss the merits of functional languages for simplifying parallelism in 
many dimensions

• Functional languages get rediscovered by programming community every 
10-15 years or so because of elegant expression of parallel constructs 
(coincide with power crises)

• However, past forays have met strong resistance from scientific 
applications community

• Will they take root this time around
– What was good about them?  What was bad about them? (know benefits and know the 

baggage!)
– Are there any lessons learned? (we have  at least 30 years+ experience, and lots of 

buried bones to dig up )

Overview
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• Addicted to Bulk-Sync/SPMD Programming Model
– Low Cognitive Load
– Everyone does the same thing at <appoximately> the same time
– Data and control hazards are isolated to epochs of code execution (not all 

possible interleavings of threads described in “The Problem with Threads”)

• SPMD Models Have Demanding Requirements for Hardware/Software 
Ecosystem
– Homogeneous execution rates 

• Homogeneous performance per core (control OS “Noise” for example)
• Homogeneous work per core (must code-your-own load balancing for adaptive 

algorithms)
– Fast sync/collective operations (BG collective network)

• Has similarity to instruction bcast for SIMD
– Exhausting Sources of parallelism through domain decomposition
– Gravitate towards bulk-sync communication

• To make it easier to reason about control flow/messaging hazards
• Creates episodic floods of interconnect traffic
• try to mitigate by getting overlap

Where are We Today
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• New sources of inhomogeneity in hardware
– Sparing redundant resources to tolerate hard errors creates 

inhomogeneous communication characteristics

– constrained interconnect topologies (graph embedding for comm
topology)

– Inhomogeneity in process technology leads to non-uniform clock rates

– Thermal Throttling (Intel Sandybridge)

– Hardware fault recovery to tolerate transient errors (software recovery 
mechanisms will make it even worse)

Trouble on the Horizon
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• Algorithm/Application requirements
– Adaptive Algorithms/AMR: Fastest, most energy efficient FLOP is the one you 

don’t execute

– Irregular structure:  Irregular mesh, Sparse matrix, and MD computations have 
irregular work and dependency patterns (DAG scheduling & Curt)

– Irregular work: Subcycling for ODEs for combustion chemistry or to squeeze out 
residual error for fluids probs creates inhomogeneity for regular structures

– Domain Decomp: Exhausted parallelism through domain decomposition 
motivates move towards functional decomposition (climate coupler/Mike 
Heroux)

– Software Engineering: Separation of concerns for frameworks & libraries

• New Memory Hierarchies and structures
– Non-coherent Global Address Space or Cache Coherence with relaxed consistency 

Model???     when do I sync?

– Disjoint memories: marshalling/unmarshalling data for accelerators & 
scratchpads

Trouble on the Horizon
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• Looking for a post-SPMD programming model
– Much hope placed on asynchrony and async execution models to overcome 

these rapidly emerging problems (crossing fingers… and waving arms)
– Hard to manage this with imperative pmodel (overspecifies)
– This implies functional semantics (or something like it) to make use of async

models tractable
– Be careful what you ask for (hidden baggage)

• Imperative programming languages make it hard to move to post-SMPD 
/ asynchronous execution models
– Current languages (C/Fortran) over-specify implementation / solution

• hard to prove that something can be executed in anything other than non-program order
– Unbounded ability to modify global state makes dependence analysis difficult 
– Unbounded ability to modify global state makes it hard to determine what 

state is associated with unit of computation
• Hard to automagically copy to a disjoint memory: accelerators, scratchpads
• Hard to automagically determine minimal state to preserve for fault tolerance (recovery 

from transient errors)
• Can’t figure out what state to migrate with computation to fix load imbalances

– Auto-parallelization is hampered by inability to analyze code to look for 
alternative schedule or structure

The Fix is In
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• Requirements: express computation declaratively
– Stateless
– No side-effects
– Only operate on data you were handed

• Benefits of “Isolation”
– Data dependence becomes statically analyzable
– Exposes implicit parallelism (DAG as constraint and 

runtime has a lot of freedom to control schedule)
– Trivial data migration or task migration (containment)

• Local stores, accelerators and other disjoint memories are not a 
problem

– Know where data is needed OR when it is needed (but 
getting both is hard)

Functional Semantics
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• Functional Semantics just provide guarantees that enable you to use 
SOME primitives more productively, but does not imply a specific 
set of primitives or an implementation
– Scheduling: Makes schedule constraints obvious (ID bad schedule easy)

• But does not make scheduling itself any easier (still a hard problem)
• And OS makes it more complicated again because lack of control
• Need more sophisticated runtimes (but OS is in the way again)

– Synchronization: makes it clearer when to synchronize and avoid over-
synchronizing 

• but sync primitives get costly if granularity too small

– Communication: Makes clear when & what to communicate
– Partitioning: Doesn’t directly address this (Sequoia and CILK use recursion + 

codelets for managing partitioning)
– Placement: Can get good temporal placement, makes data movement 

easier, but doesn’t really solve broader partitioning problem
– Migration: Placement+Communication is made trivial (totally awesome… 

easy to use scratchpad) But does not solve ephemeral load imbalance prob.

Relation to Communication Primitives
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1. Exceedingly Careful Programming 
– Good software engineering obeys functional semantics at coarse level (Rusty: Science of FW)
– Enforced by convention, good software engineering, and/or stuff breaking if you fail to obey
– Examples: Mike Heroux/Trillinos, PLASMA/MAGMA DAG Scheduling, Cactus, SIERRA, Curt’s 

talk, CnC and TBB assists implementations

2. Directives, Pragmas and other annotations (smuggle in critical missing information)
– Integrate with existing C/Fortran code
– Does not promote parallel thinking (see Guy Steele’s rants..)
– Incorrect use will make functioning serial code an “error”
– Verbosity (see Bob’s presentation)
– Pervasiveness (have to touch every “important” loop in your code)
– Examples: OpenMP 3.0, HMPP, and various other Accelerator directives

3. Type systems to express locality and scope of reference
– Can make locality inference easier (Example: PGAS shared array types)
– Can make dependency analysis easier (Example: SSA, Ct TVECs and Intel ArBB)
– Special meaning for types in call-list (example: CILK and Berkeley IVY typesys )

4. Functional Languages and full functional semantics
– Statically analyzable, exposes implicit parallelism
– Provides scheduling freedom (can know when its legal or illegal to schedule things)
– But makes familiar conveniences such as linked-lists damn near impossible

Options to Express Functional Semantics 
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Nouveau Dataflow
DAGs for Irregular Structures

• UT/Dongarra:  MAGMA/PLASMA for sparse 
matrices
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• Channeling NESL and SISAL through C++
• Uses template classes to implement single-assignment arrays

– TVEC implements Single Assignment Arrays using Templates  
• TVEC<float64> DoubleVec;  DoubleVec = Vec1*Vec2
• Assignment of value creates “new” version of array rather than 

modifying value in the array (dataflow “futures” for arrays)
– Ct Lambdas on TVECs express element-wise parallelism

• Underlying runtime system manages parallelism if you make 
use TVECs and their resulting semantic guarantees
– Featherweight Threads: “Futures”
– Support for Dataflow “patterns” (reduced sched overhead) and/or 

work-stealing job scheduler that obeys dataflow constraints 
– But if you don’t use Ct runtime, its still functionally correct

Nouveau Dataflow: Intel Ct
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• Three simple keywords turn C/C++ into a functional 
language (at least the functions that you annotate)
– Keywords: CILK, SPAWN, and SYNC
– All depends on how much you like recursion
– Unclear how work-stealing runtime manages data locality

• Sequoia     (Aiken, Stanford)

– Very similar in nature, but more powerful approach to 
managing variable domain decomposition for different 
memory hierarchies

– Difficulty in that processes at same level of hierarchy can 
only communicate through parents

CILK       Leiserson et al.



Functional Partitioning to Reduce 
Pressure on Domain Decomposition
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Program Order
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Dataflow Order

Time

Schedule independent physics 
To Execute Concurrently

This is hard to do without 
functional semantics

Examples using TBB
(functionally complete, 
but overheads high)

Hand-rolled impls.
Libraries to formalize



Example Multigrid Elliptic Solver 
(7 levels on-chip using feed-forward pipelining)
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With lightweight cores, we can no 
longer domain-decompose 
problems and get a speed-up.

Use MIP-Mapping technique
To pack multiple MG levels onto 
the chip and pipeline accesses and 
reduce off-chip accesses.

Would benefit from interprocessor
message queues (default is mutex-
protected queues like TBB)
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Functional Style for Domain-Specific 
Frameworks and Embedded DSL’s

• Frameworks and domain-specific languages
– enforce coding conventions for big software teams
– Encapsulate a domain-specific “idiom for parallelism”
– Create familiar semantics for domain experts (more productive)
– Clear separation of concerns (separate implementation from 

specification)

• Common design principles for frameworks from SIAM 
CSE07 and DARPA Ogden frameworks meeting
– Give up main(): schedule controlled by framework
– Stateless: Plug-ins only operate on state passed-in when invoked
– Bounded (or well-understood) side-effects: Plug-ins promise to 

restrict memory touched to that passed to it (same as CILK)

• By gosh, these are attributes of a functional language
– But internals of plug-ins are Fortran or C!



Segmenting Developer Roles
(diagonalize your matrix)

Developer Roles Domain 
Expertise

CS/Coding 
Expertise

Hardware 
Expertise

Application: Assemble solver modules to 
solve science problems. (eg. combine 
hydro+GR+elliptic solver w/MPI driver for 
Neutron Star simulation)

Einstein Elvis Mort

Solver: Write solver modules to implement 
algorithms. Solvers use driver layer to 
implement “idiom for parallelism”. (e.g. an 
elliptic solver or hydrodynamics solver)

Elvis Einstein Elvis

Driver: Write low-level data 
allocation/placement, communication and 
scheduling to implement “idiom for 
parallelism” for a given “dwarf”. (e.g. PUGH)

Mort Elvis Einstein



User/Developer Roles
Developer Roles Conceptual Model Instantiation
Application: Assemble 
solver modules to solve 
science problems. 

Neutron Star Simulation: 
Hydrodynamics + GR Solver 
using Adaptive Mesh 
Refinement (AMR)

BSSN GR Solver +
MoL integrator +
Valencia Hydro +
Carpet AMR Driver +
Parameter file (params for 
NS)

Solver: Write solver 
modules to implement 
algorithms. Solvers use 
driver layer to implement 
“idiom for parallelism”. 

Elliptic Solver PETSC Elliptic Solver pkg. 
(in C)
BAM Elliptic Solver (in C++ & 
F90)
John Town’s custom BiCG-
Stab implementation (in F77)

Driver: Write low-level data 
allocation/placement, 
communication and 
scheduling to implement 
“idiom for parallelism” for a 
given “dwarf”. 

Parallel boundary exchange 
idiom for structured grid 
applications

Carpet AMR Driver
SAMRAI AMR Driver
GrACE AMR driver
PUGH (MPI unigrid driver)
SHMUGH (SMP unigrid
driver)



25

• I/O
– Large shared parallel filesystems are implementing 

equivalent of cache-coherence protocol at block-level 
(1 Meg stripes), and that’s why it’s a pain to scale

– Relaxed POSIX?  (just as impenetrable as relaxed 
models for cache-coherence)

– Object DB storage allows you to access and organize 
data using functional semantics (lambdas, 
transactions, in-situ operations)

– Functional semantics offers cleaner approach than 
Relaxed POSIX to scale storage performance

Other Contexts for 
Functional Semantics
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• After being reintroduced many times, Functional Languages have not 
taken root in the mainstream

• Performance problems
– Locality is enemy of optimal scheduling
– State recovery complex without quiesced communication (module state can be 

recovered, but recovering the state that was “in flight” is much more difficult)
– Overhead of data-rendezvous operations for links on DFG

• Ergonomic problems (all or nothing)
– You have to give up a lot of your favorite gang-of-four design patterns (hash tables 

a pain)
– A=B for all time? (hard to grok)
– Even arrays can be difficult (iStructs)
– Optimal Scheduling is the enemy of locality 
– State recovery without quiesced communication is difficult (with global memory 

addressing, even harder)
– Integration/interoperability with familiar languages + incremental porting path 

from existing code (directives own this space)
– Purity is problematic (as Vijay mentioned)

Problems with Functional Semantics
(if this is so great, then why isn’t everyone doing it?)
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• Coding conventions precede language implementation
– example: how did a bastard son of an OO language like C++ win in the open market?

– programmers used OO design conventions to write C and even assembly code

– C++ took most commonly used OO design conventions and then turned them in to 
language constructs

– But it also didn’t force you to adopt *all* of those constructs (you could lapse back to C 
without penalty)

– Language designers should focus on what functional semantics in use today!

• Offer range of implicitly parallel (declarative) semantics
– If you adhere to functional semantics, get easier parallelism

– If you don’t adhere to functional semantics, then you pay some penalty in ease of 
parallelization

• Perhaps we are looking for a Dysfunctional Language (C++)
– Good for newbies (not all or nothing)

– Good for huge code bases (incremental porting path)

– Good for lazy programmers

Practical Paths to adoption
(lessons from C++)
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• People are already using TBB for concurrent 
physics
– Using it despite cost of spinlocks

– Direct messaging queues would be huge win

• Scratchpads are actually desirable 

• Operating Systems / Runtime support
– Runtimes are mostly dumb

– That’s because OS keeps them in dark (most 
important functions are privileged)

Hardware Support
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• If we adopt “asynchronous execution models” as the pancea for all of 
the ills of SPMD, there is still more medicine to swallow before patient 
can be cured

• Declarative/Functional Semantics has some great properties for 
managing asynchronous/stochastic parallelism

• It also creates some problems
– Scheduling vs. locality management
– Recovery of state that is in-flight for fault tolerance
– Load rebalancing for transient imbalances
– Ergonomically unfriendly research languages

• Take a page from C++ playbook
– Start with use in practice before elevating to language constructs
– Provide language that allows incremental path to get functional semantics 

into broader use

Conclusions
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• Nouveau Dataflow at SIAM PP08
– Includes Intel Ct, MAGMA/PLASMA, and SISAL
– http://www1.nersc.gov/projects/SDSA/meetings/SIAM_PP08/

• Dysfunctional Languages
– http://www.upcrc.illinois.edu/workshops/summit_feb2009/language

More Material

http://www1.nersc.gov/projects/SDSA/meetings/SIAM_PP08/�
http://www.upcrc.illinois.edu/workshops/summit_feb2009/language�
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• SPMD is easy to reason about (low cognitive load)
– Bulk-sync communication reduces scope of dataflow hazards that are 

possible

– Everybody is *mostly* doing the same thing at the same time

• But all is not well
– Good SPMD performance creates episodic *flood* communication

– Requires strict control of noise sources (noise sources are increasing)

– Exhausting Sources of parallelism through domain decomposition 
(want to do functional decomposition or concurrent pipelines)

Is it Time for Change?
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• Async models offer elegant solution

• But if you want to consider asynchronous 
execution models, then you have a lot more 
changes to assimilate
– Current programming models are not easily 

analyzable (cannot predict static dataflow hazards)
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• Execution Model: what are the set of hardware 
mechanisms for making computational progress
– Asynchronous (aspirational)
– Dataflow / data-driven

• Programming Model: What are the semantics I 
use to communicate to underlying exec model
– Declarative/Constraint-based/Functional model
– Transactional model
– SPMD model with global address space (implicit) 

communication semantics
– SPMD model with explicit messaging

Definitions
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Increasing Sources of Performance 
Inhomogeneity Challenge SPMD Model

• Fine grained power management makes even homogeneous cores look 
heterogeneous

– thermal throttling on Sandybridge – no longer guarantee deterministic clock rate

• Nonuniformities in process technology creates non-uniform operating 
characteristics for cores on a CMP

• To improve chip yield, disable cores with hard errors
– impacts locality of chip-level interconnects

• Fault resilience introduces inhomogeneity in execution rates
– error correction is not instantaneous

– And this will get WAY worse if we move towards software-based resilience
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Post-SPMD Programming Models

• Requirements: Current models over-specify execution order
– Relax scheduling constraints to give flexibility to runtime scheduler for async

execution (more declarative/constraint-based specification of computation)

– Non-uniform assignment of work: feed-forward pipelines that overlap work across 
heterogeneous processing elements (too hard for humans)

– Proactively detect load imbalances: progress meters instead of global barriers

– Locality management: fixing load imbalance usually hurts locality

• Emerging Models that might meet requirements (Nouveau Dataflow)
– PLASMA and PTP: Dataflow with work-units expressed in Fortran or C

– CILK: work stealing (exacerbates locality management problems though)

– Ct : SISAL in C++ combined with dynamic dataflow runtime scheduler

– SWARM: Recently demonstrated for Graph500 benchmark
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Conclusion
• Major outstanding issues

– Load imbalance detection without global synchronization

– Reconciling load imbalance with locality

– Async scheduling requires strict control of side-effects

– Relaxed scheduling constraints will affect bit-reproducibility, which has 
largely unexplored implications for algorithm stability!

• Viable solutions do not look like current practice
– Viable solutions are categorically not data parallel or SPMD

– looks more like dataflow (but there are subtle differences)
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The Questions
1. What are the main benefits of functional programming for parallelism?

2. Should parallelism be implicit?

3. How un-pure can a functional language be before it is not useful?

4. What are the open issues holding up efficient, parallel implementations?

5. How are functional and domain-specific languages related?
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Short Answers to the Questions
1. What are the main benefits of functional programming for parallelism?

– Isolation provides scheduling freedom (hide latency, load imbalance, mapping to novel 
architectures)

– Difficult model to teach to fortran and C programmers…

2. Should parallelism be implicit?
– Explicit (Imperative) approach overspecifies the solution (limits freedom for compiler and runtime 

to reorganize the computation and memory layout)
– But scheduling freedom can also be a curse (Parry Husband’s conundrum)

3. How un-pure can a functional language be before it is not useful?
– VERY un-pure, and NEEDS to allow some impurity (impurity makes metals and languages stronger… 

C++ has broader adoption because it is not rigid OO)

4. What are the open issues holding up efficient, parallel implementations?
– Code Generation for machine architectures with unpredictable behavior
– Functional and declarative parallel languages often make data locality ambiguous
– Scheduling freedom can create huge scheduling optimization problem
– Performance transparency

5. How are functional and domain-specific languages related?
– Can make functional constructs palatable to Fortran/C programmers if packaged in domain-specific 

semantics
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What are the benefits of functional 
semantics for parallelism

• If you know the scope of side effects, many of the hard 
problems of parallelism become easier

• Safer scheduling (but some things harder)
– Hide latency

– Fix load imbalances

– Express pipeline concurrency or functional partitioning safely

• Easier to determine locality
– Can facilitate optimizations for locality of reference (automatically 

time-skew stencils)

– Automatically transform code to minimize communication cut-set

• Easier to reason about concurrency if dependencies are made 
explicit
– Easier to map to non-CC architectures! Mem model
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Should Parallelism be Implicit?

• Imperative programming models overdefine implementation
– Few degrees of freedom available to runtime environment or compiler 

to improve scheduling of work

– Mind you this doesn’t fix everything with parallel algorithms!

• Declarative (implicit) models for parallelism offer more 
freedom for implementation
– But declarative model means we must know scope of side-effects for 

each unit of computation

– Functional programming languages make scoping of side-effects well 
defined

– However, some commonly used computational Patterns (e.g. gang-of-
four) are difficult to express in a “pure” functional language

– Need to keep a back-door for patterns that don’t map well to 
functional languages (it’s the practical thing to do)
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Scheduling Dangers for Implicit Parallelism

• Can make it difficult to automatically reason about locality 
unless there is annotation or global analysis
– NP-hard graph embedding problem
– Lack of performacne transparency

• Scheduling freedom is a benefit and also a curse (Parry 
Husbands)
– Unfurl DFG too much and you run out of memory
– Unfurl too little and you don’t expose enough parallelism
– Unfurl in the wrong direction and you run out of memory and 

deadlock before exposing enough parallelism

• Implicit parallelism makes scheduling optimization a first 
order issue
– leave bread crumbs or hints after previous pass
– annotate code as to preferred direction of unfurling
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How unpure can functional language be?

• C++ shows that a language can be very unpure
and be very productive
– C++ makes CS professors and most computer 

language architects gag…

– But it won in the open market

– Deal with it! (and learn from it)
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Lessons of C++
(a little impurity makes metals/languages stronger)

• C++ is broadly adopted because it is unclean
– Depart from OO if you want to -- not forced to use it everywhere
– Impurities make languages stronger (and metals too)
– Godel’s law applied to software (broader applicability)

• For implicitly parallel (declarative) languages
– If you adhere to functional semantics, get easier parallelism
– If you don’t adhere to functional semantics, then you pay some penalty in 

ease of parallelization
– Let the programmer decide on a loop or module basis

• Can’t mix semantics in same loop, but can restrict scheduling to sections of code
• You will expose sufficient parallelism for CMP without global functional guarantee

– This kind of approach provides an incremental path for migration
– WE are looking for a Dysfunctional Language

• Good for newbies
• Good for huge code bases
• Good for lazy programmers
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Observations on Domain-Specific 
Frameworks and DSL’s

• Frameworks and domain-specific languages
– enforce coding conventions for big software teams

– Encapsulate a domain-specific “idiom for parallelism”

– Create familiar semantics for domain experts (more productive)

– Clear separation of concerns (separate implementation from specification)

• Common design principles for frameworks from SIAM CSE07 and DARPA 
Ogden frameworks meeting
– Give up main(): schedule controlled by framework

– Stateless: Plug-ins only operate on state passed-in when invoked

– Bounded (or well-understood) side-effects: Plug-ins promise to restrict 
memory touched to that passed to it (same as CILK)

• By gosh, these are attributes of a functional language
– But internals of plug-ins are Fortran or C!
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Conundrum
• Frameworks are very limited in scope

– A good framework targets a specific space of problems (not everything in 
the world)

– Not general enough: not scalable to deploy frameworks as a solution

– Difficult to optimize parallel constructs along with code

• Languages can be deployed in a scalable manner
– Unclear which basic constructs of parallel language are broadly 

applicable

– Need practical experience to filter good from bad constructs

– Usually gain this experience using framework to implement “idiom for 
parallelism” (in lieu of pre-existing language construct)

• We have a chicken-and-egg problem here
– How do we determine what constructs to put in a language?
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More Lessons of C++
(should coding conventions precede language constructs?)

• OO software practices for C did not begin with C++
– Programmers were using OO design conventions to write C 

applications (and even assembly code)

– C++ took most commonly used OO design conventions and turned 
them into language constructs

• Should design conventions for parallelism precede language 
implementation?
– Offer constructs first as design patterns (suboptimal performance)

– Winning patterns get hoisted into language constructs





49

Why Functional Languages are Good/Bad

• Controlling side-effects makes scheduling decisions easier
– Easier to map onto complex hardware

– Easier to hide latency or rearrange operations to avoid latency-critical 
communication regions (slack)

• Functional requirement that A=B for all time is difficult to 
grok
– Programmers don’t think that way (think of program phases of 

execution)

– Need to be able to localize side-effect constraints to individual loops, 
solvers, or program modules

• Per-loop basis with stream programming

• Strong-typing to control variable access (changeable over time)

• Ct TVEC: nice middle-of-the-road guarantees for Single-assigment array (much 
better than istructs)
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Whats wrong with functional Languages

• Purity is the biggest impediment to adoption
– A=B for all time in pure functional language!
– Programmers don’t think that way
– They think in modules, loop, or “solver”  boundaries
– Global scope of func lang side-effect guarantees is too broad

• Relaxing constraints
– Restrict scope of side-effect guarantees to loops or modules of program (user-

defined scope)
• Restricts scheduler freedom, but makes reasoning easier

– Only need to restrict (or define) scope of side-effects to get benefits in many 
cases 

• don’t need to completely eliminate side-effects to get sched benefits

– Allow programmer to decide when to adhere to functional model and when 
not to (same as C++ for object orientation)

• not mixed within same module
• Programmer loses parallelism benefits, but can pick and choose when to trade against ease of 

expression
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Implicit Parallelism
• Requires bounding of side-effects so that you know what is a legal 

schedule of operations

• Functional approach offers precise restriction of side-effects that are 
true for “entire execution” (A=B)
– May be a bit too rigid for some code examples

– Sometimes only need to bound side-effects (not eliminate)

• Programmers think in terms of program phases and modules
– Global guarantees are hard to fathom

– Istructures are an abomination (Ct TVEC is better)

• Example of weaker guarantee: 
– Stream programming: Scope side-effects-free guarantee to loop 

boundaries  

– Ct TVECs (better than iStructures)
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Other Lessons from C++
• C++ is very “un-pure” compared to other OO languages

– This is as much an asset as a curse

– Enables incremental porting (easy to mix OO with non-OO code)

– Does not prevent programmer from shooting self in foot or writing 
indecipherable code

• Functional language needs to be flexible
– Need to allow un-pure implementation (mixing of pure and unpure)

• For incremental porting

• Also, functional style can be too rigid for some constructs (allow programmer to decide where 
to get benefit of isolation or not)

• Cannot mix constructs within a loop or module

• Streaming is example of guaranteeing isolation only within individual loops

– Programmers don’t want A=B to be true for entire program (just in unit of 
program they are immediately concerned with)

• For parallelism we don’t need to prove isolation (lack of side-effects) across entire program for 
all time

• Understand scope of side-effects within loop or program module rather than all time
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From Object Oriented Programming to C++

• We were using object oriented “style” of programming in C 
long before emergence of C++
– C++ did not result in object-oriented coding practice, rather standard 

coding practices become encoded in C++

– C++ took years of practical experience with software engineering and 
encapsulated the most broadly-used constructs

– Experience first in software frameworks was migrated into language

• How can we do this for parallel constructs?
– Start with point-experiments encoded in frameworks

– Take “winning” (broadly applicable) constructs and migrate into 
language?
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Frameworks

Managing code complexity

Facilitating multi-physics coupling

Not a replacement for languages
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Application Code Complexity

• Application Complexity has Grown
– Big Science on leading-edge HPC systems is a multi-

disciplinary, multi-institutional, multi-national efforts! 
(and we are not just talking about particle accelerators 
and Tokamaks)

– Looking more like science on atom-smashers

• Advanced Parallel Languages are Necessary, but 
NOT Sufficient!
– Need higher-level organizing constructs for teams of 

programmers
– Languages must work together with frameworks for a 

complete solution!
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Role of Community Codes & Frameworks

• Clearly separate roles and responsibilities of your expert programmers 
from that of the domain experts/scientist/users (productivity layer vs. 
performance layer)

• Define a social contract between the expert programmers and the 
domain scientists

• Enforces and facilitates SW engineering style/discipline to ensure 
correctness

• Hides complex domain-specific parallel abstractions from 
scientist/users to enable performance (hence, most effective when 
applied to community codes)

• Allow scientists/users to code nominally serial plug-ins that are invoked 
by a parallel “driver” (either as DAG or constraint-based scheduler) to 
enable productivity



Segmenting Developer Roles
(diagonalize your matrix)

Developer Roles Domain 
Expertise

CS/Coding 
Expertise

Hardware 
Expertise

Application: Assemble solver modules to 
solve science problems. (eg. combine 
hydro+GR+elliptic solver w/MPI driver for 
Neutron Star simulation)

Einstein Elvis Mort

Solver: Write solver modules to implement 
algorithms. Solvers use driver layer to 
implement “idiom for parallelism”. (e.g. an 
elliptic solver or hydrodynamics solver)

Elvis Einstein Elvis

Driver: Write low-level data 
allocation/placement, communication and 
scheduling to implement “idiom for 
parallelism” for a given “dwarf”. (e.g. PUGH)

Mort Elvis Einstein



Framework User/Developer Roles
Developer Roles Conceptual Model Instantiation
Application: Assemble 
solver modules to solve 
science problems. 

Neutron Star Simulation: 
Hydrodynamics + GR Solver 
using Adaptive Mesh 
Refinement (AMR)

BSSN GR Solver +
MoL integrator +
Valencia Hydro +
Carpet AMR Driver +
Parameter file (params for 
NS)

Solver: Write solver 
modules to implement 
algorithms. Solvers use 
driver layer to implement 
“idiom for parallelism”. 

Elliptic Solver PETSC Elliptic Solver pkg. 
(in C)
BAM Elliptic Solver (in C++ & 
F90)
John Town’s custom BiCG-
Stab implementation (in F77)

Driver: Write low-level data 
allocation/placement, 
communication and 
scheduling to implement 
“idiom for parallelism” for a 
given “dwarf”. 

Parallel boundary exchange 
idiom for structured grid 
applications

Carpet AMR Driver
SAMRAI AMR Driver
GrACE AMR driver
PUGH (MPI unigrid driver)
SHMUGH (SMP unigrid
driver)
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Observations on Domain-Specific 
Frameworks and Embedded DSL’s

• Frameworks and domain-specific languages
– enforce coding conventions for big software teams

– Encapsulate a domain-specific “idiom for parallelism”

– Create familiar semantics for domain experts (more productive)

– Clear separation of concerns (separate implementation from 
specification)

• Common design principles for frameworks from SIAM CSE07 
and DARPA Ogden frameworks meeting
– Give up main(): schedule controlled by framework

– Stateless: Plug-ins only operate on state passed-in when invoked

– Bounded (or well-understood) side-effects: Plug-ins promise to 
restrict memory touched to that passed to it (same as CILK)
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What are some of the Problems?
• We are addicted to SPMD execution model

– Homogeneous code == low cognitive load (good for human beings)

– But… Heterogeneous cores will execute heterogeneous code

– Strong scaling also motivates feed-forward pipelines (heterogeneous exec)

– Bulk synchronous model is out of question if noise sources increase

• Work assignment / load balancing
– How to automatically adjust to different balance of components in current and future 

architectures (rewrite?)

– Identify load imbalance in time to react (latency of state migration)

– Reconcile load imbalance and work-assignment with locality

• These are classic unsolved problems of CS (be afraid!)
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• New sources of inhomogeneity in hardware
– Sparing redundant resources to tolerate hard errors creates inhomogeneous communication 

characteristics

– constrained interconnect topologies (graph embedding for comm topology)

– Inhomogeneity in process technology leads to non-uniform clock rates

– Thermal Throttling (Intel Sandybridge)

– Hardware fault recovery to tolerate transient errors (software recovery mechanisms will make it even 
worse)

• Algorithm/Application requirements
– Adaptive Algorithms/AMR: Fastest, most energy efficient FLOP is the one you don’t execute

– Irregular structure:  Irregular mesh, Sparse matrix, and MD computations have irregular work and 
dependency patterns (DAG scheduling & Curt)

– Irregular work: Subcycling for ODEs for combustion chemistry or to squeeze out residual error for 
fluids probs creates inhomogeneity for regular structures

– Exhausted parallelism through domain decomposition motivates move towards functional 
decomposition (climate coupler & Mike Heroux)

– Software Engineering: Separation of concerns for frameworks & libraries

• New Memory Hierarchies and structures
– Non-coherent Global Address Space or CC with relaxed consistency: when do I sync?

– Disjoint memories: marshalling/unmarshalling data for accelerators & scratchpads

Trouble on the Horizon
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