
The Burden of Exascale

Jayadev Misra

Department of Computer Science
University of Texas at Austin

A Glimmer of Hope

"The next generation, calledexaflop computers, would be capable of
...
Once thought to be just 5 or 10 years away, they now seem nearly
impossible."

Superconductor Logic goes Low power
IEEE Spectrum, July 2011 (This Month), P. 18

From Petascale to Exascale
More of the same, with finer resolution

• Climate modeling, Computational biology, Code breaking, ...

• Speculative execution

• Robust computing: Computation logging/monitoring,
Encrypted Computing

• Machine learning: Question answering/ Report writing

• Simulations

$ & % # _ { }

I don’t see an Exascale programming problem

, different from Petascale, Terascale, Gigascale

Ascale programming

The key defining characteristic isconcurrencyin control and data.

Concurrency

• Express concurrency explicitly or implicitly.

• Succinct representation of concurrency
Can not enumerate threads.

• Structured Concurrency
Fractal concurrency (Cook) for resource allocation

Static vs. Dynamic Concurrency

• Static concurrency:
Typically synchronousparallelism. Limited range of problems.

• Dynamic concurrency:
Typically asynchronousparallelism. Includes sequencing.

Kinds of Problems in Synchronous Parallelism

• Fast Fourier Transform

• Batcher Sort

• Ladner-Fischer Prefix sum

• Odd-Even Reductions of tridiagonal Linear Systems

• Descriptions of Recursive Connection Structures

Typical Strategy in Programming Synchronous Parallelism

• Parameterize solution by the size of the network

• Specify data movement (playing with indices)

• Specify computation at each node

Instead ...

A data structure for synchronous parallelism

• Powerlist: A list of 2n items, n ≥ 0.

• Smallest powerlist has a single item,〈x〉.

• For powerlistsp and q of the same length:
(tie) p | q: p concatenated withq,
(zip) p ⊲⊳ q: interleave items fromp and q, starting with p.

〈0 1〉 | 〈2 3〉 = 〈0 1 2 3〉, 〈0 1〉 ⊲⊳ 〈2 3〉 = 〈0 2 1 3〉

Example of a Powerlist Function: Reverse

rev〈a b c d〉 = 〈d c b a〉

Definition of Reverse:

rev〈x〉 = 〈x〉
rev(p | q) = (rev q) | (rev p)

Properties:

rev(p ⊲⊳ q) = (rev q) ⊲⊳ (rev p)
rev(rev p) = p

Rotate Right and Rotate Left

rr〈a b c d〉 = 〈d a b c〉
rl〈a b c d〉 = 〈b c d a〉

rr〈x〉 = 〈x〉, rr(u ⊲⊳ v) = (rr v) ⊲⊳ u

rl〈x〉 = 〈x〉, rl(u ⊲⊳ v) = v ⊲⊳ (rl u)

Properties:

rr(rl p) = p
rev(rr(rev(rr p))) = p

Permutatation Functioninv

000 001 010 011 100 101 110 111

inv〈 a b c d e f g h 〉 =
〈 a e c g b f d h 〉

inv〈x〉 = 〈x〉
inv(p | q) = (inv p) ⊲⊳ (inv q)

Duality Property:

inv(p ⊲⊳ q) = (inv p) | (inv q)

Fast Fourier Transform: Algorithm

FFT〈x〉 = 〈x〉
FFT(u ⊲⊳ v) = (U + V × W) | (U − V × W)

where
U = FFT u
V = FFT v
W = 〈ω0ω1...〉

Message

• Implicit thread creation, manipulation

• Description is well-suited for hypercubic computation

• Narrow range of applicability

Asynchronous Parallelism

• General purpose computing with high-levels of concurrency

• Irregular problem structure (unlike synchronous parallelism)

• Thread creation, interruption, failure ... at very large scale

• Interaction with other agents, possibly in real time

Example: Map-Reduce has some of these characteristics.

What we are unable to do well

• Explicitly manage threads

• Explicitly assign threads to resources

• Explicitly specify data migration

• Explicitly integrate concurrent and sequential computing

Algebraic Approach: Orc Calculus

• Structured Concurrency

• Hierarchy, Recursion

• Implicit thread creation and manipulation

OrcBasics

• Site: Basic service or component. The value returned by a site is
published.

• add two numbers
• decompress file
• send an email
• a database
• discover a site, create a site
• treat humans as sites
• sites may fail

• Concurrencycombinatorsfor integrating sites.

OrcBasics; Contd.

• Theory includes nothing except the combinators.

• No notion of data type, thread, process, channel, storage,
synchronization, · · ·

• New concepts are programmed using new sites.

Orc Calculus

• SimpleExpression: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:
do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

• Definitions

Orc Calculus

• SimpleExpression: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:
do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

• Definitions

Orc Calculus

• SimpleExpression: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:
do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

• Definitions

Orc Calculus

• SimpleExpression: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:
do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

• Definitions

Orc Calculus

• SimpleExpression: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:
do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

• Definitions

Example of a Definition: Metronome

Publish a signal every unit.

def Metronome() = signal
︸ ︷︷ ︸

S

| (Rwait(1) ≫ Metronome()
︸ ︷︷ ︸

R

)

S R

S R

Orc language

• Adds syntactic sugar to Orc calculus

• Translated to pure Orc calculus
All arguments in a site call are evaluated in parallel

• Mutable store only at sites

Concurrency vs. Backtracking

Given: integern, list of integersxs
Return all subsequences ofxs that sum ton.

sums(5,[1,-2,1,2,3]) =
{[2, 3],[1, 1, 3],[1, -2, 1, 2, 3]}

sums(5,[1,2,1]) is silent

def sums(0, []) = []

def sums(_, []) = stop

def sums(n, x : xs) = sums(n − x, xs) >ys> (x : ys) | sums(n, xs)

Concurrency with Maximal Parallelism

• An experimenttosses two dice.
Experiment is a success iff sum of the two dice thrown is 7.

• exp(n) runs n experiments and reports the number of successes.

def exp(0) = 0
def exp(n) = exp(n − 1)

+ (if toss() + toss() = 7 then 1 else 0)

• Arguments of+ evaluated in parallel.

Simple Parallel Auction

• A list of bidders in a sealed-bid, single-round auction.

• b.ask() requests a bid from bidderb.

• Ask for bids from all bidders, then publish the highest bid.

def auction([]) = 0
def auction(b : bs) = max(b.ask(), auction(bs))

Notes:

• Arguments of maxevaluated in parallel.
All bidders are called simultaneously.

• If some bidder fails, then the auction will never complete.

Parallel Auction with Timeout

• Take a bid to be 0 if no response is received from the bidder
within 8 seconds.

def auction([]) = 0

def auction(b : bs) =
max(

b.ask() | (Rwait(8000) ≫ 0),
auction(bs)

)

Orc Goals

• Initial Goal: Internet scripting language.

• Next: Component integration language.

• Next: A general purpose, structured “concurrent programming
language”.

• A very late realization: A simulation language.

$ & % # _ { }

• Avoid Technological Solutions:
specifics of communication, topology, timing

• Avoid overspecification of control/data-flow

• Avoid mapping computations to resources until the very end

A solution is the most abstractalgorithm.

Research Paradigms

• Experimentation

• Classification, Taxonomy

• Abstraction

A Philosophical Message

• Long ago: Recursion is notnatural. Users will never use it.

• Today: Concurrency is notnatural. Users will never get it.

Exascale programming may require combining many unnatural
concepts.

And, still we may not succeed.

