Pushing back the point of diminishing returns for parallel performance

Workshop on Exascale Programming Challenges

July 27-29
USC/ISI
Marina del Rey, CA

Curtis Janssen, Sandia National Laboratories cljanss@sandia.gov

Challenges impacting exascale application performance

Example application: Hartree-Fock theory

- Approximate solution to Schrödinger's equation

$$
H=\frac{1}{2} \sum_{i}^{n} \nabla_{i}^{2}-\sum_{i}^{n} \sum_{a}^{N} \frac{q_{a}}{r_{i a}}+\sum_{i<j}^{n} \frac{1}{r_{i j}}+\sum_{a<b}^{N} \frac{q_{a} q_{b}}{r_{a b}}
$$

- Electron interact with average field of other electrons, giving rise to a generalized eigenvalue problem
- Major steps (assuming spin restricted closed shell):
- Integral computation:

$$
\begin{aligned}
& S_{p q}=\int \chi_{p}(\mathbf{r}) \chi_{q}(\mathbf{r}) d \mathbf{r} \quad H_{p q}=\int \chi_{p}(\mathbf{r})\left(\nabla^{2}-\sum_{a}^{N} \frac{q_{q}}{r_{A}}\right) \chi_{q}(\mathbf{r}) d \mathbf{r} \\
& G_{p q q s}=\int \chi_{p}\left(\mathbf{r}_{1}\right) \chi_{q}\left(\mathbf{r}_{1}\right) \frac{1}{r_{12}} \chi_{r}\left(\mathbf{r}_{2}\right) \chi_{s}\left(\mathbf{r}_{2}\right) d \mathbf{r}_{1} d \mathbf{r}_{2}
\end{aligned}
$$

-Fock matrix formation:

$$
F_{p q}=H_{p q}+P_{r s}\left(v_{p q r s}+\frac{1}{2} v_{p r q s}\right)
$$

-Diagonalization:

$$
\mathbf{F C}=\mathbf{S C e} \quad \mathbf{C S C}^{T}=\mathbf{1}
$$

-Density computation:

$$
P_{p q}=2 \sum_{a}^{N / 2} C_{p a} C_{q a}
$$

Unteasing concurrency from applications

Form the atomic orbital Fock, F, and overlap, S Synchronize so that F is complete on all nodes Begin iterative eigensolver

For each set of independent shell pairs Compute the rotation matrix
Synchronize so rotation matrix is complete Rotate F and S
Synchronize so that F and S are complete
End loop over independent shell pairs
End eigensolver iterations
Traditional imperative formulation

Comparison of data dependencies with and without synchronization

Without synchronization:

Synchronization increases the number of data dependencies. Thus, the overall potential for parallelization is reduced by synchronizing operations such as barriers and collectives.

With synchronization:

Hierarchical decomposition needed for locality and scalabilty

- Hierarchical in terms of operations
- Eigenvectors constructed from Fock matrix constructed from integrals
- Hierarchical in terms of data
- Large blocks containing small blocks, etc.
- Map data hierarchy to memory hierarchy
- CCSD example:

Be careful for what you ask ...

Am I asking for a monolithic runtime system?

- No - this is the problem with MPI. Need a lightweight, portable, and low-level interface for fast messaging. Includes active messages and fault notification primitives.
- Varying levels of sophistication can be built upon this low-lying interface.

Am I asking for new languages?

- Yes and no - general purpose languages spoken and developed by a wide community will always play a role. Libraries, DSLs (to generate the underlying code), and embedded DSLs (to supplement the underlying language) will be essential to hide machine complexity.

Supplemental Slides

Motivation: complexity of parallel machines is accelerating, but tools to manage this are not

-Several complexity issues affect apps:
-Extreme parallelism
-More computation power enables more complex/higher fidelity simulations

- More complex software
-Numerical issues
-Dropping mean time between failure
-Energy enters optimization objective function

- Human effort does not scale easily to such a complex environment
- Can another approach to programming solve some of these problems?
- Outline of current work:
- Hartree-Fock theory selected due to its expense and scaling issues
- Basis for many other electronic structure methods
- Examine traditional implementation of Hartree-Fock theory
- Show preliminary results of applying an alternative programming approach to Hartree-Fock and compare this to traditional implementations.

Illustration of numerical issues using Hartree-Fock theory as an example

Large systems are ill-conditioned: smallest overlap eigenvalue for linear alkane rapidly decrease as system grows for diffuse basis sets

Eliminating near linear dependencies can change energies-even in the limit of an exact linear dep.

Errors due to keeping the nearly linear dep. functions grow like $\mathrm{s}_{1}{ }^{-3}$, and we need the difference between large numbers:

Elementary operations for Hartree-Fock in terms of data dependencies

Two electron integrals formation, G :
Output: (ij|kl) for a shell quartet

Fock matrix formation, F :
Input: Two electron integrals and density matrix
Output: Fock matrix elements

Hartree-Fock data dependencies

- Computes the diagonal blocks of the Fock matrix after a single Jacobi sweep for a three shell system.
- Certain input data has been omitted to simplify the graph.
- Operations on the same row (ovals) can be computed in parallel
- Some parallelism can be exploited among operation on different rows

Simulated timings for 16 shells on 8 processors

Imperative Approach

Data-driven Approach

