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Letter of Transmittal 
 
13 December 2004 
 
Dr. Gary M. Johnson 
Office of Science 
U.S. Department of Energy 
Washington, D.C. 
 
Dear Dr. Johnson, 
 
It is both an honor and pleasure to submit this report, Multiscale Mathematics Initiative: a Roadmap, on 
behalf of the computational scientists and mathematicians who attended and contributed to the series of 
three workshops sponsored by the Department of Energy. My co-organizers and I have done our best to 
faithfully represent the collective wisdom of this scientific community concerning the needs driving a 
research initiative in multiscale mathematics. 
 
The broad range of domain experts who attended and presented their work at this conference reflects the 
extent to which advances in multiscale mathematics can be expected to impact the computational 
sciences. With mathematics as a common language, experts across domains such as biology, chemistry, 
and physics were able to share their experiences and insights concerning the underlying computational 
challenges that we together have a vested interest in solving. We are all faced with outstanding scientific 
problems that current mathematical methods do not adequately address. As we solve the mathematical 
problems of multiscale science, we shall also advance science and technology. 
 
Of all the investments that the Department of Energy may choose from, multiscale mathematics offers 
the greatest payoffs as each step forward will be amplified across the other programs. We urge you to 
consider the long term returns that a multiscale mathematics initiative will seed.  
 
Respectfully, 
 

 
Moe Khaleel 
Pacific Northwest National Laboratory 
 
On Behalf of Third Workshop co-organizers John Dolbow (Duke University) and Julie Mitchell 
(University of Wisconsin, Madison) 
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Executive Summary 

Science and technology are on the verge of a revolution.  Physical processes at exceedingly large and 
small scales of time and space are becoming increasingly well understood, and technologies for 
engineering these systems are rapidly emerging.  Yet, in general, we have no means of translating 
fundamental, detailed scientific knowledge at these micro and macro scales into their effect on the scale 
of the world in which we live.  Without the capability to “bridge the scales,” a significant number of 
important scientific and engineering problems will remain out of reach. 

Following 30 years of exponential advances in modeling, algorithms, and computer hardware, 
mathematical modeling and computational simulation have reached the point where simulation of most 
physical processes over relatively narrow ranges of scales has become an essential tool for both scientific 
discovery and engineering design.  Further growth, however, is significantly limited by the absence of a 
mathematical framework and software infrastructure to integrate heterogeneous models and data over the 
wide range of scales that characterize most physical phenomena.  Fundamentally new mathematics and 
considerable development of computational methods and software will be required to address the 
challenges of multiscale simulation. 

The U.S. Department of Energy (DOE) sponsored three workshops in 2004 to consider the scientific 
needs and mathematical challenges for multiscale simulation.  These meetings were structured to solicit 
advice from the engineering, mathematics, and scientific communities in developing a roadmap for future 
investments in multiscale mathematics.  The scientists participating in the workshop included primarily 
natural scientists—physicists, chemists, geologists, biologists—as well as computational mathematicians 
and computer scientists.  The number and location of the workshops was selected to maximize 
participation from a comprehensive cross section of the scientific community. 

The first workshop took place in Washington, D.C. May 3–5, and focused on scientific applications  
and cross-cutting mathematical issues (http://www-fp.mcs.anl.gov/multiscale-workshop/).   
Participants were asked to identify the most compelling scientific applications facing major  
roadblocks due to multiscale modeling needs and to formulate a strategic plan for investment  
in multiscale mathematics research that would meet those needs.  The second workshop took place  
in Broomfield, Colorado July 20-22, where participants discussed the current state of mathematical 
methods for multiscale problems and potential directions for development, 
(http://www.math.colostate.edu/~estep/doe_multiscale/DOE_Multiscale_2.html).  The third workshop 
was held in Portland, Oregon September 21-23, (http://multiscalemath.pnl.gov), where the objective was 
to emphasize the connection between domain application areas and the multiscale mathematical 
frameworks, as well as the synergy between domain application scientists and mathematicians, thus 
completing the process.  All three workshops were stimulated by a series of invited lectures and small 
group breakout sessions. 

This report is intended to guide the issuance of a DOE Mathematical, Information, and Computational 
Sciences call for proposals for the new “Atomic to Macroscopic Mathematics” research initiative.  The 
FY 2005 budget for this initiative, estimated at $8.5 million, is intended to support the applied 
mathematics research needed to break through the current barriers in our understanding of complex 
physical processes whose components and processes span a wide range of interacting length- and time-
scales.  Such research will potentially impact scientific domains including, but not limited to, 
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environmental and geosciences, climate, materials, combustion, high energy density physics, fusion, 
bioscience, chemistry, and networks.  This report represents the important conclusions, themes, and 
recommendations for DOE investments from all three workshops. 

The recommendations to come out of this series of workshops support research, collaboration, training, 
and disciplinary infrastructure.  Research will be necessary across the spectrum from theory to 
application:  formalisms and frameworks, algorithm development and implementation in software, 
analysis metrics and tools, and demonstrations of applied principles within specific problem domains.  Of 
particular interest will be:  1) mathematical bridges across levels of type and scale such as stochastic to 
deterministic, discrete to continuous, interscale coupling; 2) mathematically derived metrics for error, 
uncertainty, stability, and performance bounds; 3) software development including implementations of 
new algorithms and problem sets for benchmarking, the transfer of existing software to new problem 
domains, validation and verification. 

Research opportunities should encourage individual efforts as well as highly interdisciplinary teams that 
partner university scientists with their counterparts in the national laboratories.  To spur innovation, a few 
projects deemed to be high risk should be encouraged.  To fully disseminate current knowledge, and to 
prepare for the rapid dissemination of future research results, multiscale mathematics will require 
communication conduits including workshops, conferences, travel within collaborative research teams, 
training programs for young scientists, and educational products such as textbooks. 

We expect the Multiscale Mathematics Initiative Roadmap presented in this report to culminate in a new 
foundation for multiscale mathematics and a new generation of multiscale software applied to 
comprehensive scientific simulations on problems of importance to DOE. 
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1 Introduction 

Until recently, most science and engineering has focused on understanding the fundamental building 
blocks of nature.  This effort has been enormously successful but has essentially focused on problems 
containing one, and occasionally two, space and time scales.  The ability to simulate physical processes 
containing subcomponents that operate in vastly different space and time scales is essential to furthering 
our understanding of their impact on the scale in which we live.  Unfortunately, the ability to simulate 
complete systems does not follow immediately or easily from an understanding, however comprehensive, 
of the component parts.  For that, we need to know and to faithfully model how the system is connected 
and controlled at all levels. 

Systems that depend inherently on physics at multiple scales pose notoriously difficult theoretical and 
computational problems.  The properties of these systems depend critically on important behaviors 
coupled through multiple spatial and temporal scales, often without a clear separation between scales, and 
as such, their description does not fall within the set of classical methods for crossing scales.  In such 
situations, consistent and physically realistic mathematical descriptions of the coupling between, and 
behavior of, the various scales are required to obtain robust and predictive computational simulations.  
The physical and mathematical complications that arise in multiscale systems currently present one of the 
major obstacles to future progress in many fields of science and engineering, including environmental and 
geosciences, climate, materials, combustion, high energy density physics, fusion, bioscience, chemistry, 
power grids and information networks. 

Multiscale simulations are computationally demanding.  Over the past 30 years, advances in 
computational methods and supercomputer hardware have each contributed speed-up of approximately 
six orders of magnitude – over a trillion-fold improvement.  Yet even with these incredible capabilities, 
we are currently limited to simulating most phenomena over only a relatively narrow range of scales.  For 
a simple premixed turbulent combustion problem with Reynolds number 10,000 and Zeldovich number 
100, direct numerical simulation would require computations that are 1012 times greater than what can be 
solved today.  Assuming that hardware and algorithmic performance will continue to improve at the 
current rate, extrapolation suggests that it will be 40 years before we have sufficient power to simulate 
this simple model of combustion.  Similarly, it will be at least 80 years before we will have the capacity to 
simulate a crack propagation problem using a molecular dynamics computation for 1 cm3 of Copper 
(~1023 atoms) over the period of 1 second. 

Increasing capabilities in experimental science also contribute to the pressure for the development of 
multiscale mathematics.  New measurement and characterization tools in many fields make it possible to 
explore spatial and temporal phenomena on an unprecedented range of scales.  For systems where such 
information is available, we have the building blocks to create realistic mathematical models of behavior 
on a number of individual scales.  This increases the need to understand how to combine data and realistic 
models at different scales to obtain a manageable model of the entire multiscale system. 

While several examples exist of successful multiscale simulations, we have neither a mathematical 
framework nor a software infrastructure to integrate the vast majority of heterogeneous models and data 
over the wide range of scales present in most physical problems.  The ability to build predictive 
capabilities through simulation will help achieve a deeper understanding of the behavior of these systems 
and can be used to solve the many problems facing DOE in general.  For example, Figure 1 shows the  
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Figure 1. Models for a broad range of timescales need be connected to simulate a burning plasma 
experiment of magnetic fusion.  The four parts of the figure illustrate the types of simulation 
techniques used over subsets of the time or frequency domain.  The predictive capabilities of 
such a simulation require an ensemble of accurate and efficient multiscale mathematical 
methods such as multiresolution discretization, hybridization, closure, and model reduction. 
(Figure courtesy of the First Multiscale Mathematics Workshop report) 

broad range of timescales—14 orders of magnitude or more—that come into play in simulating a burning 
plasma experiment of magnetic fusion (see Section 3.6).  Widely different analysis techniques and 
computational approaches are appropriate for different subregions of the space or time domains.  An 
integrated modeling capability will greatly facilitate the process whereby plasma scientists develop an 
understanding of and insight into these complex systems.  This understanding is needed for realizing the 
long-term goal of creating an environmentally and economically sustainable source of energy. 

The number and diversity of problem domains facing this computational barrier is compelling: 

• Simulating the operation of fuel cells, balancing fluid flow, heat and mass transfer, high-heat release 
non-equilibrium chemical kinetics coupled with catalytic surface chemistry 

• Simulating subsurface contaminant transport, balancing advection, diffusion, and reaction in a 
complex flow environment 

• Modeling protein folding processes, coupling physical effects of the fast bond stretching scales to 
those on the much slower folding scales 

• Studying soft matter properties determined or modulated by non-covalent effects, microstructural 
hydrodynamic coupling, and excluded volume/connectivity constraints 
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• Increasing reliance on long-term atmospheric and climate simulations to predict the amount of 
carbon dioxide in the terrestrial system and determine policy accordingly 

• Modeling large-scale graphs and networks representing biological systems, power grids, or 
communication networks involving hundreds of thousands of nodes coupled through multiple scales 
in space and time. 

Mathematical techniques such as:  multiresolution analysis, multigrid methods, multiscale geometric 
analysis, adaptive timestep methods, adaptive mesh refinement, adaptive analysis-based methods for 
integral equations, hybrid methods, variational multiscale analysis, variational multiscale method, 
mathematical homogenization, renormalization group techniques, and operator splitting, among others, 
have produced significant advances in understanding multiscale problems.  However, these techniques 
have typically been developed and employed in very specific application areas.  Consequently, multiscale 
research remains largely disjointed among physical disciplines, and researchers within each discipline are 
unlikely to be familiar with more than a few of these methods. 

The development of an overall framework of classes of multiscale methods will require circumstances 
promoting a greater exchange of information among disparate lines of research.  We must then expand on 
this framework to develop new mathematical techniques, computational methods, and software that are 
both fundamentally novel and built on the foundation of classical methods of applied mathematics if we 
are to face the challenge presented by DOE mission-critical multiscale scientific problems. 
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2 Multiscale Mathematics Needs 

In this section, we discuss the technical objectives for a multiscale mathematics research program.  The 
goal of the program is to develop scale-linking models and the associated computational methods required 
to produce simulations that properly account for behaviors occurring over multiple scales.  By 
“simulation” we mean to include predictive computational representations as well as statistics or data-
based characterizations of a system.  Because the key mathematical and physical issues arising in modern 
multiscale problems occur across a wide range of scientific and engineering disciplines, the identification 
and categorization of common issues is an important step in the process of developing a multiscale 
framework.  As an incomplete list, some key simulation issues include:  

• Selecting models and model parameters at each scale  

• Linking models and information across scales and physical phenomena 
○ Determining the form and strength of coupling 
○ Representing information transfer across levels of scale and type (e.g., stochastic to 

deterministic, discrete to continuous, interscale coupling) 
○ Resolving model mismatch 

• Reducing models 
○ Identifying relevant degrees of freedoms 
○ Determining necessary and sufficient properties of closure 
○ Substituting appropriate approximations (including subscale models, probabilistic 

representations) 

• Understanding and controlling sources of error and uncertainty 
○ Quantifying the degree of correspondence between a model and reality 
○ Measuring discretization, integration, and basis set errors 
○ Determining the propagation of error and uncertainty across scales and physical phenomena 
○ Using indicators to adaptively select details and resolution 

• Analyzing complex models 
○ Understanding how stochastic and rare events alter the properties of a system. 

In the following subsections, we summarize the current and emerging mathematical methods being 
applied to multiscale problems as well as open areas for research associated with each class of methods.  
Many of the emerging methods will form the foundation for fundamentally new classes of multiscale 
mathematical methods.  Finally, we provide arguments supporting the need for a framework and reaffirm 
the need for ever-faster hardware and algorithms to meet computational challenges of multiscale 
simulations. 

2.1 Methods 

We loosely group the major approaches to the multiscale problem into eight categories.  The distinction 
made in this document is but one among many possible ways that these methods might be categorized.  A 
typical multiscale simulation will require the incorporation of several of these methods: 
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 1. Multiresolution methods, which resolve multiple scales within a single model by adjusting the 
resolution as a function of space, time, and data;  

 2. Hybrid methods, which couple multiple models and numerical representations across different scales 
(and often, physical phenomena) into a single simulation  

 3. Closure methods, which provide analytical or numerical representations for the behavior of 
components at much smaller scales than the scale of primary interest 

 4. Adaptive methods, which dynamically control methods, models, and parameterizations so as to 
minimize the error and uncertainty associated with a simulation or data representation 

 5. Error estimation methods, which characterize and quantify deterministic sources of error associated 
with analytical and numerical techniques (e.g., discretization, quadrature, and basis set 
approximations) 

 6. Uncertainty quantification methods, which characterize and quantify sources of uncertainty 
associated with a model (e.g., geometric idealization, uncertain parameters, statistical representation 
of microscale fluctuations) 

 7. Inverse and optimization methods, which identify model parameters and control mechanisms such 
that the behavior of a model matches a desired goal behavior 

 8. Dimensional reduction methods, which reduce models in high-dimensional state spaces to their 
essential dimensions or fundamental modes in a smaller number of degrees of freedom. 

2.1.1 Multiresolution Methods 

Multiresolution methods resolve multiple scales within a single model by adjusting resolution and scope 
as a function of space, time, and data.  Many of these methods use information from error metrics to 
adaptively select numerical parameters.  Existing and evolving multiresolution methods include, for 
example, multigrid and algebraic multigrid, multiresolution analysis (includes multiwavelets), and 
multiscale geometric analysis.  A fundamental need in this category is the development of fast solvers for 
irregular algebraic systems that naturally arise in multiscale and adaptive resolution processes. 

Open research areas include: 

• Extension of existing methods to a broader range of multiscale problems 

• Extension of multigrid, algebraic multigrid, and other multiresolution methods to include the time 
domain and to produce coarse model hierarchies, adaptively testing for important fine-scale features 

• Analysis and compression of functions and operators by simultaneous multiscale function techniques 
and multiscale geometry 

• Multiresolution-in-time algorithms for stochastic differential and difference equations. 
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Accurate and efficient simulation and data representation in computational chemistry and many other 
scientific domains rely on current multiresolution methods, and extending these methods is crucial for 
extending the range of truly multiscale problems that can be solved. 

2.1.2 Hybrid Methods 

Hybrid methods couple multiple models and numerical representations across different scales (and often, 
different physics) into a single simulation over contiguous domains.  Individual models in a hybrid 
simulation may (or may not) use multiresolution methods.  The numerical representations and 
information passing issues that may need to be bridged include discrete to continuum and/or stochastic to 
deterministic types.  Hybrid methods may include closure approximations at the largest and smallest 
scales.  Individual models and/or the hybrid methods for coupling the individual models rely critically on 
information regarding error and uncertainty to adaptively choose different algorithms or parameters 
during runtime.  Successful implementation of hybrid methods in all cases hinges on the ability to 
develop error- and uncertainty-based indicators aimed at guiding the selection of the appropriate form and 
strength of inter-model coupling and identifying regions of space and time where more complete 
descriptions are required.  Existing and evolving hybrid methods include, for example, the quasi-
continuum method and hierarchical modeling, and more broadly, information- or parameter-passing 
methods and concurrent modeling methods.   

Open research areas include: 

• Hierarchical models, or sequences of mathematical models with increasingly more sophistication 
with the goal to identify the member(s) of the sequence that are both admissibly accurate and 
computationally least expensive 

• New stable and accurate discretizations for the coupling between scales and models (e.g., coupling 
statistical sampling of microscale to high-order PDE schemes) 

• Derivation of the correct interface conditions to connect large scales to small scales, e.g., continuum 
model to a subgrid microscopic model. 

Several scientific problems urgently demonstrate the need for new hybrid methods including the 
modeling of chemical and biochemical reaction and diffusion processes in catalysis and bioremediation, 
characterizing macroscopic stability in tokamaks, materials science, and climate modeling. 

2.1.3 Closure Methods 

Closure methods provide analytical or numerical representations for the behavior of components at much 
smaller scales than the scale of primary interest.  These approximations can then be used as inputs to 
simulations resolving the primary scale.  Relevant problems include both those that have strong scale 
separation and those that lack strong scale separation.  Closure methods should be designed to both 
respect the physical integrity of the system and produce computationally efficient schemes.  Such 
methods are a critical component of, for example, mathematical homogenization and renormalization 
group techniques, as well as more recent advances such as multiscale finite elements, variational 
multiscale analysis, and the heterogeneous multiscale method.  Variational methods exemplify one 
potential area of promise because they may offer a systematic approach based on decomposition of the 
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state space into “resolved” and “unresolved” scales, derivation of exact equations for each scale, and 
identification of scale-to-scale interactions.  

Open research areas include: 

• Methods that address the non-local and nonlinear effects generated by the interaction between 
physical models on length and time scales that are not well separated 

• New Green’s function solutions, which play a major role in many homogenization relations 

• Techniques for identifying the terms in closure on which to concentrate error and uncertainty 
analysis (also critical to embedding closure methods in adaptive methods) 

• Stochastic homogenization methods serving as interface filters linking statistics of data across length 
scales 

• Methods for conducting upscaling in systems that have continuously evolving scales of 
heterogeneities. 

Simulating transitions in turbulent mixing problems that arise in high energy density physics, coupling 
turbulent transport and reaction scales in combustion, accurately representing the effects of microscale 
physics (pore-scale, cloud-resolved scale) on macroscale dynamics in large-scale subsurface flow models 
and climate models, and deriving continuum models of large discrete networks are just a few of the 
scientific areas where new closure methods are needed. 

2.1.4 Adaptive Methods 

Adaptive methods dynamically control methods, models, and parameterizations so as to minimize the 
error and uncertainty associated with a simulation or data representation.  The method must automatically 
identify the important features and scales in different subdomains of a model.  Such methods seek an 
optimal trade-off between the efficiency of a coarse scale simulation and the accuracy of an enriched 
simulation containing a more complete ensemble of scales, models, and data known about the physical 
system represented by the simulation.  Existing and evolving adaptive methods include, for example, 
adaptive timestepping methods, adaptive mesh refinement and front-tracking methods, and adaptive 
analysis-based methods for integral equations.  

Open research areas include: 

• Extension of existing methods to a broader range of multiscale problems 

• Fast adaptive methods for integral equations with spatially varying coefficients and fast adaptive 
algebraic linear solvers that do not require problem-specific tuning 

• Methods that adapt the choice of model (rather than mesh resolution) for different subdomains of 
space and time 

• Adaptive timestep selection for stochastic differential equations. 
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Radio-frequency (RF) modeling in fusion problems, supernova simulations, crack propagation in 
materials, and stochastic dynamics of biochemical reactions are among the many scientific areas that will 
depend on new formulations of adaptive methods. 

2.1.5 Error Estimation Methods 

Error estimation methods characterize and quantify deterministic sources of error associated with 
analytical and numerical approximations to fundamental models (e.g., discretization, quadrature, series 
truncation, and basis set approximation errors).  While the mathematics community has a long history in 
development of error estimation, particularly as it applied crucially to adaptive methods, the errors arising 
from and propagating through information exchange across scales have not been well characterized.  
Errors transferred across models and scales (including the resolution of model mismatch) and from the 
coupling process itself must be systematically addressed to guide new adaptive methods.  Methods such 
as variational multiscale analysis, heterogeneous multiscale methods, mathematical homogenization, and 
equation-free modeling may lead to natural definitions of proper norms for, and derivation of, error 
estimates and identification of the terms on which to concentrate error analysis.   

Open research areas include: 

• Natural definitions of proper norms for and derivation of error estimates and identification of the 
terms on which to concentrate error analysis in adaptive, hybrid, and closure methods 

• Development of correction indicators for multiscale adaptation based on error estimates 

• Extension of a posteriori error estimates to coupled, nonlinear multiscale discretizations. 

Error estimation is a fundamental driver for adaptive methods and a crucial component of all multiscale 
methods; therefore, research in this area is needed in all multiscale scientific problems of interest to DOE. 

2.1.6 Uncertainty Quantification Methods 

Uncertainty quantification methods characterize and quantify sources of uncertainty associated with a 
model due to lack of information about model parameters and the physical fidelity of the model itself, as 
well as physical processes that are characterized as random (e.g., geometric idealization, uncertain 
parameters, and statistical representation of microscale fluctuations).  The ubiquity of this unavoidable 
artifact of modeling and observation of physical processes motivates the need to assess their effects on 
multiscale simulations, particularly if our goals include assessment of predictive capability and 
computational and experimental resource allocation.  A distinguishing feature of multiscale modeling and 
analysis is the relationship between mathematical models whose states are defined with respect to 
different measures.  Methods are needed to investigate, within an uncertainty context, these 
transformations of measures and to interface them with mathematical analysis at each of the relevant 
scales.  Coupled with deterministic error indicators, uncertainty estimates are necessary for identifying the 
proper scale resolutions in adaptive methods.  Additionally, new methods are needed to efficiently 
account for parametric uncertainty, since direct Monte Carlo simulations are currently too 
computationally intensive for the scope of this problem in multiscale models.  Reducing uncertainty, 
determining reliability, and validating the process itself will require incorporating multiple sources of 
data—collected with various means from a range of spatial and temporal scales—into conditioned 
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estimates of spatial properties.  Uncertainty quantification and error estimation together provide a means 
for obtaining the required information about solutions as well as the reliability of that information. 

Open research areas include: 

• Diagnostics that allow an assessment of how well multiscale models explain data taken on various 
scales 

• Development and coupling of uncertainty indicators for multiscale adaptivity to similar error 
indicators, to achieve target reliability in predictions 

• Reduced order or surrogate models with estimates of error in the model approximation, including 
statistical learning techniques, to accelerate the convergence of statistical computation algorithms 

• Evolution and linking of computational and geometrical statistics, information theory, compatible 
data compression, and model reduction methods to meet the challenges of interscale information 
exchange 

• Incorporation of Bayesian and other approaches to hierarchical models, classification on multiple 
scales, and data assimilation. 

Uncertainty quantification is critical to solving multiscale problems across scientific disciplines including 
prediction of subsurface flow, climate, and material properties based on statistical characterization of 
subscale phenomena, and microbial cell community behavior based on partially known metabolic 
networks and associated kinetic parameters. 

2.1.7 Inverse and Optimization Methods 

Inverse and optimization methods seek to identify model parameters and control mechanisms such that 
the behavior of a simulation matches a desired goal behavior.  Parameter identification using standard 
approaches is expensive with respect to both storage and CPU costs.  This cost is increased in multiscale 
problems because they are typically characterized by a greater number of parameters, each of which may 
potentially extend over a greater range of values.  Since all inverse/optimization methods are 
characterized by the fact that they must solve the underlying state equations several times before the good 
approximation of the solution is found, such problems present a huge potential for improving 
computational performance by careful consideration of the multiscale structure.  In the multiscale context, 
a particular challenge emerges from the fact that many of the underlying models are stochastic in nature 
or they contain parameters that are the result of uncertainty quantification at the transition between scales.  
The hierarchical nature of multiscale models offers the promise of obtaining important computational 
improvement, especially in the early stages of the optimization process, by considering only as much 
model resolution as necessary to obtain sufficient progress at a given iteration. 

Open research areas include: 

• Identification of local indicators within the multiscale system response to guide the global selection 
of parameter subdomains, and development of a theoretical basis for the convergence of sampling 
methods for parameter selection 
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• Methods for stochastic multiscale optimization 

• Good initial guess and preconditioning strategies for large-scale iterative methods 

• Techniques to estimate the difference in iterative improvement between coarse- and fine-scale 
models. 

Improved inverse/optimization methods are critically important to advances in materials science 
(nanotechnology, composite material design), biological systems (protein network and metabolic pathway 
elucidation), network analysis, and subsurface remediation problems, among many other multiscale 
scientific problems. 

2.1.8 Dimensional Reduction Methods 

The goal of dimensional reduction methods is to simplify models characterized by high-dimensional state 
or input parameter spaces to their essential dimensions or fundamental modes, with a significantly 
reduced number of degrees of freedom.  Dimensional reduction is used for three reasons:  to reduce the 
computational demands for simulating the system, to identify the most salient components with respect to 
drivers of model behaviors, and to simplify the process of analysis.  Existing and evolving dimensional 
reduction methods are many and include response surface modeling, statistics-based methods such as 
principal components analysis, proper orthogonal decomposition, response and statistical surrogate 
modeling, and dynamic systems-based methods such as center manifold theory.  

Open research areas include: 

• Methods derived from nonequilibrium statistical mechanics to represent the dynamics of a coarse-
grained system in terms of the unresolved degrees of freedom 

• Methods to model the dependence between variables using their statistics rather than their mean 
values 

• Methods to explore pattern and structure changes with length scales. 

Science domains that will require improved dimensional reduction methods include materials science and 
biology, where macroscale phenomena depend on rare events such as nucleation of defects, and a few 
features of a large molecule may determine its function. 

2.2 Unifying Mathematical Framework 

Beyond research in specific methods and problems, there is also a strong need for abstract mathematical 
frameworks and a set of benchmark problems within those frameworks for testing and validating new 
approaches in each of the mathematical areas outlined above.  Existing approaches in multiscale 
mathematics have evolved from ideas and solutions that strongly reflect their original problem domains.  
As a result, research in multiscale problems has followed widely diverse and disjoint paths.  This presents 
a serious barrier to the application of methods to new problem domains.  
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A common mathematical framework for multiscale analysis is expected to help identify inconsistencies 
between model components, formalize the transition process between those components, identify the 
terms critical for the coupling of those components, and serve as a proof-of-principle and concept for 
complex, multiscale mathematical models.  Rather than consisting of a single unified theory, such a 
mathematical framework would probably consist of several components tailored toward classes of 
multiscale problems.  Such frameworks should provide a common, rigorous, and systematic language for 
formulating and analyzing multiscale problems across a range of scientific and engineering disciplines.  
The creation of frameworks would allow categorization and clarification of characteristics of existing 
models and approximations in a landscape of seemingly disjointed, mutually exclusive, and ad hoc 
methods.  A framework can ensure a systematic and mathematically sound foundation for validation of 
multiscale simulations and for uncertainty quantification.  Further, such an approach can provide context 
for both the development of new techniques and their critical examination.  

A framework would provide a language to mathematically express well-posed descriptions of the 
individual models designed for coupling across scales and the coupling between models themselves.  A 
multiscale investigation of uncertainty and error analysis methods within a greater framework would offer 
scientists, engineers, and mathematicians an opportunity to systematically examine these measures in a 
manner that is fundamentally different from past approaches, yielding the potential to provide a new path 
to breakthroughs in modeling and simulation.  The ideal framework would also satisfy a fundamental 
need to build our understanding of where and how small-scale fluctuations affect large-scale dynamics 
and of how ensembles of simulations might best be used to capture the essential features of fluctuations 
and quantify uncertainty in chaotic or stochastic systems.  

Although it is impossible a priori to describe what such a unifying framework might look like, some well-
established techniques present paradigms on which to build.  These include, for example, singular 
perturbation theory and the theory of matched asymptotics, adaptive time-space methods, and variational 
methods, all of which may allow formulation of some general characteristics of how multiple scales 
interact.  

2.3 Mathematical Software 

The methods and framework described in the previous two subsections will need to be implemented in 
software and widely disseminated to provide utility to all members of the multiscale research community.  
As with other mathematical software, particular attention should be paid to issues of verification, 
scalability, and parallelization.  By definition, multiscale problems span a much wider range of space and 
time scales than do single-scale problems.  Assuring the scalability of the resulting algorithms to 
thousands of processors will engender challenges of the highest order.  Yet this latter task is crucial—
many multiscale problems are unsolvable with today’s supercomputers and will require the power and 
memory of the next generation of machines, and only then in conjunction with advances in models, 
algorithms, and software.  The development of toolsets of mathematical software that are sufficiently 
flexible and capable so that new algorithmic and modeling ideas can be easily prototyped will be 
essential.  Indeed, without such a toolset, experiments with different multiscale models and solution 
approaches will be too difficult and complicated to realize the expected impact on the science. 

Three categories of multiscale simulation problems illustrate the computational challenges associated 
with increasing complexity: 
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• Single Model, Uniformly Multiscale.  These problems involve a single model exhibiting behavior on 
multiple scales that are uniformly distributed in time and space.  Examples include homogeneous 
turbulence, high-frequency wave propagation and Helmholtz problems, various network problems, 
and more generally, stiff ordinary differential equations (ODEs).  

• Single Model, Non-Uniformly Multiscale.  These problems involve a single model exhibiting 
multiscale behavior in different spatial/temporal regions.  Typically, the regions of multiscale 
behavior are not known a priori, and dynamic adaptivity is required.  Examples of problems in this 
class include moving interfaces, shape optimization, molecular dynamics, particle methods, mode 
conversion of waves, transition to turbulence, material failure, and resolving and tracking shocks and 
other singularities. 

• Multiple Models, Non-Uniformly Multiscale.  Problems in this class are described by multiple 
coupled models describing behavior at multiple scales across space and time.  These models may be 
coupled via interfaces or they may be co-located.  Examples of the former include global climate 
models coupling atmospheric, ocean, and land cover dynamics; atomistic-continuum coupling of 
material behavior across interfaces; cardiac mechanics models coupling blood flow; and models of 
solid propellant rockets coupling internal gas flow, combusting propellant, and solid dynamics of the 
casing.  Examples of co-located multi-model multiscale problems include hierarchical atomistic-
continuum simulations, macroscopic weather models coupled with mesoscopic local physics, and 
more generally, problems with complex subgrid-scale models involving; for example, systems of 
nonlinear ODEs.   

It is anticipated that a number of uniformly multiscale numerical algorithms can be made to scale readily 
to future high-end architectures characterized by tens of thousands of processors.  However, for single 
model, non-uniformly multiscale and multiple-model systems, significant and pervasive challenges lie 
ahead in addressing the parallel adaptivity, dynamic data structures, load balancing, and synchronization 
issues.  Multiple-model multiscale problems inherit all of the difficulties previously described but are 
amplified substantially because of the need to manage these problems across multiple vertically or 
horizontally coupled models.  

The numerical and computational difficulties exhibited even by “single-scale” problems—such as ill-
conditioning, non-linearity, stiffness, stability, multiple optima, geometric complexity, singularities, 
localization, dynamic structures, asynchronicity, and long-range coupling—are expected to be amplified 
significantly in the multiscale setting. Devising numerical algorithms and computer science tools for 
treating such problems will require a long-term, sustained, and coordinated effort within the scientific 
computing community (see Figure 2).  In additional to the need for advances in high performance 
computing, there will also be a need for next generation visualization and analysis tools, both for use in 
software development and for analyzing the results of simulations. 
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Figure 2. Mathematical software developed for use on high performance computing systems will be 
critical in the implementation of new algorithms within each of the application domains. 
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3 The Science-Based Case for Multiscale Mathematics 

We focus in this section on nine target applications that are important to DOE and will benefit dramatically 
from multiscale mathematics.  Any such list will be incomplete, and we recognize that other application 
areas of relevance to DOE may have multiscale issues associated with them.  From the perspective of 
DOE’s mission, developing and applying mathematical methods in the context of realistic applications is 
a critical goal.  Mathematics must be informed by scientific and engineering reality in order to obtain 
physically meaningful information from models to guide action and understanding in the physical world. 

3.1 Environmental Sciences and Geosciences 

Environmental and geoscience applications of crucial importance to DOE’s mission are abundant and provide 
compelling challenges over multiple time and space scales.  Such applications include nuclear waste disposal 
and environmental restoration of contaminated sites, fuel production and utilization, CO2 sequestration for 
reducing greenhouse gases, and mitigating natural hazards such as oil spills and wildfires.  The National 
Research Council in 1999 estimated the cost of subsurface environmental remediation at about $1 trillion and 
noted this estimate was highly uncertain.  Costs associated with meeting federal Clean Air Act requirements 
are also staggering.  Petroleum fuel costs are rising rapidly, and the sustainable future of our current petroleum-
based economy is relatively short.  The total cost to the U.S.  economy of issues related to these environmental 
examples alone exceeds $100 billion per year, and the decisions being made are far from optimal.  Because 
these problems relate to immediate human welfare, their study has traditionally been driven by the need for 
information to guide policy.  Although assessment tools have been developed, their scientific foundation is 
weak.  The development of more effective prediction and analysis tools requires a systematic, 
multidisciplinary marshalling of basic science, mathematical descriptions, and computational techniques that 
can address environmental problems across time and space scales involving tens of orders of magnitude. 

Current models of environmental systems lack predictive capability because such systems are extraordinarily 
complex.  The scales involved range spatially from the distance between molecules to roughly the diameter 
of the Earth and temporally from fast chemical reactions to the age of the Earth.  Diverse physical, chemical, 
and biological processes operate at these scales, many of which are not well understood.  Naturally open 
systems, which are coupled to other complex systems, must be considered.  Furthermore, simulation is 
heavily dependent on observed data, which are often sparse and noisy.  Hence, development of environmental 
models that are accurate across the large range of time and space scales remains a major challenge. 

The problem of CO2 sequestration provides a good illustration (see Figure 3).  This problem involves the 
removal of atmospheric CO2 and its injection deep below the Earth’s surface.  The objective is to retard the 
return of this gas to the atmosphere, thus reducing the atmospheric concentration and slowing the rate of 
apparent global warming.  A complete description of this system needs to incorporate surface chemistry 
(angstroms), pore-scale physics (microns), and subsurface heterogeneity (meters-kilometers).  

Current formulations of the mass, momentum, and energy equations that describe subsurface flow rely on ad hoc 
closure schemes that do not incorporate important pore-scale physics.  Laboratory observations provide 
abundant support for the notion that current models are seriously lacking in their ability to accurately simulate 
multiphase flow for such applications.  Adequate resolution of these shortcomings will require new, rigorous, 
physics-based models that are more fully understood at the microscale.  Methods for accurately upscaling these  
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Figure 3. Multiscale nature of carbon sequestration in an atomic to field-scale experiment geophysics 
model.  Models of processes at different scales are based on vastly different physical and 
mathematical models and computational methods.  Much of the data at various scales are 
uncertain, yet decisions must be made from this data that affect public policy. (Figure courtesy 
of Los Alamos National Laboratory) 

models must be developed along with efficient large-scale parameter estimation technologies that incorporate 
disparate data at different scales.  Additional needs include: 

• Developing alternatives to the simulation of bulk surface properties 

• Identifying physical properties and parameterizations that contribute the most to uncertainty and 
variability at the field scale 

• Identifying mechanistic, robust, and scalable multiphysics couplings, such as the linkages between 
groundwater, surface water, and the atmosphere 

• Developing efficient schemes for simulating systems with local regime and accuracy based 
requirements. 
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3.2 Climate 

The problem of global climate change is of particular interest to DOE in its ramifications for the energy 
economy of the nation.  The societal impacts for these efforts are large; it has been estimated recently that 
a one month increase in lead time for predicting El Nino would save $100 billion worldwide.  Climate 
and weather prediction is also a major component in formulating policy on CO2 emissions and the 
generation of particulates and other pollutants.  These issues are, in turn, tightly coupled to energy policy. 

The realization that human activities can fundamentally impact the Earth’s climate has made 
understanding these impacts a high priority and internationally recognized goal.  Coupled model systems 
have shown steady improvement in capturing global temperature variability and present climate state, but 
much work is needed to further reduce the uncertainty in their predictions of global climate sensitivities.  
From the beginning of climate modeling, the job of applied mathematics has been to reduce the range of 
scales (from centimeters, such as sea spray, to thousands of kilometers, such as the circumference of the 
Earth) to make the problem solvable on computers.  This is one of the most difficult multiscale problems 
in contemporary science because there is an incredible range of strongly interacting anisotropic nonlinear 
processes over many spatio-temporal scales.  Contemporary comprehensive computer models are 
currently incapable of adequately resolving or parameterizing these interactions on time scales 
appropriate for seasonal prediction and climate change projections.  Both the atmosphere and ocean 
systems present significant multiscale simulation issues individually, and a complete climate model 
requires coupling these two systems, adding additional scales to the problem.  An example of significant 
multiscale behavior in the ocean system is thermohaline circulation, which is a global circulation strongly 
affected by flows characterized by dimensions in the range of ten to hundreds of meters due to the 
regional overflow (Figure 4). 

 

Figure 4. Thermohaline circulation, shown here, is important because breakdowns in thermohaline 
circulation have occurred during relatively rapid changes in climate.  The boxed area in the 
upper left identifies the Denmark Strait overflow region where three-dimensional, non-
hydrostatic effects cause serious drifts from observations in the first 10% of a 1000-year 
simulation. (Figure courtesy of Los Alamos National Laboratory)  
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Current mathematical and computational strategies include the following:  

• Novel stochastic models for unresolved features of tropical convection.  

• Hydrostatic/local non-hydrostatic hybrid models must be developed. 

• Embedding cloud-resolving models within global climate model grid cells 

• Systematic mathematical methods for low-dimensional stochastic mode reduction in climate.  

• Uncertainty quantification in ensemble predictions and loss of information in coarse-grained 
stochastic models through information theory. 

• Adaptive Multifrequency Methods for deriving new sets of adaptive equations.  Multiscale, 
multifrequency decompositions concatenate into a chain of maps depending on successively faster 
time scales to produce new, hierarchical sets of equations. 

Some of the near-term multiscale challenges in climate modeling include: 

• Multiscale tropical modeling of cloud circulation and microphysics resolved at scales between 1 and 
10 km, coupled with global circulation resolved at scales between 100 and 10,000 km 

• The scale up of microphysics models (~nm) to subgrid models (< m) to bulk scale property models 
(~km) 

• The blending of hierarchical Bayesian statistical models for observations and stochastic modeling 
strategies for practical parameterization  

• The use of information theory to quantify information flow among components of comprehensive 
and reduced models and to quantity their uncertainty.  

3.3 Materials Science 

The design and control of material properties is a core component of many DOE programs.  Materials 
science plays a central role in nuclear applications, the hydrogen economy, and nanotechnology.  A 
partial list of materials needs of current interest to DOE includes: 

• Materials for fusion and next-generation fission reactors including materials resistant to harsh 
radiation environments 

• Soft materials for chemical and biosensors and for actuators (for example, pi-conjugated polymers and 
self-assembled structures) 

• Materials and processes for nuclear waste disposal including ion transport and exchange in cage 
materials and aqueous environments 
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• Materials and chemical processes for clean energy sources, for example, materials for hydrogen 
storage and fuel cells 

• Nanoscale-tailored materials for high-strength materials, nearly frictionless surfaces, 
environmentally friendly materials, field emission flat panel displays, chemical sensing, drug 
delivery, and nanoelectronics 

• Micelles for use in remediation, synthesis, solvent technology, and turbulent drag reduction. 

Arguably, the remarkable challenge faced by materials science and engineering in the 21st century will be 
associated with materials design.  The reason is straightforward:  development times for introducing new 
materials into complex systems have become prohibitively long compared with all other components of 
multidisciplinary optimization associated with engineering design.  The consequence has been a reduced 
driving force for materials innovation except in the most highly constrained problems. 

Better understanding of fundamental processes such as deformation, fracture and failure, grain boundary 
growth and migration, phase changes, and electronic and transport phenomena that occur on multiple 
scales will require new mathematical tools and techniques.  For the design and study of nanoscale 
materials and devices in microscale systems, models must span length scales from nanometers to 
hundreds of microns (see Figure 5).  Such systems consist of billions of atoms, which is simply too large 
for molecular dynamics simulations yet too small to be modeled with continuum methods.  Hence, 
coupled multiscale methods are urgently needed to support the design of microscale and future nanoscale 
systems and processes, and a range of simulation tools must be available to designers just as macroscopic 
scales are available today.  For example, extensions to G-closure and mathematical tools for deriving 
classes of solutions to inverse problems have been suggested as possible approaches toward 
revolutionizing composite design.  Composite design is a long-standing problem associated with 
multiscale analysis, and the basic frameworks and capabilities for such multiscale simulation methods and  

 

Figure 5. Illustration of scales involved in modeling a nanocomposite material.  (Figure courtesy of 
Mark Shepard) 
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software are not yet available.  Considerable basic research is required to establish the foundations for 
mathematical frameworks, algorithms, and modeling and their related software.   

The basic equations describing the structure, thermodynamics, and transport of many complex fluid and 
soft matter systems such as micelles, foams, gels, and other self-assembling systems require a significant 
investment of applied mathematics to advance the science and technology.  While progress has been made 
at each length and time scale of description of these systems, we are still at the stage where simplistic 
continuum mechanical principles are used at all scale models, e.g., stochastic molecular dynamics, kinetic 
Smoluchowski equations, mesoscopic scale-up, and continuum mechanical approaches.  Dumbbell and 
multibead-spring idealizations are still the state of the art in stochastic models of long chain polymers in 
dilute solutions.  For nematic polymer nano-composites, the molecules are idealized as rigid, 
monodisperse, and uniformly dispersed spheroids.  All of the approximations inherent in these approaches 
must be relaxed to model more realistic polymer and nano-composite systems. 

While microscale and nanoscale systems and processes are becoming more viable for engineering 
applications, our knowledge of their behavior and our ability to model their performance remains limited.  
Furthermore, nanoscale components will be used in conjunction with components that are larger and 
respond with different time scales.  In such hybrid systems, the interaction of different time and length 
scales will play a crucial role in the performance of the complete system.  Computational capabilities that 
span the scales from the atomistic to continuum need to be developed.  These capabilities should include 
a variety of tools, from finite element methods to lattice mechanics, statistical dislocation dynamics, 
molecular dynamics, and quantum mechanics, among others, to provide powerful multiscale 
methodologies.  

3.4 Combustion 

Combustion of fossil fuels provides over 85% of the energy 
required for transportation, power generation, and industrial 
processes.  World requirements for energy are expected to triple 
over the next 50 years.  Combustion is also responsible for most 
of the anthropogenic pollution in the environment.  Carbon 
dioxide and soot resulting from combustion are major factors in 
the global carbon cycle and climate change.  Soot, NOx, and 
other emissions have important consequences for both the 
environment and human health.  Developing the next 
generation of energy technologies is critical to satisfying 
growing U.S. energy needs without increasing our dependence 
on foreign energy suppliers and to meeting the emissions levels 
mandated by public health issues. 

Lean, premixed combustion technology (see Figure 6) provides 
a simple example of the basic scale issue.  We know that if we 
burn methane near the lean flammability limit we can produce 
high-efficiency flames that generate almost no emissions.  
Unfortunately, we also know that a lean premixed flame is 
much more difficult to control.  The stability of such a flame is 

Figure 6. Low swirl burner p
The burner’s novel flame 
stabilization mechanism 
allows it to operate at lea
conditions with very low 
emissions. (Photo courtesy
of R. K. Cheng) 
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governed by the interplay of acoustic waves on the scale of the device with turbulence scales on the order 
of millimeters and a flame front with dimensions measured in hundreds of microns.  This interaction of 
scales spans six decades in space and an even larger range of scale in time.  Although the combustion 
community has a long tradition of using simulation, current modeling tools will not be able to meet the 
challenge.  The standard Reynolds averaged Navier-Stokes (RANS) methods currently used for full-scale 
simulations approximate only the mean properties of the system, with turbulent motions and fluctuations 
modeled across all scales.  They are inherently unable to predict the behavior of systems with the fidelity 
required to develop new energy technologies.  Direct numerical simulation approaches that use brute-
force computing to resolve all of the relevant length scales can provide accurate predictions, but their 
computational requirements make them unusable for realistic systems.  

One area where new approaches are critically needed is the turbulence closure problem.  In nonreacting 
flows, turbulence is characterized by an energy cascade to small scales where dissipative forces dominate.  
Large-eddy simulation approaches based on assumptions about scaling behavior and homogeneity of the 
flow at small scales have made substantial progress in modeling turbulent flows.  When the flow is 
reacting, the closure problem becomes considerably more complex.  The turbulent energy cascade again 
transfers energy to small scales, but these small-scale eddies interact with the flame front to modulate the 
energy release.  This energy release from the combustion process induces a strong coupling to the fluid 
mechanics.  As a result, the details of the small scales play a much more important role than in the 
nonreacting case.  Furthermore, the acceleration of the fluid as it passes through the flame destroys the 
homogeneity properties implicit in many closure schemes.  For reacting flows, what is needed is not 
simply a turbulence model but a model that also captures the interaction of turbulence and chemistry. 

The need to predict the stability and detailed chemical behavior of a turbulent reacting flow for systems 
spanning a broad range of scale in space and time is fundamental to developing the tools needed to design 
new combustion technologies.  A number of approaches have been presented in the combustion literature 
for dealing with turbulence-chemistry interaction, but they are typically based on a phenomenological 
model for the dynamics or implicitly assume some type of separation between the flame scales and the 
turbulent eddy scales.  Developing more rigorous approaches to the turbulence-chemistry closure problem 
is a daunting task, but the potential payoff for combustion simulation is enormous. 

3.5 High Energy Density Physics 

The DOE/National Nuclear Security Administration laboratories are concerned with high energy density 
physics for the obvious reason that high energy density physics governs energy release in thermonuclear 
weapons.  Astrophysicists are also interested in this subject because Type Ia and Type II (core collapse) 
supernovae are the source of much of the heavier nuclei in the universe.  Additionally, Type Ia 
supernovae are the “yardsticks” that allow us to measure the size and age of the universe and help 
constrain the amount of “dark energy” in it.   

High energy density physics lies at the rich juncture between the physics of the very small (e.g., nuclear 
and particle physics) and the very large (e.g., the physics of the early universe).  The range of spatial and 
temporal scales on which physically relevant phenomena occur can be enormous.  Type Ia supernovae 
exhibit scales ranging from the dimensions of the parent white dwarf star (~108 cm) to the thickness of a 
nuclear “flame” in the deep stellar interior (~10-4 cm); similarly, time scales range from millennia 
(characterizing the slow onset of convection in pre-supernovae white dwarfs) to seconds (the time scale of 
incineration of an entire white dwarf).  Models of these supernovae must include photon and neutrino 
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transport, nuclear combustion rates, and relativistic regimes.  High energy density physics is characterized 
by many multiscale behaviors including compressible turbulence and turbulent mixing as well as 
complicated couplings between behaviors such as turbulence and gravitational stratification, turbulent 
mixing and radiation transport, and couplings between dynamically generated, turbulent magnetic fields 
and charged particle flows.  

In some situations, such as radiation-driven plasmas in the photosphere or chromosphere of a star, local 
thermodynamic equilibrium (LTE) cannot be assumed.  In this case, material properties cannot be 
tabulated, but must be computed “on the fly,” which requires a multiscale approach.  Loss of LTE can 
occur nonuniformly in space, in which case the connection between the “observables” and local physical 
properties becomes complex.  A clear understanding of the physical models used in simulations is 
essential to understand what is being observed. 

Better photon, neutrino, and particle transport simulations are needed.  Regions of both large and small 
optical depth are commonly encountered in the same physical system; in the former, the diffusion 
approximation is appropriate, whereas free streaming is appropriate in the latter.  Of paramount concern is 
the physical interface between these two regimes where neither limit applies—often a key element in 
determining the physical behavior of the system.  A further complicating factor is that material in stars 
can become opaque at restricted frequencies while remaining optically thin at others—a situation that can 
occur even at the same location in space, with orders of magnitude differences in opacities.  Better models 
are also needed for compressible turbulence (including reactive and stratified flows) and turbulent mixing, 
magnetic turbulence including the effect of charged particles, and turbulent mixing coupled to radiation 
transport. 

For stars, better transport simulations are important not only for getting the physics right in the stellar 
interior, but for predicting what emerges from the star to affect neighboring objects or to be collected by 
telescopes, and for properly using the emergent radiation to infer the interior physical properties of the 
star.  A similar argument can be made for laser or particle beam target physics for which radiation acts 
both as an active participant and as a diagnostic tool for inferring the physics governing the collapsing 
target. 

The extension of the combination of adaptive mesh refinement, front-tracking, and low-Mach number 
models to the case of nuclear burning in supernovas (see Figure 7) could enable computation of the large-
scale, long-time dynamics of processes that lead to the explosion of a type 1A supernova and are believed 
to determine its later evolution. 

3.6 Fusion 

The development of a secure and reliable energy source that is environmentally and economically 
sustainable is one of the most formidable scientific and technological challenges facing the world in the 
21st Century.  The vast supplies of deuterium fuel in the oceans and the absence of long-term radiation, 
CO2 generation, and weapons proliferation make fusion the preferred choice for meeting the energy needs 
of future generations. 

The international ITER experiment is scheduled to begin its 10-year construction phase in 2006.  The 
United States has a clear opportunity to take the lead in the computational modeling of this device, putting  
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Figure 7. Images of the Crab nebula (seen in the optical, left image) and the core of this nebula at the 
site of the pulsar (seen in the X-ray by NASA’s Chandra X-ray satellite, right image).  This 
supernova remnant, located ~6000 light-years from Earth, contains highly relativistic electrons 
together with magnetic fields.  The X-ray image scale is roughly 40% of the optical image.  
The pulsar and the surrounding optical nebula are characterized by physical processes that 
span a dynamic range of spatial scales from ~6 light years down to meters and centimeters and 
are the consequence of physical processes in which radiation hydrodynamics were essential 
(Image courtesy of NASA and the Chandra Science Center) 

us in a strong position to influence the choice of diagnostic hardware installed and the operational 
planning of the experiments, and to take a lead in the subsequent phase of data interpretation.  
Furthermore, a comprehensive simulation model such as is envisioned in the Fusion Simulation Project is 
considered essential in developing a demonstration fusion power plant to follow ITER, by effectively 
synthesizing results obtained in ITER with those from other nonburning experiments that will evaluate 
other magnetic fusion energy configurations during this same time period. 

In addition to magnetic fusion, there is an active program in Inertial Fusion Energy within the Office of 
Fusion Energy Sciences that encompasses both driver research and target design.  Multiscale issues for 
drivers are also numerous.  For example, to simulate ion beams in the presence of electron clouds, one 
must account for timescales ranging from the electron cyclotron period in quadrupole focusing magnets 
(~10-12 seconds) to the beam dwell time (up to 10-4 seconds). 

In magnetic fusion experiments, high-temperature (100 million degrees centigrade) plasmas are produced 
in the laboratory to create the conditions where hydrogen isotopes (deuterium and tritium) can undergo 
nuclear fusion and release energy (the same process that fuels the sun and stars).  Tokamaks and 
stellarators are “magnetic bottles” that confine the hot plasma away from material walls, allowing the 
plasma to be heated to extreme (thermonuclear) temperatures so a fusion reaction will occur and sustain 
itself.  Calculating the details of the heating process and the parameters for which a stable and quiescent 
plasma state exists presents a formidable technical challenge that requires extensive analysis and high-
powered computational capability. 
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A high-temperature magnetized plasma is one of the most complex media known.  This complexity 
manifests itself in the richness of the mathematics required to describe both the response of the plasma to 
external perturbations and the conditions under which the plasma exhibits spontaneous motions, or 
instabilities, that take it from a higher to a lower energy state.  We find it essential to divide the plasma 
response into different frequency regimes, or timescales, as illustrated in Figure 1.  Widely different 
analysis techniques and computational approaches are appropriate for each of these different regimes. 

RF analysis codes (Figure 1a) that work in the frequency domain aim to calculate the details of the 
heating process when an external antenna produces a strong RF field.  Gyrokinetics codes (Figure 1b) 
solve for self-consistent transport in turbulent, fluctuating electric and magnetic fields.  These codes 
average over the fast gyration angle of the particles about the magnetic field to go from a 6D to a 5D 
description.  Extended magnetohydrodynamic (MHD) codes (Figure 1c) are based on taking velocity 
moments of the Boltzman equation and solving the 3D extended MHD equations to compute global 
(device-scale) stability and other dynamics.  Transport timescale codes (Figure 1d) use a reduced set of 
equations that have the Alfven waves removed.  These are used for long-time scale simulation of plasma 
discharges.  They require the inclusion of transport fluxes from the turbulence calculations.  The edge 
physics associated with the transport codes presents its own set of turbulence and MHD issues as well as 
atomic physics and plasma-wall interactions. 

These codes could be improved by coupling and expanding the time and space scales covered by the 
simulations in the gyrokinetic simulations, incorporating spatially adaptive methods in the RF 
simulations, developing techniques for resolving small reconnection layers and including dispersive 
waves in the fluid equations for the MHD codes, and coupling the codes for the interior of the plasma 
with the edge in transport timescale codes.  In general, an emerging thrust in computational plasma 
science is integrating the now separate macroscopic and microscopic models and extending their physical 
realism by including detailed models of such phenomena as RF heating and atomic and molecular 
physical processes (which are important in plasma-wall interactions).  

Increasingly, it is being recognized that to address some critical scientific issues of fusion research, it is 
necessary to treat the interactions between different plasma processes and different time/space scales 
together that previously have been studied as separate subdisciplines of fusion science.  The objective is 
to provide a truly integrated computational model of a fusion experiment that will enable plasma 
scientists to develop an understanding of these amazingly complex systems.   

3.7 Biosciences 

Numerous DOE applications require multiscale modeling, given that many of the department’s needs in 
bioscience are focused on understanding the role that bacteria play in affecting large-scale environmental 
changes such as carbon sequestration, environmental remediation, and production of energy from 
biomass.  Earth’s environment is tightly coupled not only to human activity but also to the entire 
spectrum of living organisms.  As we begin to build a large knowledge base of the fundamental molecular 
processes that drive biology, we wish to understand how the effects propagate through length and time 
scales to affect the world we live in.  

Figure 8 shows an example of how research focused on many length scales is needed to solve a problem 
such as carbon sequestration up to the cell community scale.  One needs the genetic information (Box 1)  
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Figure 8. Multiscale models of carbon sequestration from genes to metabolic networks in cell 
communities.  Genetic information from Box 1 (cyanobacteria) drives understanding of the 
molecular machines driving important cell processes (Box 2), which then drives the creation 
of metabolic networks describing how the individual molecular machines interact to extract 
carbon dioxide from the atmosphere and convert it to a simple sugar (Box 3).  These networks 
describe the inner workings of the cell (Box 4).  Many of these cells and others working 
together ultimately help describe the impact of the cyanobacteria on the global carbon cycle 
(Box 5). (Figure courtesy of the First Multiscale Mathematics Workshop report) 

of a typical cyanobacteria such as Synechococcus or Procholorococcus (both of which are being studied 
in the DOE Genomics:GTL program) to drive the understanding of the molecular machines (Box 2) that 
drive important processes of the cell.  This, in turn, drives the creation of metabolic networks (Box 3) that 
describe how the individual molecular machines interact to take carbon dioxide out of the atmosphere and 
convert it to a simple sugar that can be used to drive metabolic processes.  Taken as a whole with 
additional spatial information, these metabolic networks describe the inner workings of the cell (Box 4).  
But even further, it is the collection of many of these cells and other cells working together (Box 5) that 
ultimately helps to describe quantitatively the impact of these bacteria on the global carbon cycle.  
Understanding this overall problem means not only understanding each level but developing methods to 
couple these different levels efficiently. 

In the biosciences, multiscale issues arise not only in the “vertical” sense of processes occurring at 
different length and time scales but also in the “horizontal” sense within each level.  In this horizontal 
scaling, the variables that span many scales are not strictly time and space variables but are other 
descriptors that define the phase space of the components.  For example, the network that drives the 
biochemical interactions within the cell incorporates widely differing scales.  Molecular machines are 
very large macromolecules that often have an interaction site that involves only a handful of atoms with 
many of the scaffold atoms relatively fixed.  Even large colonies of bacteria often are most stable with a 
very large number of one type and a very small number of others.  The important unifying theme in all of 
these processes is that there are only a vanishingly small number of biologically realizable ensembles.  
Biological science also has a distinguishing characteristic that separates it from other applications.  It has 
a wealth of evolutionary “constraints” that can vastly reduce the potential amount of space that must be 
explored to find the correct solution to the biological problem at hand.  These constraints need to be 
understood and incorporated at all scales so that we take advantage of nature’s work to produce what are 
generally very nonrandom systems. 

DOE’s use of microbial communities for metal reduction makes accurate metabolic models over a range 
of time and space scales a problem of practical importance.  A community or ecosystem comprises 
largely asynchronous processes that are not accurately characterized by the use of sequential 
programming schemes.  Coordination over many timescales will be required to predict long-term 
behavior.  As with many types of multiscale phenomena, the macroscales exhibit regular behavior while 
the subscales differ dramatically from the average.  In particular, the average metabolism of a community  
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is significantly different from that of any one individual.  This is true even among genetically identical 
populations, as organisms with the same genotype can exhibit different responses to the same 
environmental stimuli. 

The diverse nature of the data that describe biological processes is driving the need for a computational 
infrastructure that can store and exchange multiscale data.  An example is the broad types of calculations 
(homology, structural similarity, molecular energy minimization) that go into a single problem of 
predicting protein structure.  Experimental data range from molecular measurements to gross parameters 
of an entire system.  There is a need not only for researchers to be able to catalog these data, but for 
modelers to be able to incorporate it in every level of their models and to visualize effectively the 
different scales of data that experiment and modeling produce. 

Metabolic processes at the finest scales involve specific chemical reactions governed by physics.  
However, it is not clear whether metabolism at the organism or community level follows directly from 
first principles.  Rather, there appear to be higher-level organizational principles at work.  The ability to 
pose large-scale metabolic behavior as the solution of a non-convex optimization problem is desirable.  In 
addition, effective coarsening and refinement schemes must take into account key microscale phenomena, 
such as electron transfer, along with metabolic pathway organization.  Useful representations should also 
have the ability to characterize bifurcations and rare events within the macroscale community model.  

In microscopic systems formed by living cells, small numbers of reactant molecules can drive macroscale 
dynamics, requiring discrete, stochastic models.  New time-acceleration methods are needed because 
standard stochastic simulation is prohibitively inefficient for most realistic problems.  Reliable and 
efficient means to partition the system into discrete stochastic and continuous deterministic subsystems 
are needed, as well as new hybrid models to couple these subsystems in a multiscale computational 
framework.  Additionally, the construction of efficient relaxation techniques that consider the multiscale 
structure of the inverse problem for biological systems is needed. 

3.8 Chemistry 

Chemistry is one of the central sciences and a critical element of many of the applications important to 
DOE, in addition to having its own intellectual merit.  An understanding of the structure, interactions, and 
reactions of molecules is of critical importance to a wide range of phenomena, from the fate of 
contaminants in the environment through the production of plastics from crude oil to the occurrence and 
treatment of genetic diseases.  By integrating chemical capabilities in the areas of synthesis and 
characterization with computational modeling and simulation, it will soon be possible to use computation 
to design molecules that are optimized for both certain preselected properties and the processes used to 
synthesize them.  This will lead to chemicals and materials that are both highly suited to selected 
applications and inexpensive and efficient to make.  Central to these anticipated advances in our 
computational capabilities are solutions to multiscale mathematical and algorithmic problems that 
inevitably arise within a discipline that strives to control chemical, electronic, and material processes in 
complex environments by manipulating the basic building blocks of matter.  

Chemistry asks questions at many length and time scales ranging from the electronic and atomic (e.g., 
plasmas and vapor deposition), molecular (e.g., chemical reactions), to the nano (e.g., nanostructured 
catalysts and devices, protein folding) and macro (e.g., chemical, biological, and material properties, 
multiple phases).  However, our fundamental understanding exists only at the finest scale—the quantum 
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theory of matter from which we can directly predict the electronic structure of atoms and molecules as 
well as chemical reaction dynamics.  Thus, the multiscale problem in chemistry requires bridging from 
the quantum to the classical as well as spanning a wide range of length and time scales.  For example, 
proteins are characterized by a broad range of time scales.  Accurate simulations of proteins currently 
must follow motions that occur on timescales comparable to molecular vibrations thus dictating a 
timestep of around a femptosecond.  However, many of the phenomena of most interest in understanding 
the biological significance of proteins, such as protein folding, ligand binding, and signaling pathways, 
often occur on timescales that are many orders of magnitude longer.  In between these two timescales are 
a spectrum of interesting motions consisting of side-chain wags, chain bending, breathing modes, etc.  
that all contribute to the overall dynamics of the system.  At present, there is no clear understanding of 
how to integrate out these fine-scale motions to obtain accurate predictions of the large-scale behavior at 
long times. 

Similar problems occur in understanding chemical reactions in extended systems such as catalytic 
reactions at the surfaces of materials (both nano and macro scale).  Understanding at a quantitative level 
requires very accurate computations of the thermochemical and kinetic properties of reactions which have 
distinct consequences on larger space and time scales as well as on other chemical reactions in the 
system.  The complex interdependencies of reactions involved in different interfaces, such as surface and 
step faces, are also required to understand how these processes occur in the real world as opposed to the 
virtual world.  Adding additional environmental effects, such as a liquid environment, further complicates 
the multiscale issues. 

Current approaches to solving multiscale problems in chemistry are in the early stages of development.  
Significant research areas include the search for linear scaling methods for solving ab initio quantum 
problems, the development of reduced or approximate quantum methods for solving larger problems, and 
the development of multiresolution analysis for eliminating the use of traditional basis sets in ab initio 
quantum chemistry.  The combination of quantum mechanical calculations with classical atomistic 
simulations (hybrid methods) is also the focus of much recent work, with the goal of successfully 
modeling reactions and catalysis in complex environments when only a small region needs to be 
described quantum mechanically.  This is being actively pursued in the area of enzymatic catalysis, cell 
signaling mechanisms, and the study of reactions in complex environments.  The quasicontinuum method 
is an extension of this approach that seeks to connect atomistic simulations to continuum descriptions.  
This is being used to model the behavior of defects, the formation of quantum dots, and to develop atomic 
level descriptions of fracture. 

Much work remains to be done in many of these areas.  There is a need to quantify error and provide 
systematic improvement.  Better mechanisms are needed for coupling quantum mechanical and classical 
simulations and understanding the errors associated with the coupling, along with methods for coupling 
different levels of quantum mechanical theory in a single calculation.  The quasi-continuum method must 
be generalized from the current static descriptions to ones that are applicable at finite temperature.  
Mechanisms for dynamically switching to an alternate model when assumptions about the current model 
are no longer valid are needed in a wide variety of reaction simulations.  Quantification of uncertainty in a 
simulation or model also connects directly to the challenge of meaningful simulation of poorly 
characterized systems.  Inevitably, many multiscale simulations involve multiphysics, and we must 
advance beyond current ad hoc and unsatisfactory models for coupling high- and low-levels of quantum 
theory and embed these in atomistic and continuum models.  Improved methods for sampling rare events 
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(critical to many chemical processes) need to be further developed, particularly for events in highly 
anisotropic systems characterized by broad distributions of time scales.  

There is also the need for analysis-based methods in quantum chemistry to improve scaling for 
dimensional-reduction problems such as coupled-cluster corrections that represent the effect of 
interparticle interactions.  The introduction of real-space hierarchical representations of these corrections 
that represent the smooth nonlocal coupling by an appropriately small number of computational degrees 
of freedom could lead to a computational method that would enormously increase the range of problems 
that could be computed. 

3.9 Power Grid and Information Networks 

Many systems of critical importance to DOE are most naturally or can only be modeled by networks (or 
graphs).  A partial list includes biological systems (viewed at various levels), microbial communities, 
protein interaction networks, social networks, epidemiology, traffic networks, and designed technological 
networks (e.g., power distribution, communication networks, sensor/actuator networks, robotic networks, 
etc.).  The behavior of these networks has important implications for energy distribution and 
consumption, waste remediation, security, telecommunications, and manufacturing. 

Descriptive models of network systems have potential value for many problems of interest.  However, 
these models are by no means the only approach to understanding large-scale networks, nor are they 
always helpful is their study.  An alternative, although mathematically equally challenging, class of ab 
initio models serve an important function in providing the basis for rigorous and profound insights into 
the behaviors of networked systems.  While equations of state are descriptive and can be derived by 
careful analysis of data collected about dynamic networks, they have the intrinsic limitation that they 
cannot tell us why the system behaves one way in one phase and another way is another phase.  First, 
principal models of dynamic networks, such as those based on the interplay between entropy and 
conservation laws, can be an effective way of gaining necessary insights that explain otherwise 
unfathomable system behavior.  These models certainly complement the descriptive equations of state, 
and indeed, should confirm them by demonstrating their derivation in the most common circumstances.  
However, ab initio models have the unique advantage of being able to describe how and why network 
systems behave as they do in the most unusual circumstances where the equations of state fails to 
accurately predict outcomes.  In the context of large-scale engineered networks, this knowledge often is 
far more valuable, as it is often the surreptitious unusual circumstances (i.e., the rare event that seems 
outwardly no different that the common) that give rise to catastrophic system failures. 

Multiscale issues arise in the modeling, analysis, and simulation of networks with respect to several 
dimensions:  time, space (e.g., topology and geography), state (e.g., queues), and size (e.g., number of 
nodes, users).  In many cases, these systems are dynamic in nature and consist of networks of networks 
with dynamic interactions.  Localized or small magnitude forcing can cause large-scale responses.  A 
noteworthy example is the August 2003 blackout in which an event at a single transmission line knocked 
out power to much of the northeastern United States and Canada.  The mathematical analysis of networks 
is a relatively new area, and analysis methods are only beginning to be developed and explored.  The 
analysis of these systems will require new methods and also extend ideas from more established areas of 
multiscale analysis.  Mathematical areas that are clearly relevant are graph-based algorithms, 
combinatorial optimization, discrete event simulation, agent-based simulations, scaling, and ideas 
developed from continuum modeling of multiscale systems.  
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One example is communication networks, although many of the issues are also common to other types of 
networks including power distribution, agent-based, sensor/actuator, and robotic networks.  A 
communication network is a collection of communicating devices connected via communication links.  
Such devices include computers, phones (wired and wireless), laptops and PDAs, and sensors.  
Communication networks are multiscale in nature by design.  The dominant design paradigm in 
networking is the hierarchical (layered) architecture.  Moreover, the topological arrangement of networks 
is also typically hierarchical (e.g., the Internet).  Finally, general-purpose networks such as the Internet 
are heterogeneous both in their infrastructural components and in the nature of the traffic that traverses 
them.  All these factors work together to form multiscale phenomena.   

Events on networks such as the Internet take place on a variety of time scales.  Packet transit times are 
often in microseconds, file transfers take seconds, routing table updates take minutes, and significant 
network topological changes may take days.  A variety of approaches have been brought to bear on this 
issue including self-similarity, long-rage dependence, power laws and heavy tails, multifractals, cascades, 
wavelets, and highly optimized tolerance.  It turns out that in the time scale, scaling features are observed.  
In addition, the topology of the Internet has scaling features.  Interest in scaling features like those 
described above amount to a concern that such features have impact on the design and performance of 
networks.  Within the framework of scaling laws, it is possible to answer questions such as:  As the 
number of nodes in a network increases, how does the capacity that it can support grow?  It is also of 
interest to characterize how different performance metrics are related in scaling laws.  For example, is it 
possible to trade off capacity for delay performance, in terms of scaling laws? These questions have only 
recently begun to be addressed.   

The need for appropriate mathematical models and frameworks has become clear as network researchers 
struggle to understand the complexity of these manmade systems.  While traditional approaches common 
in networking research have focused on discrete mathematics, continuous techniques have come to the 
forefront to address issues such as scaling phenomena and large networks.  Differential equations 
(whether ordinary, stochastic, or partial), which are widespread in models of natural systems, are now 
firmly established in the modeling of manmade networks.  This is promising because it opens vast 
possibilities for many more researchers to contribute to solving the pressing problems in networks.  In 
particular, topics in multiscale mathematics traditionally funded by DOE are now relevant to addressing 
problems in networking research.  The successful marrying of these two areas will involve strategic 
collaborations and multidisciplinary efforts. 
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4 Roadmap 

The Multiscale Mathematics initiative roadmap presented here culminates in a new foundation for 
multiscale mathematics and a new generation of multiscale software applied to comprehensive scientific 
simulations on problems of importance to DOE. 

There is no doubt that there are individual projects and individual researchers that can make 
fundamentally important contributions to multiscale mathematics.  Additionally, there is a strong need for 
new interdisciplinary research models; future progress on multiscale problems requires the efforts of 
interdisciplinary and multi-institution teams of researchers comprising mathematicians, scientists and 
engineers, and computer scientists.  The success of multiscale mathematics requires appropriate 
interactions with the science domain experts to ensure the methods are relevant to the physics being 
modeled.  The insight of physical modelers will be crucial in guiding the selection of algorithms within 
the class of multiscale methods best suited to the scientific questions and the development of multiscale 
correction indicators and adaptive control methods.  Computational and computer scientist and software 
specialist expertise is needed to ensure that methods meet the demand for software structures that can deal 
with multiple models and discretizations and can ensure computational efficiency, in particular for 
adaptive methods as models and discretizations are adapted during the simulations.  The demands of 
algorithms and associated software structures become even more significant when considering that most 
of these simulations will need to be run on large-scale distributed memory parallel computers.  The 
practical, problem-solving orientation of the DOE mission places it in a unique position to encourage the 
interdisciplinary activity that is required to get the job done. 

Near-term milestones.  Over the first 3–5 years of the program, the principal milestones will be the 
application of existing techniques to new multiscale problems and the development of new algorithms for 
stochastic models.  Early successes will guide development of new methods. 

• Better mathematical understanding of a broad range of multiscale systems. Improved error 
estimators, stability and robustness analysis, performance metrics (upper/lower bounds). 

• Development of existing multiscale techniques that have previously demonstrated correct 
representation of some important multiscale behavior for application to new multiscale problems, 
with accurate, efficient, stable simulations.  

• Development of multiscale stochastic numerical methods and uncertainty quantification techniques 
as a foundation for the later development of the entire program.  Existing methods for deterministic 
models require significant modification to apply to stochastic models. 

• Mathematical and numerical analysis of the coupling between scales in multiscale problems 
susceptible to analysis using current state-of-the-art analytical tools, combined with a robust 
numerical experimentation capability, as a basis for developing new multiscale algorithms and new 
extensions to the mathematical tools. 

• Precisely defined benchmark problem set focused primarily on the mathematics (rather than the 
physics) of multiscale problems. 
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• Evaluation of novel, high-risk concepts. 

Medium-term milestones.  In a 5–7 year time frame, we will see the development of entirely new 
techniques both in analysis and simulation for multiscale problems as well as the availability of major 
components of software infrastructure. 

• Prototype simulations using the new multiscale methods, developed in the near-term, applied to DOE 
target problems arising in multiscale science.  

• New multiscale mathematical methods developed and used to derive multiscale models for some of 
the “difficult” cases in multiscale science; e.g., problems without strong scale separation, rare event 
problems, reduction of high-dimensional state spaces to a small number of degrees of freedom, and 
discrete-to-continuum physics (identifying the point of transition).  

• Algorithms and software for multiscale sensitivity and uncertainty analysis. 

• New methods in statistical analysis to identify critical/essential drivers of coupling between scales. 

• Software for core components of multiscale algorithms. 

• Algorithms that have incorporated improved error estimators, stability robustness, performance 
metrics (upper/lower bounds). Speedup of multiscale calculations. 

• Algorithmic verification. 

Long-term milestones.  In a 7–10 year time frame, we will see the impact of the program on DOE science 
applications by means of a new generation of multiscale simulation techniques. 

• Comprehensive scientific simulations using new multiscale techniques; models and software in 
widespread use. 

• Application of these new methods to solve some of the outstanding hard problems in multiscale 
science; e.g., aspects of fluid turbulence and protein folding. 

• A new generation of robust and adaptive mathematical multiscale software with metrics to quantify 
deterministic error and stochastic error (uncertainties). 

• Algorithmic validation against complex physical systems. 
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