
Lessons from the past, challenges
ahead, and a path forward

John Mellor-Crummey

Department of Computer Science
Rice University

ASCR Programming Challenges Workshop, July 2011

2

On Programming Models for the Exascale ...

• Problem: rise of complexity of exascale systems

• Idea: provide a high level of abstraction
—handle mapping onto heterogeneous nodes

– fat multicore + thin manycore
—handle details of data movement and synchronization
—handle details of computation partitioning

3

Same answers as
sequential program

Partition computation
Insert communication
Manage storage

Parallel Machine

HPF Program Compilation

Fortran program
+ data partitioning

A Cautionary Tale ...

A Decade Ago: High Performance Fortran

Partitioning of data drives partitioning of computation,
communication, and synchronization

4

Rice dHPF Compiler, circa 2000

• Sophisticated data partitionings
—skewed cyclic tilings using symbolically-parameterized tiles of uneven

size with many-one mappings of tiles to processors

• Sophisticated computation partitionings
—e.g. partially-replicated computation to reduce communication

• Program analysis
—polyhedral analysis of iteration spaces, communication

• Communication optimization
—communication normalization, coalescing
— latency hiding

• Node performance
—generate clean inner loops
—cache optimization (padding, communication buffer mgmt)

5

Productive Parallel 1D FFT (n = 2k)

subroutine fft(c, n)
 implicit complex(c)
 dimension c(0:n-1), irev(0:n-1)
!HPF$ processors p(number_of_processors())
!HPF$ template t(0:n-1)
!HPF$ align c(i) with t(i)
!HPF$ align irev(i) with t(i)
!HPF$ distribute t(block) onto p
 two_pi = 2.0d0 * acos(-1.0d0)
 levels = number_of_bits(n) - 1
 irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
 forall (i=0:n-1) c(i) = c(irev(i))
 do l = 1, levels ! --- for each level in the FFT
 m = ishft(1, l)
 m2 = ishft(1, l - 1)
 do k = 0, n - 1, m ! --- for each butterfly in a level
 do j = k, k + m2 - 1 ! --- for each point in a half bfly
 ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
 cr = ce * c(j + m2)
 cl = c(j)
 c(j) = cl + cr
 c(j + m2) = cl - cr
 end do
 end do
 enddo
 end subroutine fft

5

Productive Parallel 1D FFT (n = 2k)

subroutine fft(c, n)
 implicit complex(c)
 dimension c(0:n-1), irev(0:n-1)
!HPF$ processors p(number_of_processors())
!HPF$ template t(0:n-1)
!HPF$ align c(i) with t(i)
!HPF$ align irev(i) with t(i)
!HPF$ distribute t(block) onto p
 two_pi = 2.0d0 * acos(-1.0d0)
 levels = number_of_bits(n) - 1
 irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
 forall (i=0:n-1) c(i) = c(irev(i))
 do l = 1, levels ! --- for each level in the FFT
 m = ishft(1, l)
 m2 = ishft(1, l - 1)
 do k = 0, n - 1, m ! --- for each butterfly in a level
 do j = k, k + m2 - 1 ! --- for each point in a half bfly
 ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
 cr = ce * c(j + m2)
 cl = c(j)
 c(j) = cl + cr
 c(j + m2) = cl - cr
 end do
 end do
 enddo
 end subroutine fft

5

partitioning the j loop is driven
by the data accessed in its iterations

Productive Parallel 1D FFT (n = 2k)

subroutine fft(c, n)
 implicit complex(c)
 dimension c(0:n-1), irev(0:n-1)
!HPF$ processors p(number_of_processors())
!HPF$ template t(0:n-1)
!HPF$ align c(i) with t(i)
!HPF$ align irev(i) with t(i)
!HPF$ distribute t(block) onto p
 two_pi = 2.0d0 * acos(-1.0d0)
 levels = number_of_bits(n) - 1
 irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
 forall (i=0:n-1) c(i) = c(irev(i))
 do l = 1, levels ! --- for each level in the FFT
 m = ishft(1, l)
 m2 = ishft(1, l - 1)
 do k = 0, n - 1, m ! --- for each butterfly in a level
 do j = k, k + m2 - 1 ! --- for each point in a half bfly
 ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
 cr = ce * c(j + m2)
 cl = c(j)
 c(j) = cl + cr
 c(j + m2) = cl - cr
 end do
 end do
 enddo
 end subroutine fft

5

partitioning the k loop is subtle:
driven by partitioning of j loop

partitioning the j loop is driven
by the data accessed in its iterations

Productive Parallel 1D FFT (n = 2k)

subroutine fft(c, n)
 implicit complex(c)
 dimension c(0:n-1), irev(0:n-1)
!HPF$ processors p(number_of_processors())
!HPF$ template t(0:n-1)
!HPF$ align c(i) with t(i)
!HPF$ align irev(i) with t(i)
!HPF$ distribute t(block) onto p
 two_pi = 2.0d0 * acos(-1.0d0)
 levels = number_of_bits(n) - 1
 irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
 forall (i=0:n-1) c(i) = c(irev(i))
 do l = 1, levels ! --- for each level in the FFT
 m = ishft(1, l)
 m2 = ishft(1, l - 1)
 do k = 0, n - 1, m ! --- for each butterfly in a level
 do j = k, k + m2 - 1 ! --- for each point in a half bfly
 ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
 cr = ce * c(j + m2)
 cl = c(j)
 c(j) = cl + cr
 c(j + m2) = cl - cr
 end do
 end do
 enddo
 end subroutine fft

5

partitioning the k loop is subtle:
driven by partitioning of j loop

partitioning the j loop is driven
by the data accessed in its iterations

Productive Parallel 1D FFT (n = 2k)

subroutine fft(c, n)
 implicit complex(c)
 dimension c(0:n-1), irev(0:n-1)
!HPF$ processors p(number_of_processors())
!HPF$ template t(0:n-1)
!HPF$ align c(i) with t(i)
!HPF$ align irev(i) with t(i)
!HPF$ distribute t(block) onto p
 two_pi = 2.0d0 * acos(-1.0d0)
 levels = number_of_bits(n) - 1
 irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
 forall (i=0:n-1) c(i) = c(irev(i))
 do l = 1, levels ! --- for each level in the FFT
 m = ishft(1, l)
 m2 = ishft(1, l - 1)
 do k = 0, n - 1, m ! --- for each butterfly in a level
 do j = k, k + m2 - 1 ! --- for each point in a half bfly
 ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
 cr = ce * c(j + m2)
 cl = c(j)
 c(j) = cl + cr
 c(j + m2) = cl - cr
 end do
 end do
 enddo
 end subroutine fft

stride is problematic for
polyhedral methods

6

Some Lessons from HPF

• Good parallelizations require proper partitionings
—inferior partitionings will fall short at scale

• Excess communication undermines scalability
—both frequency and volume must be right!

• Must exploit what smart users know
—allow the power user to hide or avoid latency

• Single processor efficiency is critical
—node code must be competitive with serial versions
—must use caches effectively

• Abstraction is good in moderation
—compilation challenges for abstract models can sometimes be daunting

7

Challenges of Exascale Hardware

• Complexity

• Concurrency

• Scale

• Heterogeneity
—architecture
—performance

• Failure and resilience

• Power
—focus: maximize locality to minimize data movement

8

Some Exascale Technology Needs

• Programming models, compilers, runtime systems
—communication

– point-to-point, collective, near neighbor, ...
—synchronization

– ordering, mutual exclusion, producer consumer
—partitioning
—placement
—scheduling

• Tools ecosystem

A Hierarchy of Programming Models

• Domain specific languages
—e.g., TCE, SPIRAL

• Frameworks
—e.g., Chombo

• Programming languages

• Libraries

9

Programming Models for the Exascale
• MPI + X is the front runner

• MPI role at exascale [“MPI at Exascale”, Thakur, Scidac 2010]
— “MPI being used to communicate between address spaces”
— “use some other shared-memory programming model (OpenMP,

UPC, CUDA, OpenCL) for programming within an address space”

• Why not just X?
— skeptic: but MPI provides all the things I know and love

• communicators for processor subsets
• collectives across communicators

— PGAS model can provide those directly instead
• ... along with compiler support to make it easier to use!

10

11

Example: Coarray Fortran 2.0

• Teams: process subsets, like MPI communicators
— formation using team_split (like MPI_Comm_split)
— collective communication

• Topologies

• Coarrays: shared data allocated across processor subsets
— declaration: double precision :: a(:,:)[*]
— dynamic allocation: allocate(a(n,m)[@row_team])
— access: x(:,n+1) = x(:,0)[p] (p is a rank in the “default team”)

• Latency tolerance
— hide: predicated asynchronous copy, asynchronous collectives
— avoid: function shipping

• Synchronization
— event variables: point-to-point sync; async completion
— finish: SPMD construct inspired by X10

• Copointers: structured pointers to distributed data (in progress)

• Multithreading: compiler and runtime support for work stealing (in progress)

• Accelerated computing: map loop nests (semi-)automatically to manycore (planned)

Scalable PGAS Programming Model
Issues (see “MPI at exascale,” Thakur, SciDAC 2010)

• Scalable bookkeeping state
— maintain little global state per “process”

• avoid full knowledge of processor subsets
— CAF 2.0 team construction applied to MPI

• “Exascale Algorithms for Generalized MPI_Comm_Split”
[Moody et al. EuroPar 11]

• Very little memory management within MPI
— all memory for communication can be in user space
— consistent with PGAS models

• Collectives are useful, scalable, and efficient

• “Some parts of MPI are being fixed for exascale” (MPI-3)
— RMA
— non-blocking and (maybe) neighborhood collectives

12

Mapping to Heterogeneous Nodes
• Explicit programming: CUDA, OpenCL?

— too low level and detailed
• Today: Cray’s accelerator pragmas [Levesque, SciDAC 2011]

— !$omp acc_region_loop private(...)
 !$omp acc_data acc_copyin(...)
 ...
 !$omp end acc_region_loop
 ...
 !$omp acc_update host(x)

 ...
 !$omp acc_update acc(x)
 !$omp acc_data present(...)

— benefits: handle detailed synthesis of code for manycore
• Future: preference for more declarative pragmas, if any

— leverage type system: constant variables can be “copyin”
• Challenge: semi-automatically mapping complex codes

— managing irregular data, handling dependences, ...

13

PGAS Data Models at Scale
• Distributed state

• Distributed descriptors

• Scalable data movement

• Scalable synchronization

• Emerging issue: fault tolerance
— persistance
— recoverability

• Approach: all members of a team do the following ...
— agree on a handle
— allocate a piece of the data
— data movement and synchronization: point-to-point or collective

14

Support for Coupling - I
Location service
— locate a component by name, e.g. “ocean simulation component”

• returns a handle, and an identifier for a node
— service must be distributed for scalability
— fault tolerance: no single point of failure

• service implementation could use replication

15

Support for Coupling - II
Scalable binding
— example: CESM

• model coupler must bind to ocean and atmosphere components
• use a handle from a registry to arrange for scalable communication

with each component
 – establish appropriate many-many, many-one, or one-many

mapping between corresponding ranks in coupler and target
component

— fault tolerance
• log communication through a binding
• notice when a binding disappears
• be able to re-establish a binding using location service

16

Locality-aware Dynamic Scheduling
• Issues

— incoming work from function shipping
— critical path

• Approaches
— need scalable, locality-aware, priority-aware strategies
— rethink data structures, e.g. recursive array layouts
— support affinity hints
— rethink dynamic scheduling decomposition

• e.g., use traversal orders derived from space filling curves for
hierarchical locality

— provide support for reordering data and computation for irregular
problems
• explicitly represent schedules for irregular work
• recompute schedules on demand, e.g. periodic sorting
• reuse schedules to amortize overhead

— tighter integration with HW
17

Supporting the Tools Ecosystem
• Performance tools will be extremely important for the exascale

• Pinpoint and quantify power consumption for tuning

• Pinpoint inefficiencies
— insufficient parallelism
— power consumption
— data movement
— overhead

18

Cilk: A Multithreaded Language

19

cilk int fib(n) {
 if (n < 2) return n;
 else {
 int x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);
 }
}

f

f
(n)

f

ff ff

......

......

asynchronous calls
create logical tasks that
only block at a sync...

...quickly create significant
logical parallelism.

Cilk Program Execution using Work Stealing
• Challenge: Mapping logical tasks to compute cores

• Cilk approach:
— lazy thread creation plus work-stealing scheduler

• spawn: a potentially parallel task is available
• an idle thread steals tasks from a random working thread

20

Possible Execution:
thread 1 begins
thread 2 steals from 1
thread 3 steals from 1
etc...

f

f
(n)

f

ff ff

......

......

Call Path Profiles with Work Stealing

• Consider thread 3:
— physical call path:

— logical call path:

21

thread 1
thread 2
thread 3

f f ...

f
(n)

f f ...

Logical call path profiling: Recover full relationship
between physical and user-level execution

Work stealing separates
user-level calling contexts in
space and time

f

f

f

ff ff

......

......

Attributing Costs: Blame Shifting
• Problem: in many circumstances sampling measures

symptoms of performance losses rather than causes
— worker threads waiting for work
— threads waiting for a lock
— MPI process waiting for peers in a collective communication

• Approach: shift blame for losses from victims to perpetrators
— who is failing to shed parallel work to keep everyone busy
— who is holding the lock and stalling others
— who is delaying progress at a collective call site

• Flavors
— analysis only
— active measurement

22

Barriers to Adopting New Models
• Application codes are long lived

— must run on several generations of architecture

• Developers are conservative
— want to use standard languages

• Moving forward ...
— work with language standards committee to add new features

23

