
Correctness Tools in the DOE  
Ecosystem  

• Endangered species that require Federal protection. 
 

• Overall as a community, we are not very sophisticated 
when using testing and correctness tools. 
– How many of you have a “Test Engineer” or a “QA Engineer” 

position posted? 
– How many of you know of Coverity  or SilkTest? 

 
• There are very good reasons for the status quo 

– Sociological – we like hero programmers 
– Practical – hero programmers can find bugs 

• Serial code with side-effects separated by MPI_... 

 
• Things are changing 



Enter GASynchrony… 



Enter GASynchrony… 



• A place with : 

– Global Address Spaces which obfuscates  and breeds 
bugs 

– Asynchronous Execution which obfuscates and 
breeds bugs 

– Heterogeneous Hardware  which obfuscates and 
breeds bugs 



Berkeley Parlab 

Finding and Debugging  
Concurrency Bugs at Scale 

Chang-Seo Park, Paul Hargrove, Costin Iancu, Koushik Sen  

 

also joint work with  

Jacob Burnim, Tayfun Elmas, David Gay, Nicholas Jalbert, Pallavi 
Joshi, Mayur Naik, Chang-Seo Park, Christos Stergiou 



Automatically Testing Sequential Programs 

• Combine static and 
dynamic analysis for 
test generation 

• Automated testing of 
sequential programs 

– DART: Directed 
Automated Random 
Testing 

– CUTE: Concolic Testing 
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void foo (input)  { 

 ….  semicolon 

 ….  semicolon 

 ….  semicolon 

 ….  semicolon 

 while (p) { 

  ….  semicolon 

  ….  semicolon 

  ASSERT(good); 

  ….  semicolon 

 } 

 ….  semicolon 

 ….  semicolon 

 ….  semicolon 

} 



• Concurrent Programming is hard 
– Bugs happen non-deterministically 

– Data races, deadlocks, atomicity violations, etc. 

• Goals: build a tool to test and debug concurrent and 
parallel programs 
– More Practical: works for large programs 

– Efficient 

– No false alarms 

– Finds many bugs quickly 

– Reproducible 

• Active random testing. 
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Testing Concurrent Programs 



Active Testing 

• Phase 1: Static or dynamic analysis to find 
potential concurrency bug patterns  

– such as data races, deadlocks, atomicity violations 

• Phase 2: “Direct” testing (or model checking) 
based on the bug patterns obtained from 
phase 1 

– Confirm bugs 



Example Data Race in UPC 

• Simple matrix vector multiply and apply F 

foo ( A B) C         =    × 
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Simple Example in UPC 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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Simple Example in UPC 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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foo(x) = x 



Simple Example in UPC 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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Simple Example in UPC: Problem? 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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Do you see any problem 
is this code? 

foo is an expensive function 



Simple Example in UPC: Data Race 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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Do you see any problem 
is this code? 
Yes, if we call 
matvec(A,B,B) foo is an expensive function 

Data Race! 



Simple Example in UPC: Data Race 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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Do you see any problem 
is this code? 
Yes, if we call 
matvec(A,B,B) foo is an expensive function 

Data Race! 
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Simple Example in UPC: Data Race 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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Do you see any problem 
is this code? 
Yes, if we call 
matvec(A,B,B) foo is an expensive function 

Data Race! 
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Simple Example in UPC: Data Race 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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Do you see any problem 
is this code? 
Yes, if we call 
matvec(A,B,B) foo is an expensive function 

Data Race! 
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Simple Example in UPC: Trace 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Example Trace:  
  3:  sum = 0; 
  3:  sum = 0; 
  3:  sum = 0; 
  5:  sum+= A[0][0]*B[0]; 
  5:  sum+= A[1][0]*B[0];  
  5:  sum+= A[2][0]*B[0];   
  5:  sum+= A[0][1]*B[1]; 
  5:  sum+= A[1][1]*B[1];  
  5:  sum+= A[2][1]*B[1];   
  5:  sum+= A[0][2]*B[2]; 
  5:  sum+= A[1][2]*B[2];  
  5:  sum+= A[2][2]*B[2];   
  6:  sum = foo(sum); 
  7:  B[0] = sum; 
  6:  sum = foo(sum); 
  7:  B[1] = sum; 
  6:  sum = foo(sum); 
  7:  B[2] = sum; 



Simple Example in UPC: Trace 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Example Trace:  
  3:  sum = 0; 
  3:  sum = 0; 
  3:  sum = 0; 
  5:  sum+= A[0][0]*B[0]; 
  5:  sum+= A[1][0]*B[0];  
  5:  sum+= A[2][0]*B[0];   
  5:  sum+= A[0][1]*B[1]; 
  5:  sum+= A[1][1]*B[1];  
  5:  sum+= A[2][1]*B[1];   
  5:  sum+= A[0][2]*B[2]; 
  5:  sum+= A[1][2]*B[2];  
  5:  sum+= A[2][2]*B[2];   
  6:  sum = foo(sum); 
  7:  B[0] = sum; 
  6:  sum = foo(sum); 
  7:  B[1] = sum; 
  6:  sum = foo(sum); 
  7:  B[2] = sum; 

Data Race? 



Simple Example in UPC: Trace 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 

20 

 Example Trace:  
  3:  sum = 0; 
  3:  sum = 0; 
  3:  sum = 0; 
  5:  sum+= A[0][0]*B[0]; 
  5:  sum+= A[0][1]*B[1]; 
  5:  sum+= A[0][2]*B[2]; 
  6:  sum = foo(sum); 
  5:  sum+= A[1][0]*B[0];  
  7:  B[0] = sum;   
  5:  sum+= A[2][0]*B[0];   
  5:  sum+= A[1][1]*B[1];  
  5:  sum+= A[2][1]*B[1];   
  5:  sum+= A[1][2]*B[2];  
  5:  sum+= A[2][2]*B[2];   
  6:  sum = foo(sum); 
  7:  B[1] = sum; 
  6:  sum = foo(sum); 
  7:  B[2] = sum; 

Data Race! 

Goal 1. Nice to have a trace  
exhibiting the data race 



Simple Example in UPC: Trace 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Example Trace:  
  3:  sum = 0; 
  3:  sum = 0; 
  3:  sum = 0; 
  5:  sum+= A[0][0]*B[0]; 
  5:  sum+= A[0][1]*B[1]; 
  5:  sum+= A[0][2]*B[2]; 
  6:  sum = foo(sum); 
  7:  B[0] = sum;   
  5:  sum+= A[1][0]*B[0];  
  5:  sum+= A[2][0]*B[0];   
  5:  sum+= A[1][1]*B[1];  
  5:  sum+= A[2][1]*B[1];   
  5:  sum+= A[1][2]*B[2];  
  5:  sum+= A[2][2]*B[2];   
  6:  sum = foo(sum); 
  7:  B[1] = sum; 
  6:  sum = foo(sum); 
  7:  B[2] = sum; 

Data Race! 

Goal 2. Nice to have a trace  
exhibiting the assertion failure 



Simple Example in UPC: Trace 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Example Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

  5:  sum+= A[1][0]*B[0];  

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  7:  B[1] = sum; 

Data Race! 

Goal 3. Nice to have a trace 
with fewer threads 



Simple Example in UPC: Trace 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Example Trace:  
  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

  3:  sum = 0; 

  5:  sum+= A[1][0]*B[0];  

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  7:  B[1] = sum; 

Data Race! 

Goal 4. Nice to have a trace 
with fewer context switches 



Simple Example in UPC: Assertion 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Example Trace:  
  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

  3:  sum = 0; 

  5:  sum+= A[1][0]*B[0];  

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  7:  B[1] = sum; 

Goal 5. Nice if the assertion 
is simpler 



Simple Example in UPC: Assertion 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == C’); 
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 Example Trace:  
  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

  3:  sum = 0; 

  5:  sum+= A[1][0]*B[0];  

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  7:  B[1] = sum; 

Goal 5. Nice if the assertion 
is simpler 



• Would be nice to have a trace 

– showing a data race (or some other concurrency bug) 

– showing an assertion violation due to a data race 

– with fewer threads 

– with fewer context switches 

– Simpler assertions   [see our work on specification] 
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Goals: Summary 



• Would be nice to have a trace 

– showing a data race (or some other concurrency bug) 

– showing an assertion violation due to a data race 

– with fewer threads 

– with fewer context switches 

– Simpler assertions   [see our work on specification] 
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Goals: Summary 



Active Testing: Phase I 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Example Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[1][0]*B[0];  

  5:  sum+= A[0][1]*B[1]; 

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  7:  B[0] = sum; 

  6:  sum = foo(sum); 

  7:  B[1] = sum; 



Active Testing: Phase I 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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1. Insert Instrumentations at 
compile time 



Active Testing: Phase I 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Example Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[1][0]*B[0];  

  5:  sum+= A[0][1]*B[1]; 

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  6:  sum = foo(sum); 

  7:  B[0] = sum; 

  7:  B[1] = sum; 

1. Insert Instrumentations at 
compile time 

2. Run instrumented program 
normally -> Trace 



Active Testing: Phase I 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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1. Insert Instrumentations at 
compile time 

2. Run instrumented program 
normally -> Trace 

3. Find potential data races 

 Example Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[1][0]*B[0];  

  5:  sum+= A[0][1]*B[1]; 

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  6:  sum = foo(sum); 

  7:  B[0] = sum; 

  7:  B[1] = sum; 



Active Testing: Phase I 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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1. Insert Instrumentations at 
compile time 

2. Run instrumented program 
normally -> Trace 

3. Potential race between 
statements 5 and 7 

 Example Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[1][0]*B[0];  

  5:  sum+= A[0][1]*B[1]; 

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  6:  sum = foo(sum); 

  7:  B[0] = sum; 

  7:  B[1] = sum; 



Active Testing: Phase I 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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1. Insert Instrumentations at 
compile time 

2. Run instrumented program 
normally -> Trace 

3. Potential race between 
statements 5 and 7 

Goals. 1. Confirm races 
2. Check Assertion Failure 

 Example Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[1][0]*B[0];  

  5:  sum+= A[0][1]*B[1]; 

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  6:  sum = foo(sum); 

  7:  B[0] = sum; 

  7:  B[1] = sum; 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

  5:  sum+= A[1][0]*B[0];    

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  7:  B[1] = sum; 

Goal. Generate this execution 

Data Race! 

Control Scheduler using 
knowledge that (5,7) could race 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
   

Control Scheduler using 
knowledge that (5,7) could race 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
  3:  sum = 0; 

   

Control Scheduler using 
knowledge that (5,7) could race 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
  3:  sum = 0; 

   

Control Scheduler using 
knowledge that (5,7) could race 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

   

Control Scheduler using 
knowledge that (5,7) could race 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

   

Control Scheduler using 
knowledge that (5,7) could race 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

   

Control Scheduler using 
knowledge that (5,7) could race 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

   

Control Scheduler using 
knowledge that (5,7) could race 

Postponed = {                                    }  5:  sum+= A[0][0]*B[0]; 

Do not postpone 
if there is a deadlock 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
   3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

   

   

Control Scheduler using 
knowledge that (5,7) could race 

Postponed = {                                    }  5:  sum+= A[0][0]*B[0]; 

Do not postpone 
if there is a deadlock 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
   3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

 

 

   

Control Scheduler using 
knowledge that (5,7) could race 

Postponed = {                                    }  5:  sum+= A[0][0]*B[0]; 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
   3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

 

 

   

Control Scheduler using 
knowledge that (5,7) could race 

Postponed = {                                    }  5:  sum+= A[0][0]*B[0]; 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
   3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

 

 

   

Control Scheduler using 
knowledge that (5,7) could race 

Postponed = {                                    }  5:  sum+= A[0][0]*B[0]; 

Race? yes 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
   3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

   

   

Control Scheduler using 
knowledge that (5,7) could race 

Postponed = {                                    } 

 5:  sum+= A[0][0]*B[0]; 7:  B[0] = sum;   



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

  5:  sum+= A[1][0]*B[0];    

   

Control Scheduler using 
knowledge that (5,7) could race 

Racing Statements  
Temporally Adjacent 

Achieved Goal 1.  
Confirmed race 



Active Testing: Phase II 

foo is an expensive function 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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 Generate Trace:  
  3:  sum = 0; 

  3:  sum = 0; 

  5:  sum+= A[0][0]*B[0]; 

  5:  sum+= A[0][1]*B[1]; 

  6:  sum = foo(sum); 

  7:  B[0] = sum;   

  5:  sum+= A[1][0]*B[0];    

  5:  sum+= A[1][1]*B[1];  

  6:  sum = foo(sum); 

  7:  B[1] = sum; 

Control Scheduler using 
knowledge that (5,7) could race 

Achieved Goal 2.  
Assertion Failure 



Active Testing Cartoon: Phase I 

49 

Potential  
Collision 



Active Testing Cartoon: Phase II 

50 



Active Testing: 
Predict and Confirm Potential Bugs 

• Phase I: Predict potential bug patterns: 
– Data races:  Eraser or lockset based [PLDI’08] 

– Atomicity violations: cycle in transactions and happens-before 
relation [FSE’08] 

– Deadlocks: cycle in resource acquisition graph [PLDI’09] 

– Publicly available tool for Java/Pthreads/UPC [CAV’09] 

– Memory model bugs: cycle in happens-before graph [ISSTA’11] 

– For UPC programs running on thousands of cores [SC’11] 

• Phase II: Direct testing using those patterns to 
confirm real bugs  

  



• Practical and efficient 

• Finds many bugs quickly 

• Finds rare bugs with high probability 

• Creates an actual execution showing a bug 

• Reproducible 

52 

Active Testing Advantages 



Challenges for UPC 

• Java and pthreads programs 
– Synchronization with locks and condition variables 
– Single node 

• UPC has different programming model (SPMD) 
– Large scale 
– Bulk communication 
– Collective operations with data movement 
– Memory consistency 

• Store shared memory access information locally 
– Using efficient data structures (Interval Skip List and Lock Trie) 
– Keep only the weakest accesses 

• At barrier boundary, send access info to “owner” thread 
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Results 

Benchmark LoC Runtime 
ThrilleRacer ThrilleTester 

Overhead Pot. race Overhead Conf. race 

guppie 227 2.094s 12% 2 1.7% 2 

knapsack 191 2.099s 14.9% 2 1.8% 2 

lapalce 123 2.101s 16.3% 0 - - 

mcop 358 2.183s 0.7% 0 - - 

psearch 777 2.982s 1.8% 3 3.8% 2 

FT 2.3 2306 8.711s 6.1% 2 4.8% 2 

CG 2.4 1939 3.812s 0.5% 0 - - 

EP 2.4 763 10.02s 0.9% 0 - - 

FT 2.4 2374 7.036s 0.1% 1 4.2% 1 

IS 2.4 1449 3.073s 1.1% 0 - - 

MG 2.4 2314 4.895s 3.1% 2 1.2% 2 

BT 3.3 9626 48.78s 0.5% 8 0.8% 0 

LU 3.3 6311 37.05s 0.5% 0 - - 

SP 3.3 5691 59.56s 0.2% 8 3.0% 0 
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How Well Does it Scale? 

55 

• Maximum 8% slowdown at 8K cores 
– Franklin Cray XT4 Supercomputer at NERSC 

– Quad-core 2.x3GHz CPU and 8GB RAM per node 

– Portals interconnect 

• Optimizations for scalability 
– Efficient Data Structures 

– Minimize Communication 

– Sampling with Exponential Backoff 

Lock	 Trie

Interval Skip List

{I1, I3} {I2} {I2, I4}
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I1 I2 I3 I4 ...

[10, 50) [20, 50) [10, 30) [30, 40) ...

{I4}
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L
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L
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thread: 2
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node

data

nodenodenode

data

data

{I2}
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T1 T2 

notify 
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notify 
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notify 
wait 

notify 

wait 
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wait 

T1 T2 
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access 

barrier 

barrier 

barrier 

barrier 



• Targeted a simple programming paradigm 
– Threads and shared memory 

• Similar techniques are available for MPI and 
CUDA 
– ISP, DAMPI, MARMOT, Umpire, MessageChecker 

– TASS uses symbolic execution 

– PUG for CUDA 

• Analyze programs that mix different paradigms 
– OpenMP, MPI, CUDA 

– Need to correlate non-determinism across 
paradigms 

56 

Further Challenges! 



57 

Found a Bug.  Now what? 



 

 

Help Programmers to debug! 
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Found a Bug.  Now what? 



Goal 3: Show a buggy trace having fewer threads 
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Found a Bug.  Now what? 

Automated Thread Reduction 



Goal 3: Show a buggy trace having fewer threads 

 

 

 

 

Goal 4: Show a buggy trace having fewer context switches 
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Found a Bug.  Now what? 

Automated Context Switch 
Reduction 

Automated Thread Reduction 



Our Experience with C/PThreads 
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Context Switches > Optimal Number of Context Switches 

Histogram of the Context Switch Optimality of 
Simplified Traces 

bzip2

dedup

pbzip2

pfscan

blackscholes

• Over 90% of simplified traces were within 2 
context switches of optimal. 



• Small model hypothesis for Parallel Programs 

– 1. Most bugs can be found with few threads 

• 2-3 threads 

• No need to run on thousands of nodes 

– 2. Most bugs can be found with fewer context 
switches [Musuvathi and Qadeer, PLDI 07] 

• Helps in sequential debugging 
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Small model hypothesis  



63 

So many tools! 



64 

So many tools! 

Can I use 

printf? 
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Give me printf!!! 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
         printf(“B[%d] = %d\n”,j,B[j]); 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
    printf(“C[%d] = %d\n”,i,sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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Problem with printf!!! 

• Prints info only 
when a single 
thread reaches 
an interesting 
state 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
         printf(“B[%d] = %d\n”,j,B[j]); 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
    printf(“C[%d] = %d\n”,i,sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 
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Problem with printf!!! 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
         printf(“B[%d] = %d\n”,j,B[j]); 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
    printf(“C[%d] = %d\n”,i,sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 

• Prints info only 
when a single 
thread reaches 
an interesting 
state 

• Need to print 
when a set of 
threads reach an 
interesting 
concurrent state  
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Concurrent printf for debugging 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
 (P1,B==C && j==i):  
  printf(“B[%d]=%d\n”,j,B[j]); 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
(P1,B==C && j==i):  
    printf(“C[%d] = %d\n”,i,sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 

• Need to print 
when a set of 
threads reach an 
interesting 
concurrent state 

• Split a printf 
• Print if there is a 

data race or 
conflict  
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How do I Assert Correctness? 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == foo(A*B)); 



Asserting Correctness? 

70 

x=0.7 

y=0.3 

… 

γ=5.0  

Run with 

active testing 

 



Assertions can be quite COMPLEX! 

• Traditional functional correctness specs. 

– Relate program’s output to its input. 

– Generally complex and difficult to write: 
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f iter (c) = c 2 + xcenter + (xoff + x) res( )
+ i ycenter + (yoff - y) res( )

   

"0£x<width ."0£y< height .

f iter
maxiter

(0) < 2 Ù img[x][y] = 0( )
Ú $1£i<maxiter . f iter

i
(0) ³ 2 Ù "1£ j< i . f iter

j
(0) < 2

Ù img[x][y] = HSB (i maxiter)g ,1,1( )

where 



Parallel Specifications? 

• Traditional functional correctness specs. 

– Relate program’s output to its input. 

– Generally complex and difficult to write: 
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f iter (c) = c 2 + xcenter + (xoff + x) res( )
+ i ycenter + (yoff - y) res( )

   

"0£x<width ."0£y< height .

f iter
maxiter

(0) < 2 Ù img[x][y] = 0( )
Ú $1£i<maxiter . f iter

i
(0) ³ 2 Ù "1£ j< i . f iter

j
(0) < 2

Ù img[x][y] = HSB (i maxiter)g ,1,1( )

where 

Is there an easier way to specify 

just the parallel correctness? 



Assert that Parallelism is Correct 

1: void matvec(shared [N] int A[N][N],  
        shared int B[N],  
        shared int C[N]) { 
2:    upc_forall(int i = 0; i < N; i++; &C[i]) { 
3:       int sum = 0; 
4:       for(int j = 0; j < N; j++) 
5:           sum += A[i][j] * B[j]; 
6:    sum = foo(sum); 
7:       C[i] = sum; 
8:    } 
9:} 
 
assert(C == C’); 
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Assertion for Parallelism Correctness 

deterministic assume Pre(s0,s0’){ 

   P 

} assert Post(s1,s1’) 

Pre(s0,s’0) 

  
final state 

  
final state 

Post(s1  ,  s’1) 

CACM’10, FSE’09 [ACM SIGSOFT Distinguished paper], ICSE’10[Best Paper Award] 



Conclusion 

• Active testing has been successfully used to find 
and reproduce real bugs in Java and C/C++ 
programs 

– combine static/dynamic analysis and testing 

• Bugs can be detected using fewer threads 

• Need concurrent extensions to printfs and 
breakpoints 

• New mechanisms for specification 
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Bugs Found 

• In NPB 2.3 FT, 
– Wrong lock allocation function causes real races in 

validation code 

– Spurious validation failure errors 

shared   dcomplex *dbg_sum; 
static upc_lock_t *sum_write; 
 
sum_write = upc_global_lock_alloc(); // wrong function 
 
upc_lock (sum_write); 
{ 
 dbg_sum->real = dbg_sum->real + chk.real; 
 dbg_sum->imag = dbg_sum->imag + chk.imag; 
} 
upc_unlock (sum_write); 
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Bugs Found 

• In SPLASH2 lu, 

– Multiple initialization of vector without locks 

– Benign but performance bug 

void InitA() 
{ 
   … 
   for (j=0; j<n; j++) { 
      for (i=0; i<n; i++) { 
         rhs[i] += a[i+j*n]; // executed by all threads 
      } 
   } 
} 

77 



How Well Does it Scale? 
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How Well Does it Scale? 
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How Well Does it Scale? 
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How Well Does it Scale? 
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How Well Does it Scale? 
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How Well Does it Scale? 
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How Well Does it Scale? 
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Active Testing Limitations 

• Run active testing on application + input. 

• What if bug pattern occurs, but no crash? 

– Can’t ask the user 

– Need specification from programmer. 

86 

x=0.7 

y=0.3 

… 

γ=5.0  

Run with 

active testing 

 



Parallel Specifications? 

• Traditional functional correctness specs. 

– Relate program’s output to its input. 

– Generally complex and difficult to write: 
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f iter (c) = c 2 + xcenter + (xoff + x) res( )
+ i ycenter + (yoff - y) res( )

   

"0£x<width ."0£y< height .

f iter
maxiter

(0) < 2 Ù img[x][y] = 0( )
Ú $1£i<maxiter . f iter

i
(0) ³ 2 Ù "1£ j< i . f iter

j
(0) < 2

Ù img[x][y] = HSB (i maxiter)g ,1,1( )

where 



Parallel Specifications? 

• Traditional functional correctness specs. 

– Relate program’s output to its input. 

– Generally complex and difficult to write: 

88 

   

f iter (c) = c 2 + xcenter + (xoff + x) res( )
+ i ycenter + (yoff - y) res( )

   

"0£x<width ."0£y< height .

f iter
maxiter

(0) < 2 Ù img[x][y] = 0( )
Ú $1£i<maxiter . f iter

i
(0) ³ 2 Ù "1£ j< i . f iter

j
(0) < 2

Ù img[x][y] = HSB (i maxiter)g ,1,1( )

where 

Is there an easier way to specify 

just the parallel correctness? 



Lightweight Parallel Specs 

• Goal: Lightweight specifications for parallel 
correctness. 

– Easy for programmers to write. 

– With testing, effective in finding real bugs. 

• Semantic determinism [CACM’10, FSE ’09, ICSE ’10]. 

• Semantic atomicity [ASPLOS ‘11]. 

• Nondeterministic sequential specifications for 
parallel correctness [HotPar’10, PLDI’11] 
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Deterministic Specification 

• Goal: Specify deterministic behavior. 

– Same initial parameters => same image. 

– Non-determinism is internal.  

 

   // Parallel fractal render 

   mandelbrot(params, img); 

 



Deterministic Specification 

• Specifies:  Two runs from same initial program state have 
same result state for any pair of schedules 

deterministic { 

   // Parallel fractal render 

   mandelbrot(params, img); 

} 

s0 :initial state 

s1 

final state 

s’1 

final state 

= 



double A[][], b[], x[]; 

... 

deterministic { 

   // Solve A*x = b in parallel    

   lufact_solve(A, b, x); 

} 

Deterministic Specification 

• Too restrictive – different schedules may give 
slightly different floating-point results. 



set t = new RedBlackTreeSet(); 

deterministic { 

   t.add(3)  || t.add(5); 

} 

Deterministic Specification 

• Too restrictive – internal structure of set may 
differ depending on order of adds.  



Semantic Determinism 
• Too strict to require every interleaving to give exact 

same program state: 

 

 

 

 

 deterministic { 

    P 

 } 

s0 :initial state 

s1 

final state 

s’1 

final state 

= 



Semantic Determinism 
• Too strict to require every interleaving to give exact 

same program state: 

 

 

 

 

 deterministic { 

    P 

 } 

s0 :initial state 

s1 

final state 

s’1 

final state 

= 

Predicate! 
Should be 

user-defined. 



Semantic Determinism 
• Too strict to require every interleaving to give exact 

same program state: 

 

 

 

 

 deterministic { 

    P 

 } assert Post(s1,s’1) 

s0 :initial state 

  
final state 

  
final state 

Post(s1  ,  s’1) 



double A[][], b[], x[]; 

... 

deterministic { 

   // Solve A*x = b in parallel    

   lufact_solve(A, b, x); 

} assert (|x – x’| < ε) 

Semantic Determinism 

“Bridge” predicate 



 

 

 

 

 

 

 

• Resulting sets are semantically equal. 

set t = new RedBlackTreeSet(); 

deterministic { 

   t.add(3)  || t.add(5); 

} assert (t.equals(t’)) 

Semantic Determinism 



• Too strict – initial states must be identical 

– Not compositional. 

Preconditions for Determinism 

 set t = … 

 deterministic { 

    t.add(3) || t.add(5); 

 } assert (t.equals(t’)) 

 … 

 deterministic { 

    t.add(4) || t.add(6); 

 } assert (t.equals(t’)) 



Preconditions for Determinism 

• Too strict to require identical initial states: 

 

 

 

deterministic { 

   P 

} assert Post(s1,s1’) 

s0 

  
final state 

  
final state 

s0 

Post(s1  ,  s’1) 



Preconditions for Determinism 

• Too strict to require identical initial states: 

 

 

 

deterministic { 

   P 

} assert Post(s1,s1’) 

=s’0 

  
final state 

  
final state 

s0 

Post(s1  ,  s’1) 



Preconditions for Determinism 

• Too strict to require identical initial states: 

 

 

 

deterministic assume (s0 = s0’){ 

   P 

} assert Post(s1,s1’) 

=s’0 

  
final state 

  
final state 

s0 

Predicate! Should be 
user-defined. 

Post(s1  ,  s’1) 



Preconditions for Determinism 

• Too strict to require identical initial states: 

 

 

 

deterministic assume Pre(s0,s0’){ 

   P 

} assert Post(s1,s1’) 

Pre(s0,s’0) 

  
final state 

  
final state 

Post(s1  ,  s’1) 



deterministic assume Pre(s0,s0’) { 

   P 

} assert Post(s1,s1’) 

Bridge predicates/assertions 

“Bridge” 
predicate 

“Bridge” 
assertion 



set t = ... 

deterministic assume (t.equals(t’) { 

   t.add(4) || t.add(6); 

} assert (t.equals(t’)) 

• Specifies: Semantically equal sets yield 
semantically equal sets. 

Preconditions for Determinism 



Deterministic Specs 

• Can effectively test deterministic specs. 

– Added assertions to 13 benchmarks. 

– Used Active Testing to test if concurrency issues 
(data races, atomicity violations, etc.) could lead to 
violations of deterministic spec. 

• Developed techniques for automatically inferring 
these specs 

• See our CACM 10, FSE 09, ICSE 09, ASPLOS 11 
papers for details  



Checking correctness of parallel programs 

Parallel 
program 

Functional 
specification Satisfies? 

Complicated, 
end-to-end reasoning 

107 
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Our proposal: Separate reasoning about 
functional correctness and thread schedules 

Parallel 
program 

Functional 
specification Satisfies? 

Parallel 
program 

Functional 
specification 

Determinism  
Specification 

Satisfies? 

Complicated, 
end-to-end reasoning 

Two independent, simpler 
verification tasks 
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Our proposal: Separate reasoning about 
functional correctness and thread schedules 

Parallel 
program 

Functional 
specification Satisfies? 

Parallel 
program 

Functional 
specification 

Nondeterministic 
sequential 

specification 

Complicated, 
end-to-end reasoning 

Two independent, simpler 
verification tasks 



Goal: Decompose effort in addressing 
parallelism and functional correctness 

110 

Functional Correctness. 
Reason about 

sequentially, without 
thread interleavings. 

Parallelism Correctness. 
Handle independently of 

complex & sequential 
functional properties. 

Parallel 
program 

Functional 
specification 

ϕ 

Nondeterministic 
sequential 

specification 

Nondeterministic 
sequential 

specification 



Goal: Decompose effort in addressing 
parallelism and functional correctness 

111 

Parallel 
program 

Nondeterministic 
sequential 

specification 

1. NDSeq: easy-to-write spec for parallelism. 
 
1. Runtime checking of NDSeq specifications. 

Functional 
specification 

ϕ 



for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  if cost < min_cost: 
     min_cost = cost 
     min_item = i 

Motivating Example 
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• Goal: Find minimum-cost item in list. 

 
for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  if cost < min_cost: 
     min_cost = cost 
     min_item = i 

Input: N items.  

Output: min_cost and 
min_item. 



Motivating Example 
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• Goal: Find minimum-cost item in list. 

 for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  if cost < min_cost: 
     min_cost = cost 
     min_item = i` 

for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  if cost < min_cost: 
     min_cost = cost 
     min_item = i` 

for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i)  
  if cost < min_cost: 
     min_cost = cost 
     min_item = i 

Computes cost of 
item i. Expensive. 

Computes cheap lower 
bound on cost of i.   

Prune when i cannot 
have minimum-cost.  



for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  if cost < min_cost: 
     min_cost = cost 
     min_item = i 

Motivating Example 
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• Goal: Find minimum-cost item in list. 

 

How do we 
parallelize this 

code? 



Parallel Motivating Example 
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• Goal: Find min-cost item in list, in parallel. 

, 
parallel-for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  synchronized (lock): 
     if cost < min_cost: 
        min_cost = cost 
        min_item = i 

Updates to best are 
protected by lock. 

Loop iterations can be 
run in parallel. Claim: Parallelization 

is clearly correct. 
 

How can we specify 
this parallel 

correctness? 



Specifying Parallel Correctness 
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• Idea: Use sequential program as spec. 

parallel-for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  synchronized (lock): 
     if cost < min_cost: 
        min_cost = cost 
        min_item = i 

for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
   
  if cost < min_cost: 
     min_cost = cost 
     min_item = i 

Satisfies? 

No. 



Parallel-Sequential Equivalence? 
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bound: 5 
cost: 5 

(1) bound: 5 
cost: 5 

(2) items: 
min_item: – 
min_cost: ∞ 

prune?(1) 

update(1) 

update(2) 

min_item: (2) 
min_cost: 5 

parallel-for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  synchronized (lock): 
     if cost < min_cost: 
        min_cost = cost 
        min_item = i 

prune?(2) 

prune?(1) 

update(1) 

prune?(2) 

But sequential program: 
• Returns min_item = (1). 
• Prunes (2). 



Specifying Parallel Correctness 
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• Parallel program has freedom to: 

parallel-for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  synchronized (lock): 
     if cost < min_cost: 
        min_cost = cost 
        min_item = i 

Avoid pruning by 
scheduling check 
before updates. 

Process items in a 
nondeterministic order. 

Must give sequential spec this freedom. 



Nondeterministic Sequential Spec 
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parallel-for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  synchronized (lock): 
     if cost < min_cost: 
        min_cost = cost 
        min_item = i 

nd-for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if * && b >= c: 
     continue 
  cost = compute_cost(i) 
   
  if cost < min_cost: 
     min_cost = cost 
     min_item = i 

Can choose 
not to prune item. 

Runs iterations in any order. 



Nondeterministic Sequential Spec 
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• Parallelism correct if no more nondeterminism: 

parallel-for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if b >= c: 
     continue 
  cost = compute_cost(i) 
  synchronized (lock): 
     if cost < min_cost: 
        min_cost = cost 
        min_item = i 

nd-for (i in [1..N]): 
  c = min_cost  
  b = lower_bound(i) 
  if * && b >= c: 
     continue 
  cost = compute_cost(i) 
   
  if cost < min_cost: 
     min_cost = cost 
     min_item = i 

Satisfies? 

Yes. 



NDSeq Specification Patterns 
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• Found three recipes for adding *’s: 

1. Optimistic Concurrent Computation 
(optimistic work with conflict detection) 

2. Redundant Computation Optimization 
(e.g., pruning in branch-and-bound) 

3. Irrelevant Computation 
(e.g., updating a performance counter) 

• With these recipes, fairly simple to write NDSeq 
specifications for our benchmarks. 

• See our HotPar 10 and PLDI 11 papers 



Testing Parallelism Correctness 
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Initial 

State s0 

Final 

State s1 

Given: an execution of parallel program 
(e.g. of parallel loop iterations)  

Initial 

State s0 
Final 

State s1 

Is there an equivalent execution of NDSeq spec?  

Idea: 
Serializability? 



Conflict-Serializability is Too Strict 

123 

c = min_cost  
b = lower_bound(i) 
if * [true]: 
    if b >= c: // false 
 
 
cost = compute_cost(i) 
if cost < min_cost: 
    // false 

 … 
min_cost = cost 
 … 

Thread 1: 

Thread 2: 
c = min_cost  
b = lower_bound(i) 
if * [true]: 
    if b >= c: // false 
 
 
cost = compute_cost(i) 
if cost < min_cost: 
    // false 

 … 
min_cost = cost 
 … 

Classic Theorem: 
Cycle of conflict edges => 

Not serializable! 



Relaxing Conflict-Serializability 
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c = min_cost  
b = lower_bound(i) 
if * [true]: 
    if b >= c: // false 
 
 
cost = compute_cost(i) 
if cost < min_cost: 
    // false 

 … 
min_cost = cost 
 … 

Thread 1: 

Thread 2: 
c = min_cost  
b = lower_bound(i) 
if * [false]: 
    if b >= c: // false 
 
 
cost = compute_cost(i) 
if cost < min_cost: 
    // false 

Can we set * to false? 
 

Check: Does body have 
any side effects on execution? 



Relaxing Conflict-Serializability 
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c = min_cost  
b = lower_bound(i) 
if * [false]: 
    if b >= c: // false 
 
 
cost = compute_cost(i) 
if cost < min_cost: 
    // false 

 … 
min_cost = cost 
 … 

Local c is no longer used, 
so conflicting read of 

min_cost is irrelevant. 
Thread 1: 

Thread 2: 

Theorem. No relevant 
conflict cycles => exists 
equivalent NDSeq run! 



Relaxing Conflict-Serializability 
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c = min_cost  
b = lower_bound(i) 
if * [false]: 
 
cost = compute_cost(i) 
if cost < min_cost: 
    // false 

 … 
min_cost = cost 
 … 

Read different value for 
min_cost, but overall 
behavior is the same. 

Theorem. No relevant 
conflict cycles => exists 
equivalent NDSeq run! 

Iteration 1: 

Iteration 2: 
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Traditional conflict serializability: 

+ flipping * + dynamic data dependence: 

Thread 2 

Thread 1 (a) 

Thread 1 (b) 

Thread 2 

Thread 1 (a) 

Thread 1 (b) 

Not serializable! 
Cycle of conflicts. 

Thread 2 

Thread 1 (a) 

Thread 1 (b) 

Thread 2 

Thread 1 (a’) 

Thread 1 (b) 

Thread 2 

Thread 1 (a’) 

Thread 1 (b) 

Flip * 



Experimental Evaluation 
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• Wrote and tested NDSeq specifications for: 

– Java Grande, Parallel Java, Lonestar, DaCapo, and 
nonblocking data structure. 

– Size: 40 to 300K lines of code. 

– Tested 5 parallel executions / benchmark. 

• Two claims: 
1. Easy to write NDSeq specifications. 

2. Our technique serializes significantly more 
executions than traditional methods. 
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Benchmark Lines of 
Code 

# of Parallel 
Constructs # of if(*)  

stack 40 1 2 
queue 60 1 2 
meshrefine 1K 1 2 
sunflow 24K 4 4 
xalan 302K 1 3 
keysearch3 200 2 0 
mandelbrot 250 1 0 
phylogeny 4.4K 2 3 
series 800 1 0 
crypt 1.1K 2 0 
raytracer 1.9K 1 0 
montecarlo 3.6K 1 0 

JG
F 

PJ
 

D
aC

ap
o 
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Benchmark Size of 
Trace 

Serializability Warnings 
 

stack 1,744 5 (false) 0 
queue 846 9 (false) 0 
meshrefine 747K 30 (false) 0 
sunflow 24,250K 28 (false) 3 (false) 
xalan 16,540K 6 (false) 2 (false) 
keysearch3 2,059K 2 (false) 0 
mandelbrot 1,707K 1 (false) 0 
phylogeny 470K 6 6  
series 11K 0 0 
crypt 504K 0 0 
raytracer 6,170K 1 1 
montecarlo 1,897K 2 (false) 0 

JG
F 

PJ
 

D
aC

ap
o 

Traditional Our Technique 
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Benchmark Size of 
Trace 

Serializability Warnings 
 

stack 1,744 5 (false) 0 
queue 846 9 (false) 0 
meshrefine 747K 30 (false) 0 
sunflow 24,250K 28 (false) 3 (false) 
xalan 16,540K 6 (false) 2 (false) 
keysearch3 2,059K 2 (false) 0 
mandelbrot 1,707K 1 (false) 0 
phylogeny 470K 6 6  
series 11K 0 0 
crypt 504K 0 0 
raytracer 6,170K 1 1 
montecarlo 1,897K 2 (false) 0 

JG
F 

PJ
 

D
aC

ap
o 

Traditional Our Technique 



• Build testing tools 

– Close to what programmers use 

– Hide program analysis under testing 

• Develop light-weight specification mechanisms 

– Bridge predicates and NDSeq 

• Claim: We have made enough progress in finding 

concurrency bugs 

– Our tools can find important bugs quickly 

– Time to focus on sequential test generation 
132 

Conclusions 
 


