
Oak Ridge Leadership Computing Facility Tool Needs Perspective

Richard Graham OLCF Programming Environment Lead CSM – Application Performance Tools Group Leader

Operational Characteristics

- Production use of facility (stability, sustainable support, longterm reproducibility) → Considerable inertia to change
- Users typically run on a variety of platforms and demand portable performance, requiring standard (or, at least, ubiquitous) solutions
- Well defined (long term) support models
- Do want to address future needs
- Tool usage is low (but is rising)
 - Involvement of consumers in determining what is produced is critical

Programming Environment Requirements

- Portable programming model
 - Cross platform
 - General purpose (not aimed at a small number of problem domains)
- Full fledged programming environment
 - Generate executables
 - Correct
 - Efficient
 - Supports the rest of the tool chain
 - Analyze run-time characteristics of executables
 - Correctness
 - Performance
 - Accelerate source-code changes
 - Local

Programming Environment Requirements – cont'd

- Mathematical library support
- Well defined support model
 - Fix tool defects
 - Training
- Long-term support model
- Cross-platform tools
- Multiple compilers, debuggers, performance analysis tools
 - Redundancy in critical tool-chain
 - Broad range of analysis capabilities

OLCF Titan Project – Programming Environment strategy

- New system architecture
 - GPU based
 - Virtually non-existent HPC Programming Environment
- Leverage existing commercial efforts
 - Compilers
 - Debuggers
 - Performance analysis tools
 - Math Libraries
- Impact the second round of applications being ported to the system
- Start to do research on the longer-term technical challenges
 - Institutional funding

Compilers

6 Managed by UT-Battelle for the U.S. Department of Energy

Compiler Support - Approach

- Enhance existing compiler capabilities
 - CAPS HMPP compiler started Dec 2009
 - Cross platform full support for dynamic host/accelerator computing
 - Coordinate with VampirNG/VampirTrace and DDT
 - Cray Integrated Open PE
 - Packaging, testing, and supporting 3rd party compilers (PGI)
- Develop new Cray Compilation Environment (CCE)
 - Incremental releases every 4-6 months
- Enhance the OpenMP standard for acceleration support
 - ORNL, Cray, CAPS, PGI, and others members on the sub-committee

Accomplishments to date

• HMPP (2.4)

- Supports C++ and directives
- Works with MADNESS application (C++)
- Supports directives to reuse data resident in the GPU
- Inlining support
- User defined data type support
- Control data layout/coordination (CPU vs. GPU)
- Asynchronous data transfer between CPU and GPU
- Shared memory direct copy
- Inter-procedural Fortran 90 module support
- Support for C++ HMPP Runtime API (extending to C and Fortran)
- HMPP Wizard Tool (help insert directives)
- Define compiler and performance analysis tools support

- Cray Compilation Env
 - Not public at this stage

- Cray Integrated Open PE Accelerator Enhancements
 - Compilers: PGI Accelerator
 - Library/Tools: NVIDIA toolchain/SDK
 - Performance analysis: VAMPIR
 - Debugging: TotalView, DDT

Debuggers

9 Managed by UT-Battelle for the U.S. Department of Energy

Goals

- Debug entire application
 - Host processor
 - Accelerator
- Debug at scale
- Debug in the context of the user source code

Approach

- Based on Allinea Software, Inc's DDT debugger
 - Complete support for Heterogeneous Multi-Core support
 - Rely on NVIDIA cuda-gdb for GPU debugging
- Leverage ongoing scalability work for OLCF
 - 3 year project which began mid 2009
 - Scalable infrastructure developed
 - Startup on 220K processors
 - Routine debugging at 100,000+ processes, with full applications
 - Moving focus to scalable analysis

Accelerator debugging enhancements

- Phase I Q4 calendar year 2010
 - Improved thread support
 - GPU scalability
- Phase 2 Q2 calendar year 2011
 - HMPP and PGI heterogeneous compiler support
 - Improved thread support

Performance Analysis Tools

Goals

- Analyze performance at scale
- Analyze full application performance
 - Host processor
 - Accelerator
- Analyze the performance in the context of user source code

Approach

- Enhance Current Tools
 - Vampir
 - CrayPAT, Apprentice
 - Use NVIDIA performance counter interface
- New Capabilities
 - Cray Optimization Explorer
 - HMPP wizard
- Tighter compiler integration

New Capabilities

- VampirNG/VampirTrace
- Improve GPU support
- Improved Scalability: Improve scalability

- Cray Performance Tools
 - Cray Optimization Explorer (COE)
 - Scoping tool to help users port and optimize applications
 - Performance measurement and analysis tools for porting and optimization
 - CrayPAT/Apprentice²
 - Integrated with COE

OLCF: Long-Term Functionality Requirements

- Tools must work on full system scale
- Strong support for large scale source-code transformations
 - Porting and optimizing codes
 - Support production code bases: order 1,000,000+ lines of source-code, multi-language
 - Support for major architecture changes
 - Semi-automated: need to speed up the porting process an order of magnitude
- Detailed memory performance analysis
 - Local (full memory hierarchy) and remote
- Usable tools
 - Analysis in a user friendly context
- Interoperable Tool Chain
- 17 Managed by UT-Battell
 - for the U.S. Dep# Traditional" tool functionality still needed

