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Example application: Hartree-Fock theory
 Approximate solution to Schrödinger's equation



 Electron interact with average  of other electrons, giving rise to a 
generalized eigenvalue problem
 Major steps (assuming spin restricted closed shell):


– Integral computation:




– Fock matrix formation:


– Diagonalization:


– Density computation:
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Unteasing concurrency from applications
  
FFoorrmm  tthhee  aattoommiicc  oorrbbiittaall  FFoocckk,,  FF,,  aanndd  oovveerrllaapp,,  SS  
SSyynncchhrroonniizzee  ssoo  tthhaatt  FF  iiss  ccoommpplleettee  oonn  aallll  nnooddeess  
BBeeggiinn  iitteerraattiivvee  eeiiggeennssoollvveerr  
    FFoorr  eeaacchh  sseett  ooff  iinnddeeppeennddeenntt  sshheellll  ppaaiirrss  
        CCoommppuuttee  tthhee  rroottaattiioonn  mmaattrriixx  
        SSyynncchhrroonniizzee  ssoo  rroottaattiioonn  mmaattrriixx  iiss  ccoommpplleettee  
        RRoottaattee  FF  aanndd  SS  
        SSyynncchhrroonniizzee  ssoo  tthhaatt  FF  aanndd  SS  aarree  ccoommpplleettee  
    EEnndd  lloooopp  oovveerr  iinnddeeppeennddeenntt  sshheellll  ppaaiirrss  
EEnndd  eeiiggeennssoollvveerr  iitteerraattiioonnss  
  

Traditional imperative formulation

 graph

Elementary operations

Simulated timings



Comparison of data dependencies�
with and without synchronization

With synchronization:Without synchronization:

Synchronization increases the number of data 
dependencies. Thus, the overall potential for 
parallelization is reduced by synchronizing 

operations such as barriers and collectives.



Hierarchical decomposition needed for�
locality and scalabilty

  Hierarchical in terms of operations
  Eigenvectors constructed from Fock matrix 

constructed from integrals
  Hierarchical in terms of data

  Large blocks containing small blocks, etc.
  Map data hierarchy to memory hierarchy
  CCSD example:
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Be careful for what you ask …

Am I asking for a monolithic runtime system?
 No – this is the problem with MPI. Need a lightweight, portable, and low-level 

primitives.
 Varying levels of sophistication can be built upon this low-lying interface.


Am I asking for new languages?
 Yes and no – general purpose languages spoken and developed by a wide 
community will always play a role. Libraries, DSLs (to generate the underlying 
code), and embedded DSLs (to supplement the underlying language) will be 
essential to hide machine complexity.





Introduction of DSL
for two electron integrals
(code too  for

compilers of the era was
subsequently removed)

Introduction of DSL
for many-body terms
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Motivation: complexity of parallel machines is 
accelerating, but tools to manage this are not

 Several complexity issues affect apps:
– Extreme parallelism
– More computation power enables more 


– More complex software
– Numerical issues

– Dropping mean time between failure
– Energy enters optimization objective function

 Human effort does not scale easily to such a complex environment
– Can another approach to programming solve some of these problems?

 Outline of current work:
– Hartree-Fock theory selected due to its expense and scaling issues

  Basis for many other electronic structure methods
–  Examine traditional implementation of Hartree-Fock theory
–  Show preliminary results of applying an alternative programming approach to 

Hartree-Fock and compare this to traditional implementations.

Improvements to chip performance over the 



Illustration of numerical issues using�
Hartree-Fock theory as an example

Large systems are ill-conditioned: 
smallest overlap eigenvalue for 
linear alkane rapidly decrease as 
system grows for diffuse basis sets


Eliminating near linear dependencies 

can change energies—even in the 
limit of an exact linear dep.


Errors due to keeping the nearly linear 

dep. functions grow like s1
-3, and we 

need the difference between large 
numbers:



Elementary operations for Hartree-Fock�
in terms of data dependencies

Two electron integrals formation, G:
Output: (ij|kl) for a shell quartet

Fock matrix formation, F:
Input: Two electron integrals
 and density matrix
Output: Fock matrix elements
 for a shell pair

Jacobi transform formation, J:
Input: Fock and overlap matrix elements
Output: Rotation matrix diagonalizing the sub-block

Matrix transformation, R:
Input: Fock or overlap matrix elements and Jacobi
 transform
Output: Transformed matrix elements

Note: output has a sequence number that ensures rotations
are done in the correct order. Both J and R must be aware
of sequence number



Hartree-Fock data dependencies

 Computes the diagonal 
blocks of the Fock matrix 
after a single Jacobi sweep 
for a three shell system.
 Certain input data has been 
omitted to simplify the graph.
 Operations on the same row 
(ovals) can be computed in 
parallel
 Some parallelism can be 
exploited among operation on 
different rows



Simulated timings for 16 shells on 8 
processors


