
Correctness Tools in the DOE
Ecosystem

• Endangered species that require Federal protection.

• Overall as a community, we are not very sophisticated
when using testing and correctness tools.
– How many of you have a “Test Engineer” or a “QA Engineer”

position posted?
– How many of you know of Coverity or SilkTest?

• There are very good reasons for the status quo

– Sociological – we like hero programmers
– Practical – hero programmers can find bugs

• Serial code with side-effects separated by MPI_...

• Things are changing

Enter GASynchrony…

Enter GASynchrony…

• A place with :

– Global Address Spaces which obfuscates and breeds
bugs

– Asynchronous Execution which obfuscates and
breeds bugs

– Heterogeneous Hardware which obfuscates and
breeds bugs

Berkeley Parlab

Finding and Debugging
Concurrency Bugs at Scale

Chang-Seo Park, Paul Hargrove, Costin Iancu, Koushik Sen

also joint work with

Jacob Burnim, Tayfun Elmas, David Gay, Nicholas Jalbert, Pallavi
Joshi, Mayur Naik, Chang-Seo Park, Christos Stergiou

Automatically Testing Sequential Programs

• Combine static and
dynamic analysis for
test generation

• Automated testing of
sequential programs

– DART: Directed
Automated Random
Testing

– CUTE: Concolic Testing

6

void foo (input) {

 …. semicolon

 …. semicolon

 …. semicolon

 …. semicolon

 while (p) {

 …. semicolon

 …. semicolon

 ASSERT(good);

 …. semicolon

 }

 …. semicolon

 …. semicolon

 …. semicolon

}

• Concurrent Programming is hard
– Bugs happen non-deterministically

– Data races, deadlocks, atomicity violations, etc.

• Goals: build a tool to test and debug concurrent and
parallel programs
– More Practical: works for large programs

– Efficient

– No false alarms

– Finds many bugs quickly

– Reproducible

• Active random testing.

7

Testing Concurrent Programs

Active Testing

• Phase 1: Static or dynamic analysis to find
potential concurrency bug patterns

– such as data races, deadlocks, atomicity violations

• Phase 2: “Direct” testing (or model checking)
based on the bug patterns obtained from
phase 1

– Confirm bugs

Example Data Race in UPC

• Simple matrix vector multiply and apply F

foo (A B) C = ×

9

Simple Example in UPC

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

10

Simple Example in UPC

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

11

 1 1
 1 1

1
1

?
?

=

 C A B

foo(x) = x

Simple Example in UPC

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

12

 1 1
 1 1

1
1

2
2

=

 C A B

foo(x) = x

Simple Example in UPC: Problem?

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

13

Do you see any problem
is this code?

foo is an expensive function

Simple Example in UPC: Data Race

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

14

Do you see any problem
is this code?
Yes, if we call
matvec(A,B,B) foo is an expensive function

Data Race!

Simple Example in UPC: Data Race

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

15

Do you see any problem
is this code?
Yes, if we call
matvec(A,B,B) foo is an expensive function

Data Race!

 1 1
 1 1

1
1

?
?

=

 B A B

foo(x) = x

Simple Example in UPC: Data Race

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

16

Do you see any problem
is this code?
Yes, if we call
matvec(A,B,B) foo is an expensive function

Data Race!

 1 1
 1 1

2
1

2
?

=

 B A B

foo(x) = x

Simple Example in UPC: Data Race

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

17

Do you see any problem
is this code?
Yes, if we call
matvec(A,B,B) foo is an expensive function

Data Race!

 1 1
 1 1

2
3

2
3

=

 B A B

foo(x) = x

Simple Example in UPC: Trace

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

18

 Example Trace:
 3: sum = 0;
 3: sum = 0;
 3: sum = 0;
 5: sum+= A[0][0]*B[0];
 5: sum+= A[1][0]*B[0];
 5: sum+= A[2][0]*B[0];
 5: sum+= A[0][1]*B[1];
 5: sum+= A[1][1]*B[1];
 5: sum+= A[2][1]*B[1];
 5: sum+= A[0][2]*B[2];
 5: sum+= A[1][2]*B[2];
 5: sum+= A[2][2]*B[2];
 6: sum = foo(sum);
 7: B[0] = sum;
 6: sum = foo(sum);
 7: B[1] = sum;
 6: sum = foo(sum);
 7: B[2] = sum;

Simple Example in UPC: Trace

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

19

 Example Trace:
 3: sum = 0;
 3: sum = 0;
 3: sum = 0;
 5: sum+= A[0][0]*B[0];
 5: sum+= A[1][0]*B[0];
 5: sum+= A[2][0]*B[0];
 5: sum+= A[0][1]*B[1];
 5: sum+= A[1][1]*B[1];
 5: sum+= A[2][1]*B[1];
 5: sum+= A[0][2]*B[2];
 5: sum+= A[1][2]*B[2];
 5: sum+= A[2][2]*B[2];
 6: sum = foo(sum);
 7: B[0] = sum;
 6: sum = foo(sum);
 7: B[1] = sum;
 6: sum = foo(sum);
 7: B[2] = sum;

Data Race?

Simple Example in UPC: Trace

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

20

 Example Trace:
 3: sum = 0;
 3: sum = 0;
 3: sum = 0;
 5: sum+= A[0][0]*B[0];
 5: sum+= A[0][1]*B[1];
 5: sum+= A[0][2]*B[2];
 6: sum = foo(sum);
 5: sum+= A[1][0]*B[0];
 7: B[0] = sum;
 5: sum+= A[2][0]*B[0];
 5: sum+= A[1][1]*B[1];
 5: sum+= A[2][1]*B[1];
 5: sum+= A[1][2]*B[2];
 5: sum+= A[2][2]*B[2];
 6: sum = foo(sum);
 7: B[1] = sum;
 6: sum = foo(sum);
 7: B[2] = sum;

Data Race!

Goal 1. Nice to have a trace
exhibiting the data race

Simple Example in UPC: Trace

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

21

 Example Trace:
 3: sum = 0;
 3: sum = 0;
 3: sum = 0;
 5: sum+= A[0][0]*B[0];
 5: sum+= A[0][1]*B[1];
 5: sum+= A[0][2]*B[2];
 6: sum = foo(sum);
 7: B[0] = sum;
 5: sum+= A[1][0]*B[0];
 5: sum+= A[2][0]*B[0];
 5: sum+= A[1][1]*B[1];
 5: sum+= A[2][1]*B[1];
 5: sum+= A[1][2]*B[2];
 5: sum+= A[2][2]*B[2];
 6: sum = foo(sum);
 7: B[1] = sum;
 6: sum = foo(sum);
 7: B[2] = sum;

Data Race!

Goal 2. Nice to have a trace
exhibiting the assertion failure

Simple Example in UPC: Trace

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

22

 Example Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

 5: sum+= A[1][0]*B[0];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 7: B[1] = sum;

Data Race!

Goal 3. Nice to have a trace
with fewer threads

Simple Example in UPC: Trace

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

23

 Example Trace:
 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

 3: sum = 0;

 5: sum+= A[1][0]*B[0];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 7: B[1] = sum;

Data Race!

Goal 4. Nice to have a trace
with fewer context switches

Simple Example in UPC: Assertion

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

24

 Example Trace:
 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

 3: sum = 0;

 5: sum+= A[1][0]*B[0];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 7: B[1] = sum;

Goal 5. Nice if the assertion
is simpler

Simple Example in UPC: Assertion

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == C’);

25

 Example Trace:
 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

 3: sum = 0;

 5: sum+= A[1][0]*B[0];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 7: B[1] = sum;

Goal 5. Nice if the assertion
is simpler

• Would be nice to have a trace

– showing a data race (or some other concurrency bug)

– showing an assertion violation due to a data race

– with fewer threads

– with fewer context switches

– Simpler assertions [see our work on specification]

26

Goals: Summary

• Would be nice to have a trace

– showing a data race (or some other concurrency bug)

– showing an assertion violation due to a data race

– with fewer threads

– with fewer context switches

– Simpler assertions [see our work on specification]

27

Goals: Summary

Active Testing: Phase I

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

28

 Example Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[1][0]*B[0];

 5: sum+= A[0][1]*B[1];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

 6: sum = foo(sum);

 7: B[1] = sum;

Active Testing: Phase I

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

29

1. Insert Instrumentations at
compile time

Active Testing: Phase I

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

30

 Example Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[1][0]*B[0];

 5: sum+= A[0][1]*B[1];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 6: sum = foo(sum);

 7: B[0] = sum;

 7: B[1] = sum;

1. Insert Instrumentations at
compile time

2. Run instrumented program
normally -> Trace

Active Testing: Phase I

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

31

1. Insert Instrumentations at
compile time

2. Run instrumented program
normally -> Trace

3. Find potential data races

 Example Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[1][0]*B[0];

 5: sum+= A[0][1]*B[1];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 6: sum = foo(sum);

 7: B[0] = sum;

 7: B[1] = sum;

Active Testing: Phase I

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

32

1. Insert Instrumentations at
compile time

2. Run instrumented program
normally -> Trace

3. Potential race between
statements 5 and 7

 Example Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[1][0]*B[0];

 5: sum+= A[0][1]*B[1];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 6: sum = foo(sum);

 7: B[0] = sum;

 7: B[1] = sum;

Active Testing: Phase I

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

33

1. Insert Instrumentations at
compile time

2. Run instrumented program
normally -> Trace

3. Potential race between
statements 5 and 7

Goals. 1. Confirm races
2. Check Assertion Failure

 Example Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[1][0]*B[0];

 5: sum+= A[0][1]*B[1];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 6: sum = foo(sum);

 7: B[0] = sum;

 7: B[1] = sum;

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

34

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

 5: sum+= A[1][0]*B[0];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 7: B[1] = sum;

Goal. Generate this execution

Data Race!

Control Scheduler using
knowledge that (5,7) could race

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

35

 Generate Trace:

Control Scheduler using
knowledge that (5,7) could race

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

36

 Generate Trace:
 3: sum = 0;

Control Scheduler using
knowledge that (5,7) could race

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

37

 Generate Trace:
 3: sum = 0;

Control Scheduler using
knowledge that (5,7) could race

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

38

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

Control Scheduler using
knowledge that (5,7) could race

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

39

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

Control Scheduler using
knowledge that (5,7) could race

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

40

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

Control Scheduler using
knowledge that (5,7) could race

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

41

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

Control Scheduler using
knowledge that (5,7) could race

Postponed = { } 5: sum+= A[0][0]*B[0];

Do not postpone
if there is a deadlock

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

42

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

Control Scheduler using
knowledge that (5,7) could race

Postponed = { } 5: sum+= A[0][0]*B[0];

Do not postpone
if there is a deadlock

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

43

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

Control Scheduler using
knowledge that (5,7) could race

Postponed = { } 5: sum+= A[0][0]*B[0];

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

44

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

Control Scheduler using
knowledge that (5,7) could race

Postponed = { } 5: sum+= A[0][0]*B[0];

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

45

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

Control Scheduler using
knowledge that (5,7) could race

Postponed = { } 5: sum+= A[0][0]*B[0];

Race? yes

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

46

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

Control Scheduler using
knowledge that (5,7) could race

Postponed = { }

 5: sum+= A[0][0]*B[0]; 7: B[0] = sum;

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

47

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

 5: sum+= A[1][0]*B[0];

Control Scheduler using
knowledge that (5,7) could race

Racing Statements
Temporally Adjacent

Achieved Goal 1.
Confirmed race

Active Testing: Phase II

foo is an expensive function

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

48

 Generate Trace:
 3: sum = 0;

 3: sum = 0;

 5: sum+= A[0][0]*B[0];

 5: sum+= A[0][1]*B[1];

 6: sum = foo(sum);

 7: B[0] = sum;

 5: sum+= A[1][0]*B[0];

 5: sum+= A[1][1]*B[1];

 6: sum = foo(sum);

 7: B[1] = sum;

Control Scheduler using
knowledge that (5,7) could race

Achieved Goal 2.
Assertion Failure

Active Testing Cartoon: Phase I

49

Potential
Collision

Active Testing Cartoon: Phase II

50

Active Testing:
Predict and Confirm Potential Bugs

• Phase I: Predict potential bug patterns:
– Data races: Eraser or lockset based [PLDI’08]

– Atomicity violations: cycle in transactions and happens-before
relation [FSE’08]

– Deadlocks: cycle in resource acquisition graph [PLDI’09]

– Publicly available tool for Java/Pthreads/UPC [CAV’09]

– Memory model bugs: cycle in happens-before graph [ISSTA’11]

– For UPC programs running on thousands of cores [SC’11]

• Phase II: Direct testing using those patterns to
confirm real bugs

• Practical and efficient

• Finds many bugs quickly

• Finds rare bugs with high probability

• Creates an actual execution showing a bug

• Reproducible

52

Active Testing Advantages

Challenges for UPC

• Java and pthreads programs
– Synchronization with locks and condition variables
– Single node

• UPC has different programming model (SPMD)
– Large scale
– Bulk communication
– Collective operations with data movement
– Memory consistency

• Store shared memory access information locally
– Using efficient data structures (Interval Skip List and Lock Trie)
– Keep only the weakest accesses

• At barrier boundary, send access info to “owner” thread

53

Results

Benchmark LoC Runtime
ThrilleRacer ThrilleTester

Overhead Pot. race Overhead Conf. race

guppie 227 2.094s 12% 2 1.7% 2

knapsack 191 2.099s 14.9% 2 1.8% 2

lapalce 123 2.101s 16.3% 0 - -

mcop 358 2.183s 0.7% 0 - -

psearch 777 2.982s 1.8% 3 3.8% 2

FT 2.3 2306 8.711s 6.1% 2 4.8% 2

CG 2.4 1939 3.812s 0.5% 0 - -

EP 2.4 763 10.02s 0.9% 0 - -

FT 2.4 2374 7.036s 0.1% 1 4.2% 1

IS 2.4 1449 3.073s 1.1% 0 - -

MG 2.4 2314 4.895s 3.1% 2 1.2% 2

BT 3.3 9626 48.78s 0.5% 8 0.8% 0

LU 3.3 6311 37.05s 0.5% 0 - -

SP 3.3 5691 59.56s 0.2% 8 3.0% 0

54

How Well Does it Scale?

55

• Maximum 8% slowdown at 8K cores
– Franklin Cray XT4 Supercomputer at NERSC

– Quad-core 2.x3GHz CPU and 8GB RAM per node

– Portals interconnect

• Optimizations for scalability
– Efficient Data Structures

– Minimize Communication

– Sampling with Exponential Backoff

Lock	 Trie

Interval Skip List

{I1, I3} {I2} {I2, I4}

{I1}

{I3}

I1 I2 I3 I4 ...

[10, 50) [20, 50) [10, 30) [30, 40) ...

{I4}

10 30 40 5020

L1

L
2

L
3

L4

thread: 2

phase:	 11
access:	 READ
label:	 hello.upc: 11

node

data

nodenodenode

data

data

{I2}

{I2} T1 T2

notify

wait

notify

wait

access

notify

wait

notify

wait

T1 T2

notify
wait

notify
wait

access

notify
wait

notify
wait

notify

wait

notify

wait

T1 T2

barrier

barrier

barrier

barrier

access

barrier

barrier

barrier

barrier

• Targeted a simple programming paradigm
– Threads and shared memory

• Similar techniques are available for MPI and
CUDA
– ISP, DAMPI, MARMOT, Umpire, MessageChecker

– TASS uses symbolic execution

– PUG for CUDA

• Analyze programs that mix different paradigms
– OpenMP, MPI, CUDA

– Need to correlate non-determinism across
paradigms

56

Further Challenges!

57

Found a Bug. Now what?

Help Programmers to debug!

58

Found a Bug. Now what?

Goal 3: Show a buggy trace having fewer threads

59

Found a Bug. Now what?

Automated Thread Reduction

Goal 3: Show a buggy trace having fewer threads

Goal 4: Show a buggy trace having fewer context switches

60

Found a Bug. Now what?

Automated Context Switch
Reduction

Automated Thread Reduction

Our Experience with C/PThreads

0

5

10

15

20

25

30

Optimal 1 2 3 4

Ex
p

e
ri

m
e

n
ta

l R
u

n
s

Context Switches > Optimal Number of Context Switches

Histogram of the Context Switch Optimality of
Simplified Traces

bzip2

dedup

pbzip2

pfscan

blackscholes

• Over 90% of simplified traces were within 2
context switches of optimal.

• Small model hypothesis for Parallel Programs

– 1. Most bugs can be found with few threads

• 2-3 threads

• No need to run on thousands of nodes

– 2. Most bugs can be found with fewer context
switches [Musuvathi and Qadeer, PLDI 07]

• Helps in sequential debugging

62

Small model hypothesis

63

So many tools!

64

So many tools!

Can I use

printf?

65

Give me printf!!!

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
 printf(“B[%d] = %d\n”,j,B[j]);
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
 printf(“C[%d] = %d\n”,i,sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

66

Problem with printf!!!

• Prints info only
when a single
thread reaches
an interesting
state

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
 printf(“B[%d] = %d\n”,j,B[j]);
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
 printf(“C[%d] = %d\n”,i,sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

67

Problem with printf!!!

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
 printf(“B[%d] = %d\n”,j,B[j]);
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
 printf(“C[%d] = %d\n”,i,sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

• Prints info only
when a single
thread reaches
an interesting
state

• Need to print
when a set of
threads reach an
interesting
concurrent state

68

Concurrent printf for debugging

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
 (P1,B==C && j==i):
 printf(“B[%d]=%d\n”,j,B[j]);
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
(P1,B==C && j==i):
 printf(“C[%d] = %d\n”,i,sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

• Need to print
when a set of
threads reach an
interesting
concurrent state

• Split a printf
• Print if there is a

data race or
conflict

69

How do I Assert Correctness?

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == foo(A*B));

Asserting Correctness?

70

x=0.7

y=0.3

…

γ=5.0

Run with

active testing

Assertions can be quite COMPLEX!

• Traditional functional correctness specs.

– Relate program’s output to its input.

– Generally complex and difficult to write:

71

f iter (c) = c 2 + xcenter + (xoff + x) res()
+ i ycenter + (yoff - y) res()

"0£x<width ."0£y< height .

f iter
maxiter

(0) < 2 Ù img[x][y] = 0()
Ú $1£i<maxiter . f iter

i
(0) ³ 2 Ù "1£ j< i . f iter

j
(0) < 2

Ù img[x][y] = HSB (i maxiter)g ,1,1()

where

Parallel Specifications?

• Traditional functional correctness specs.

– Relate program’s output to its input.

– Generally complex and difficult to write:

72

f iter (c) = c 2 + xcenter + (xoff + x) res()
+ i ycenter + (yoff - y) res()

"0£x<width ."0£y< height .

f iter
maxiter

(0) < 2 Ù img[x][y] = 0()
Ú $1£i<maxiter . f iter

i
(0) ³ 2 Ù "1£ j< i . f iter

j
(0) < 2

Ù img[x][y] = HSB (i maxiter)g ,1,1()

where

Is there an easier way to specify

just the parallel correctness?

Assert that Parallelism is Correct

1: void matvec(shared [N] int A[N][N],
 shared int B[N],
 shared int C[N]) {
2: upc_forall(int i = 0; i < N; i++; &C[i]) {
3: int sum = 0;
4: for(int j = 0; j < N; j++)
5: sum += A[i][j] * B[j];
6: sum = foo(sum);
7: C[i] = sum;
8: }
9:}

assert(C == C’);

73

Assertion for Parallelism Correctness

deterministic assume Pre(s0,s0’){

 P

} assert Post(s1,s1’)

Pre(s0,s’0)

final state

final state

Post(s1 , s’1)

CACM’10, FSE’09 [ACM SIGSOFT Distinguished paper], ICSE’10[Best Paper Award]

Conclusion

• Active testing has been successfully used to find
and reproduce real bugs in Java and C/C++
programs

– combine static/dynamic analysis and testing

• Bugs can be detected using fewer threads

• Need concurrent extensions to printfs and
breakpoints

• New mechanisms for specification

75

Bugs Found

• In NPB 2.3 FT,
– Wrong lock allocation function causes real races in

validation code

– Spurious validation failure errors

shared dcomplex *dbg_sum;
static upc_lock_t *sum_write;

sum_write = upc_global_lock_alloc(); // wrong function

upc_lock (sum_write);
{
 dbg_sum->real = dbg_sum->real + chk.real;
 dbg_sum->imag = dbg_sum->imag + chk.imag;
}
upc_unlock (sum_write);

76

Bugs Found

• In SPLASH2 lu,

– Multiple initialization of vector without locks

– Benign but performance bug

void InitA()
{
 …
 for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 rhs[i] += a[i+j*n]; // executed by all threads
 }
 }
}

77

How Well Does it Scale?

78

 1000

 10000

 100000

 1e+06

 1 8 16 32 64 128 256 512 1024

M
o

p
/s

Cores

bt

no analysis (C)

phase 1 (C)

phase 2 (C)

no analysis (D)

phase 1 (D)

phase 2 (D)

How Well Does it Scale?

79

 100

 1000

 10000

 100000

 1 8 16 32 64 128 256 512 1024

M
o

p
/s

Cores

cg

no analysis (C)

phase 1 (C)

no analysis (D)

phase 1 (D)

How Well Does it Scale?

80

 1

 10

 100

 1000

 10000

 1 8 16 32 64 128 256 512 1024

M
o

p
/s

Cores

ep

no analysis (C)

phase 1 (C)

no analysis (D)

phase 1 (D)

How Well Does it Scale?

81

 1000

 10000

 100000

 1e+06

 1 8 16 32 64 128 256 512 1024

M
o

p
/s

Cores

ft

no analysis (C)

phase 1 (C)

phase 2 (C)

no analysis (D)

phase 1 (D)

phase 2 (D)

How Well Does it Scale?

82

 10

 100

 1000

 10000

 1 8 16 32 64 128 256 512 1024

M
o

p
/s

Cores

is

no analysis (C)

phase 1 (C)

How Well Does it Scale?

83

 1000

 10000

 100000

 1e+06

 1 8 16 32 64 128 256 512 1024

M
o

p
/s

Cores

lu

no analysis (C)

phase 1 (C)

phase 2 (C)

no analysis (D)

phase 1 (D)

phase 2 (D)

How Well Does it Scale?

84

 1000

 10000

 100000

 1e+06

 1 8 16 32 64 128 256 512 1024

M
o

p
/s

Cores

mg

no analysis (C)

phase 1 (C)

phase 2 (C)

no analysis (D)

phase 1 (D)

phase 2 (D)

How Well Does it Scale?

 100

 1000

 10000

 100000

 1e+06

 1 8 16 32 64 128 256 512 1024

M
o

p
/s

Cores

sp

no analysis (C)

phase 1 (C)

phase 2 (C)

no analysis (D)

phase 1 (D)

phase 2 (D)

85

Active Testing Limitations

• Run active testing on application + input.

• What if bug pattern occurs, but no crash?

– Can’t ask the user

– Need specification from programmer.

86

x=0.7

y=0.3

…

γ=5.0

Run with

active testing

Parallel Specifications?

• Traditional functional correctness specs.

– Relate program’s output to its input.

– Generally complex and difficult to write:

87

f iter (c) = c 2 + xcenter + (xoff + x) res()
+ i ycenter + (yoff - y) res()

"0£x<width ."0£y< height .

f iter
maxiter

(0) < 2 Ù img[x][y] = 0()
Ú $1£i<maxiter . f iter

i
(0) ³ 2 Ù "1£ j< i . f iter

j
(0) < 2

Ù img[x][y] = HSB (i maxiter)g ,1,1()

where

Parallel Specifications?

• Traditional functional correctness specs.

– Relate program’s output to its input.

– Generally complex and difficult to write:

88

f iter (c) = c 2 + xcenter + (xoff + x) res()
+ i ycenter + (yoff - y) res()

"0£x<width ."0£y< height .

f iter
maxiter

(0) < 2 Ù img[x][y] = 0()
Ú $1£i<maxiter . f iter

i
(0) ³ 2 Ù "1£ j< i . f iter

j
(0) < 2

Ù img[x][y] = HSB (i maxiter)g ,1,1()

where

Is there an easier way to specify

just the parallel correctness?

Lightweight Parallel Specs

• Goal: Lightweight specifications for parallel
correctness.

– Easy for programmers to write.

– With testing, effective in finding real bugs.

• Semantic determinism [CACM’10, FSE ’09, ICSE ’10].

• Semantic atomicity [ASPLOS ‘11].

• Nondeterministic sequential specifications for
parallel correctness [HotPar’10, PLDI’11]

89

Deterministic Specification

• Goal: Specify deterministic behavior.

– Same initial parameters => same image.

– Non-determinism is internal.

 // Parallel fractal render

 mandelbrot(params, img);

Deterministic Specification

• Specifies: Two runs from same initial program state have
same result state for any pair of schedules

deterministic {

 // Parallel fractal render

 mandelbrot(params, img);

}

s0 :initial state

s1

final state

s’1

final state

=

double A[][], b[], x[];

...

deterministic {

 // Solve A*x = b in parallel

 lufact_solve(A, b, x);

}

Deterministic Specification

• Too restrictive – different schedules may give
slightly different floating-point results.

set t = new RedBlackTreeSet();

deterministic {

 t.add(3) || t.add(5);

}

Deterministic Specification

• Too restrictive – internal structure of set may
differ depending on order of adds.

Semantic Determinism
• Too strict to require every interleaving to give exact

same program state:

 deterministic {

 P

 }

s0 :initial state

s1

final state

s’1

final state

=

Semantic Determinism
• Too strict to require every interleaving to give exact

same program state:

 deterministic {

 P

 }

s0 :initial state

s1

final state

s’1

final state

=

Predicate!
Should be

user-defined.

Semantic Determinism
• Too strict to require every interleaving to give exact

same program state:

 deterministic {

 P

 } assert Post(s1,s’1)

s0 :initial state

final state

final state

Post(s1 , s’1)

double A[][], b[], x[];

...

deterministic {

 // Solve A*x = b in parallel

 lufact_solve(A, b, x);

} assert (|x – x’| < ε)

Semantic Determinism

“Bridge” predicate

• Resulting sets are semantically equal.

set t = new RedBlackTreeSet();

deterministic {

 t.add(3) || t.add(5);

} assert (t.equals(t’))

Semantic Determinism

• Too strict – initial states must be identical

– Not compositional.

Preconditions for Determinism

 set t = …

 deterministic {

 t.add(3) || t.add(5);

 } assert (t.equals(t’))

 …

 deterministic {

 t.add(4) || t.add(6);

 } assert (t.equals(t’))

Preconditions for Determinism

• Too strict to require identical initial states:

deterministic {

 P

} assert Post(s1,s1’)

s0

final state

final state

s0

Post(s1 , s’1)

Preconditions for Determinism

• Too strict to require identical initial states:

deterministic {

 P

} assert Post(s1,s1’)

=s’0

final state

final state

s0

Post(s1 , s’1)

Preconditions for Determinism

• Too strict to require identical initial states:

deterministic assume (s0 = s0’){

 P

} assert Post(s1,s1’)

=s’0

final state

final state

s0

Predicate! Should be
user-defined.

Post(s1 , s’1)

Preconditions for Determinism

• Too strict to require identical initial states:

deterministic assume Pre(s0,s0’){

 P

} assert Post(s1,s1’)

Pre(s0,s’0)

final state

final state

Post(s1 , s’1)

deterministic assume Pre(s0,s0’) {

 P

} assert Post(s1,s1’)

Bridge predicates/assertions

“Bridge”
predicate

“Bridge”
assertion

set t = ...

deterministic assume (t.equals(t’) {

 t.add(4) || t.add(6);

} assert (t.equals(t’))

• Specifies: Semantically equal sets yield
semantically equal sets.

Preconditions for Determinism

Deterministic Specs

• Can effectively test deterministic specs.

– Added assertions to 13 benchmarks.

– Used Active Testing to test if concurrency issues
(data races, atomicity violations, etc.) could lead to
violations of deterministic spec.

• Developed techniques for automatically inferring
these specs

• See our CACM 10, FSE 09, ICSE 09, ASPLOS 11
papers for details

Checking correctness of parallel programs

Parallel
program

Functional
specification Satisfies?

Complicated,
end-to-end reasoning

107

108

Our proposal: Separate reasoning about
functional correctness and thread schedules

Parallel
program

Functional
specification Satisfies?

Parallel
program

Functional
specification

Determinism
Specification

Satisfies?

Complicated,
end-to-end reasoning

Two independent, simpler
verification tasks

109

Our proposal: Separate reasoning about
functional correctness and thread schedules

Parallel
program

Functional
specification Satisfies?

Parallel
program

Functional
specification

Nondeterministic
sequential

specification

Complicated,
end-to-end reasoning

Two independent, simpler
verification tasks

Goal: Decompose effort in addressing
parallelism and functional correctness

110

Functional Correctness.
Reason about

sequentially, without
thread interleavings.

Parallelism Correctness.
Handle independently of

complex & sequential
functional properties.

Parallel
program

Functional
specification

ϕ

Nondeterministic
sequential

specification

Nondeterministic
sequential

specification

Goal: Decompose effort in addressing
parallelism and functional correctness

111

Parallel
program

Nondeterministic
sequential

specification

1. NDSeq: easy-to-write spec for parallelism.

1. Runtime checking of NDSeq specifications.

Functional
specification

ϕ

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i

Motivating Example

112

• Goal: Find minimum-cost item in list.

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i

Input: N items.

Output: min_cost and
min_item.

Motivating Example

113

• Goal: Find minimum-cost item in list.

 for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i`

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i`

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i

Computes cost of
item i. Expensive.

Computes cheap lower
bound on cost of i.

Prune when i cannot
have minimum-cost.

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 if cost < min_cost:
 min_cost = cost
 min_item = i

Motivating Example

114

• Goal: Find minimum-cost item in list.

How do we
parallelize this

code?

Parallel Motivating Example

115

• Goal: Find min-cost item in list, in parallel.

,
parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

Updates to best are
protected by lock.

Loop iterations can be
run in parallel. Claim: Parallelization

is clearly correct.

How can we specify
this parallel

correctness?

Specifying Parallel Correctness

116

• Idea: Use sequential program as spec.

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)

 if cost < min_cost:
 min_cost = cost
 min_item = i

Satisfies?

No.

Parallel-Sequential Equivalence?

117

bound: 5
cost: 5

(1) bound: 5
cost: 5

(2) items:
min_item: –
min_cost: ∞

prune?(1)

update(1)

update(2)

min_item: (2)
min_cost: 5

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

prune?(2)

prune?(1)

update(1)

prune?(2)

But sequential program:
• Returns min_item = (1).
• Prunes (2).

Specifying Parallel Correctness

118

• Parallel program has freedom to:

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

Avoid pruning by
scheduling check
before updates.

Process items in a
nondeterministic order.

Must give sequential spec this freedom.

Nondeterministic Sequential Spec

119

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

nd-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if * && b >= c:
 continue
 cost = compute_cost(i)

 if cost < min_cost:
 min_cost = cost
 min_item = i

Can choose
not to prune item.

Runs iterations in any order.

Nondeterministic Sequential Spec

120

• Parallelism correct if no more nondeterminism:

parallel-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if b >= c:
 continue
 cost = compute_cost(i)
 synchronized (lock):
 if cost < min_cost:
 min_cost = cost
 min_item = i

nd-for (i in [1..N]):
 c = min_cost
 b = lower_bound(i)
 if * && b >= c:
 continue
 cost = compute_cost(i)

 if cost < min_cost:
 min_cost = cost
 min_item = i

Satisfies?

Yes.

NDSeq Specification Patterns

121

• Found three recipes for adding *’s:

1. Optimistic Concurrent Computation
(optimistic work with conflict detection)

2. Redundant Computation Optimization
(e.g., pruning in branch-and-bound)

3. Irrelevant Computation
(e.g., updating a performance counter)

• With these recipes, fairly simple to write NDSeq
specifications for our benchmarks.

• See our HotPar 10 and PLDI 11 papers

Testing Parallelism Correctness

122

Initial

State s0

Final

State s1

Given: an execution of parallel program
(e.g. of parallel loop iterations)

Initial

State s0
Final

State s1

Is there an equivalent execution of NDSeq spec?

Idea:
Serializability?

Conflict-Serializability is Too Strict

123

c = min_cost
b = lower_bound(i)
if * [true]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Thread 1:

Thread 2:
c = min_cost
b = lower_bound(i)
if * [true]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Classic Theorem:
Cycle of conflict edges =>

Not serializable!

Relaxing Conflict-Serializability

124

c = min_cost
b = lower_bound(i)
if * [true]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Thread 1:

Thread 2:
c = min_cost
b = lower_bound(i)
if * [false]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

Can we set * to false?

Check: Does body have
any side effects on execution?

Relaxing Conflict-Serializability

125

c = min_cost
b = lower_bound(i)
if * [false]:
 if b >= c: // false

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Local c is no longer used,
so conflicting read of

min_cost is irrelevant.
Thread 1:

Thread 2:

Theorem. No relevant
conflict cycles => exists
equivalent NDSeq run!

Relaxing Conflict-Serializability

126

c = min_cost
b = lower_bound(i)
if * [false]:

cost = compute_cost(i)
if cost < min_cost:
 // false

 …
min_cost = cost
 …

Read different value for
min_cost, but overall
behavior is the same.

Theorem. No relevant
conflict cycles => exists
equivalent NDSeq run!

Iteration 1:

Iteration 2:

127

Traditional conflict serializability:

+ flipping * + dynamic data dependence:

Thread 2

Thread 1 (a)

Thread 1 (b)

Thread 2

Thread 1 (a)

Thread 1 (b)

Not serializable!
Cycle of conflicts.

Thread 2

Thread 1 (a)

Thread 1 (b)

Thread 2

Thread 1 (a’)

Thread 1 (b)

Thread 2

Thread 1 (a’)

Thread 1 (b)

Flip *

Experimental Evaluation

128

• Wrote and tested NDSeq specifications for:

– Java Grande, Parallel Java, Lonestar, DaCapo, and
nonblocking data structure.

– Size: 40 to 300K lines of code.

– Tested 5 parallel executions / benchmark.

• Two claims:
1. Easy to write NDSeq specifications.

2. Our technique serializes significantly more
executions than traditional methods.

129

Benchmark Lines of
Code

of Parallel
Constructs # of if(*)

stack 40 1 2
queue 60 1 2
meshrefine 1K 1 2
sunflow 24K 4 4
xalan 302K 1 3
keysearch3 200 2 0
mandelbrot 250 1 0
phylogeny 4.4K 2 3
series 800 1 0
crypt 1.1K 2 0
raytracer 1.9K 1 0
montecarlo 3.6K 1 0

JG
F

PJ

D
aC

ap
o

130

Benchmark Size of
Trace

Serializability Warnings

stack 1,744 5 (false) 0
queue 846 9 (false) 0
meshrefine 747K 30 (false) 0
sunflow 24,250K 28 (false) 3 (false)
xalan 16,540K 6 (false) 2 (false)
keysearch3 2,059K 2 (false) 0
mandelbrot 1,707K 1 (false) 0
phylogeny 470K 6 6
series 11K 0 0
crypt 504K 0 0
raytracer 6,170K 1 1
montecarlo 1,897K 2 (false) 0

JG
F

PJ

D
aC

ap
o

Traditional Our Technique

131

Benchmark Size of
Trace

Serializability Warnings

stack 1,744 5 (false) 0
queue 846 9 (false) 0
meshrefine 747K 30 (false) 0
sunflow 24,250K 28 (false) 3 (false)
xalan 16,540K 6 (false) 2 (false)
keysearch3 2,059K 2 (false) 0
mandelbrot 1,707K 1 (false) 0
phylogeny 470K 6 6
series 11K 0 0
crypt 504K 0 0
raytracer 6,170K 1 1
montecarlo 1,897K 2 (false) 0

JG
F

PJ

D
aC

ap
o

Traditional Our Technique

• Build testing tools

– Close to what programmers use

– Hide program analysis under testing

• Develop light-weight specification mechanisms

– Bridge predicates and NDSeq

• Claim: We have made enough progress in finding

concurrency bugs

– Our tools can find important bugs quickly

– Time to focus on sequential test generation
132

Conclusions

