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Abstract

We consider multiphysics applications from algorithmic and architectural perspectives, where “algorithmic”
includes both mathematical analysis and computational complexity and “architectural” includes both software and
hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational
simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this
form is not always practical for realistic applications, but model problems representative of applications discussed
herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed
and refined within disciplinary communities and executed on leading-edge computer systems. We examine several
of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems.
From our study, we summarize challenges and forecast opportunities.

Keywords: multiphysics, multimodel, multirate, multiscale, implicit and explicit algorithms, strong and weak
coupling, loose and tight coupling
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1 INTRODUCTION

1 Introduction
Simulations that couple multiple physical phenomena are as old as simulations themselves. However, multiphysics
simulation deserves fresh assessment, in light of steadily increasing computational capability and greater aspira-
tions for simulation in domains of scientific prediction, engineering design, and policy making. An oft-quoted
motivation for extreme computing is to relax assumptions of decoupling; however, it is by no means obvious that
the promises claimed for coupled multiphysics simulation will be realized in extreme-scale computational envi-
ronments in the principal way by which individual codes are coupled today, namely, through divide-and-conquer
operator splitting. Coupling individual simulations may introduce limitations of stability, accuracy, or robustness
that are more severe than the limitations imposed by the individual components. Furthermore, the data motion and
data structure conversions required to iterate between independent simulations for each component may be more
costly in latency and electrical power than those of the individually tuned components. Thus, “one plus one” may
cost significantly more than “two” and may be less amenable to scalable execution than expected.

The report by Brown et al. (2008) on applied mathematics at the U.S. Department of Energy (DOE) emphasizes
these challenges:

Today’s problems, unlike traditional science and engineering, do not involve physical processes cov-
ered by a single traditional discipline of physics or the associated mathematics. Complex systems
encountered in virtually all applications of interest to DOE involve many distinct physical processes
...

... The issue of coupling models of different events at different scales and governed by different
physical laws is largely wide open and represents an enormously challenging area for future research.

In this review, we consider multiphysics applications from algorithmic and architectural perspectives, where
“algorithmic” includes both mathematical analysis and computational complexity and “architectural” includes
both software and hardware environments. Many multiphysics applications can be reduced, in principle, to an
algebraic paradigm whose linearization brings to bear powerful tools of analysis in which individual components
(denoted here as “uniphysics”) are represented by diagonal blocks and the multiphysics coupling between them
as off-diagonal blocks. Such analyses are not always practical for realistic applications, but model problems
representative of applications discussed herein provide insight. Various software frameworks for multiphysics
applications have been constructed and refined within disciplinary communities and executed on leading-edge
computer systems. We discuss here some commonalities among these frameworks and extrapolate best practices
to future systems.

We begin by presenting a spectrum ranging from applications that all would agree are “multiphysics” to others
that may involve semantic stretching but that have similar structure when the discrete problem is executed on a
digital computer. Our objectives are broadly to characterize the state of the art in multiphysics simulation, to
illustrate opportunities for leveraging successful approaches and software across physically disparate applications,
and to identify gaps in understanding that are retarding the overarching goal of uncertainty-quantified high-fidelity
simulations.

Whereas multiphysics is often approached bottom-up as the assembly of individual components, we consider
the complementary perspective—that problems are intrinsically coupled and that the uniphysics applications often
run are idealizations made in asymptotic limits. Those limits are not always carefully examined, because their
examination may be nontrivial in realistic applications; hence, the importance of gaining insight from idealized
situations is heightened. Because we strongly advocate examining coupling strength before pursuing a decoupled
or split strategy for solving a multiphysics problem, we propose “coupled until proven decoupled” as a perspective
worthy of 21st-century simulation purposes and resources.

1.1 What Constitutes Multiphysics?
Semantically, a multiphysics system consists of more than one component governed by its own principle(s) for
evolution or equilibrium, typically conservation or constitutive laws. A major classification in such systems is
whether the coupling occurs in the bulk (e.g., through source terms or constitutive relations that are active in the
overlapping domains of the individual components) or whether it occurs over an idealized interface that is lower
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1 INTRODUCTION

dimensional or a narrow buffer zone (e.g., through boundary conditions that transmit fluxes, pressures, or displace-
ments). Typical examples of bulk-coupled multiphysics systems with their own extensively developed literature
include radiation with hydrodynamics in astrophysics (radiation-hydrodynamics, or “rad-hydro”), electricity and
magnetism with hydrodynamics in plasma physics (magnetohydrodynamics), and chemical reaction with trans-
port in combustion or subsurface flows (reactive transport). Typical examples of interface-coupled multiphysics
systems are ocean-atmosphere dynamics in geophysics, fluid-structure dynamics in aeroelasticity, and core-edge
coupling in tokamaks. Beyond these classic multiphysics systems are many others that share important structural
features.

Success in simulating forward models leads to ambitions for inverse problems, sensitivity analysis, uncertainty
quantification, model-constrained optimization, and reduced-order modeling, which tend to require many forward
simulations. In these advances, the physical model is augmented by variables other than the primitive quantities
in which the governing equations are defined. These variables may be probability density functions, sensitivity
gradients, Lagrange multipliers, or coefficients of system-adaptive bases. Equations that govern the evolution of
these auxiliary-dependent variables are often derived and solved together with some of the physical variables.
When the visualization is done in situ with the simulation, additional derived quantities may be carried along.
Error estimation fields in adaptive meshing applications may constitute yet more. Though the auxiliary variables
may not be “physical” in the standard sense, they give the overall simulation the structure of multiphysics.

In another important class of systems that might fall under the rubric of multiphysics by virtue of being mul-
tiscale, the same component is described by more than one formulation, typically with a computationally defined
boundary or transition zone between the domains of applicability. We refer, for example, to field-particle descrip-
tions of N-body systems in celestial mechanics or molecular dynamics, in which the gravitational or electrical
forces between particles that are not immediate neighbors are mediated by a field that arises from the particles
themselves. Typically, each particle defines a partition of the domain into “near” and “far” for this purpose, and the
decomposition is strict. Another example is provided by atomistic-continuum models of solids, such as are used
in crack propagation. In this case, the atomistic and continuum models both hold in a zone of finite thickness.

Recent schemes based on projective integration keep both fine and coarse models simultaneously in the picture
and pass between the different “physics” for reasons of computational complexity. Specifically, they compute as
much as possible with the coarse model, which may have constitutive terms that are difficult to derive from first
principles but can be computed locally in time and space by taking suitable windowed averages or moments of
the dependent variables of the fine model, which are closer to first principles. In these models, the coarse-to-fine
transformation is called “lifting,” and the fine-to-coarse transformation is called “restriction.” Lifting may mean
populating an ensemble of particles according to a distribution, and restriction may mean averaging.

Still other systems may have a multiphysics character by virtue of being multirate or multiresolution. A chem-
ical kinetics model may treat some components as being in equilibrium, idealizing a fast relaxation down to a
constraint manifold on which other components vary more slowly. Some phenomena may be partitioned math-
ematically by projections onto wavelet bases of different frequency or wavenumber properties that are naturally
treated differently.

Stretching the semantics of multiphysics still further, we may distinguish only between different mathematical
formulations or even just different discretizations of what is essentially the same physical model. An example is
grafting a continuum-based boundary-element model for the far field onto a finite-element model for the near field.

Systems of partial differential equations (PDEs) of different types (e.g., elliptic-parabolic, elliptic-hyperbolic,
or parabolic-hyperbolic) for the same component may be thought of as multiphysics because each of the classical
PDE archetypes represents a different physical phenomenon. Even a single equation with terms of different types
represents a multiphysics model because each term must often be handled through separate discretization or solver
methods.

All our examples so far ultimately define partitions or sequences of partial updates on dependent variables.
With a slightly stronger semantic stretch, a system in which independent variable spaces are handled differently or
independently may also have an algebraic character similar to a true multiphysics system. Examples include the
“alternating direction implicit” method, in which physical space is decoupled, or methods in which physical and
phase space or physical and frequency space variables are handled separately.

We enumerate these quotidian examples of multiscale, multirate, multilevel, and multimodel problems be-
cause they possess similarities to multiphysics problems, particularly in the time domain, that allow leveraging
and insight. They also introduce data structure issues that can be treated in common with data structures for mul-
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1 INTRODUCTION

tiphysics simulations. Should any inhomogeneity in a problem be regarded as multiphysics? Not by traditional
classifications, perhaps. However, all simulations are ultimately transformed to algebraic problems, which are then
transformed to arithmetic operations over discrete data structures. In algebraic form and in low-level operations,
inhomogeneity-induced blockings from disparate root causes look structurally similar. We seek both dividends of
understanding and dividends of software reuse from these similarities. Here “multiphysics” is synecdoche for a
broad class of coarsely partitioned problems.

Many algorithmic approaches to multiphysics simulations are “one-off” and do not leverage algebraic insights
from related problems. Many software approaches are unpublished in code form, or even are proprietary. Approx-
imations that go into the decoupling are inaccessible to measurement. These situations have retarded the growth of
successful and reliable simulations of complex phenomena. Our efforts begin by establishing a common parlance
for describing multiphysics systems that is simple and abstract enough to allow comparisons and reuse of software
solutions.

1.2 Prototype Algebraic Forms
The two simplest systems that exhibit the crux of a multiphysics problem are the coupled equilibrium problem

F1pu1, u2q “ 0 (1a)
F2pu1, u2q “ 0 (1b)

and the coupled evolution problem

Btu1 “ f1pu1, u2q (2a)
Btu2 “ f2pu1, u2q, (2b)

where the same operator notation may be overloaded in continuous or discrete settings, which are distinguished
by context. When (2a–2b) is semi-discretized in time, the evolution problem leads to a set of problems that take
the form (1a–1b) and are solved sequentially to obtain values of the solution uptnq at a set of discrete times.
Here u refers generically to a multiphysics solution, which has multiple components (such as those introduced in
Section 1.1) indicated by subscripts u “ pu1, . . . , uNcq; the simplest case ofNc “ 2 components is indicated here.
Noting this, we will generically use the notation in (1a–1b) to refer to either a coupled equilibrium problem or a
single timestep of a coupled evolution problem.

We assume for convenience initially that the Jacobian J “ BpF1,F2q

Bpu1,u2q
is diagonally dominant in some sense

and that BF1

Bu1
and BF2

Bu2
are nonsingular. These assumptions are natural in the case where the system arises from

the coupling of two individually well-posed systems with legacies of being solved separately. In the equilibrium
problem, we refer to F1 and F2 as the component residuals; in the evolution problem, we refer to f1 and f2 as the
component tendencies.

The choice of solution approach for these coupled systems relies on a number of considerations. From a prac-
tical standpoint, existing codes for component solutions often motivate operator splitting as an expeditious route
to a first multiphysics simulation capability making use of the separate components. This approach, however, may
ignore strong couplings between components and give a false sense of completion. Solution approaches ensur-
ing a tight coupling between components require smoothness, or continuity, of the nonlinear, problem-defining
functions, Fi, and their derivatives. Any potential discontinuities must be identified and addressed before putting
confidence in these approaches. For now, we illustrate multiphysics solution strategies within the context of the
prototypical systems above and defer details until Section 3.

Classic multiphysics algorithms preserve the integrity of the two uniphysics problems, namely, solving the first
equation for the first unknown, given the second unknown, and the second equation for the second unknown, given
the first. This represents the reductionist approach of science, and as discussed in Section 4, software generally
exists to do this. Multiphysics coupling is taken into account by iteration over the pair of problems, typically in a
Gauss-Seidel manner (see Algorithm 1), linear or nonlinear, according to context. Here we employ superscripts to
denote iterates.

When this iteration converges, the accuracy with which the discrete equations are solved can be improved by
continuing the iterations. The largest implicit aggregate is the largest of the uniphysics problems; we refer to this
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Algorithm 1 Gauss-Seidel Multiphysics Coupling
Given initial iterate tu0

1, u
0
2u

for k “ 1, 2, . . . , (until convergence) do
Solve for v in F1pv, u

k´1
2 q “ 0; set uk1 “ v

Solve for w in F2pu
k
1 , wq “ 0; set uk2 “ w

end for

iteration as “loosely coupled.” A Jacobi-like iteration can be similarly defined. This further decoupling exposes
more parallelism, albeit possibly at the cost of a slower convergence rate.

The simplest approach to the evolutionary problem likewise employs a field-by-field approach in a way that
leaves a first-order-in-time splitting error in the solution. Algorithm 2 gives a high-level description of this process,
which produces solution values at time nodes t0 ă t1 ă ¨ ¨ ¨ ă tN . Here, we use notation upt0q, . . . , uptN q to
denote discrete timesteps. An alternative that staggers solution values in time is also possible.

Algorithm 2 Multiphysics Operator Splitting
Given initial values tu1pt0q, u2pt0qu
for n “ 1, 2, . . . , N do

Evolve one timestep in Btu1 ` f1pu1, u2ptn´1qq “ 0 to obtain u1ptnq
Evolve one timestep in Btu2 ` f2pu1ptnq, u2q “ 0 to obtain u2ptnq

end for

The individual component evolutions in Algorithm 2 can be implicit or explicit and performed with or without
subcycles. However, there is no point of their being of high order unless a higher-order coupling scheme than this
is used, such as Strang splitting (Strang, 1968) (see Section 3.2.2 for second-order or more intricate splittings) or
temporal Richardson extrapolations (Richardson, 1911; Richardson and Gaunt, 1927; Gautschi, 1997) for higher-
order. An inner loop may be placed inside each timestep in which the coupling variables are updated to satisfy
implicit consistency downstream while still preserving the legacy software for each component. In the literature,
this loosely coupled evolution is depicted with the diagram of Figure 1, where in the context of aeroelasticity,
for instance, the first component consists of fluid velocity and pressure and the second component structural dis-
placements. As described in more detail in Section 2, this is an interface transmission form of coupling in which
structural displacements provide boundary conditions for the fluid, and fluid pressures provide boundary conditions
for the structure in the context of a dynamic mesh.

Figure 1: Illustration of loose coupling, with time advancing to the right.

If the residuals or tendencies and their derivatives are sufficiently smooth and if one is willing to write a small
amount of solver code that goes beyond the legacy component codes, a good algorithm for both the equilibrium
problem and the implicitly time-discretized evolution problem is Jacobian-free Newton-Krylov (JFNK) (Knoll and
Keyes, 2004). Here, the problem is formulated in terms of a single residual that includes all components in the
problems,

F puq ”

ˆ

F1pu1, u2q

F2pu1, u2q

˙

“ 0, (3)

where u “ pu1, u2q. The basic form of Newton’s method to solve Equation 3, for either equilibrium or transient
problems, is given by Algorithm 3 (see, e.g., (Kelley, 1995)). Because of the inclusion of the off-diagonal blocks
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in the Jacobian, for example

J “

»

–

BF1

Bu1

BF1

Bu2

BF2

Bu1

BF2

Bu2

fi

fl ,

Newton’s method is regarded as being “tightly coupled.” Section 3 provides more details, including the Jacobian-
free Newton-Krylov variant, as well as the additive Schwarz preconditioned inexact Newton (ASPIN) method
(Cai and Keyes, 2002), which offers advantages when the types of nonlinearities in the two components are quite
different.

Algorithm 3 Newton’s method
Given initial iterate u0

for k “ 1, 2, . . . , (until convergence) do
Solve Jpuk´1q δu “ ´F puk´1q

Update uk “ uk´1 ` δu
end for

The operator and algebraic framework described here is relevant to many divide-and-conquer strategies in that
it does not “care” (except in the critical matter of devising preconditioners and nonlinear component solvers for
good convergence) whether the coupled subproblems are from different equations defined over a common domain,
the same equations over different subdomains, or different equations over different subdomains. The general
approach involves iterative corrections within subspaces of the global problem. All the methods have in common
an amenability to exploiting a “black-box” solver philosophy that amortizes existing software for individual physics
components. The differences are primarily in the nesting and ordering of loops and the introduction of certain low-
cost auxiliary operations that transcend the subspaces.

Not all multiphysics problems can easily or reliably be cast into these equilibrium or evolution frameworks,
which are primarily useful for deterministic problems with smooth operators for linearization. In formulating
multiphysics problems, modelers first apply asymptotics to triangularize or even to diagonalize the underlying Ja-
cobian as much as possible, pruning provably insignificant dependences, but bearing in mind the conservative rule
of coupling: “guilty until proven innocent.” One then applies multiscale analyses to simplify further, eliminating
stiffness from irrelevant mechanisms. Because of significant timescale and resolution requirement differences,
these activities often reveal justifications for splitting some physics or models from others. In these cases, an oper-
ator splitting approach should be applied. However, caution is warranted to ensure that temporal or spatial scales
do not overlap between split physics as the simulation progresses. If this happens, a more coupled approach is
generally required.

1.3 Structure and Motivation for This Review
The previous section discussed a two-component multiphysics system at the operator and discrete level, primarily
in terms of operations that are already available in simulations for the individual components, introducing generic
notation that will be useful throughout the document. Generalization of the algorithms to Nc components is trivial.
However, the convergence of the methods is not guaranteed.

Applications are described in terms of this notation in Section 2; model problems are treated by these methods
in Section 3, and software that implements data structures and coupling to accommodate these methods is discussed
in Section 4. In principle, most of the multiphysics applications can be made to exhibit the partition above, with
variations on the functional forms of the cross-component dependences.

Even when all the components entering into a multiphysics simulation are well verified, the peril of operator
splitting is that systems coupled by new off-diagonal terms may admit destabilizing modes not present in any
component system alone. Even when the coupling is stable in a continuous sense, the accuracy of the coupled
system and the stability of the numerical discretization can be compromised by operator splitting, as shown in
Section 3.4.

Couplings that are relaxed at the component level may include fluxes at interfaces between physical domains,
bulk source terms, complex constitutive laws, or cross-dimensional effects. With the advent of nonlinear implicit
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solvers and their availability in well-established packages such as PETSc (Balay et al., 1997, 2012), SUNDI-
ALS (Hindmarsh et al., 2005; Woodward et al., 2012), and Trilinos (Heroux et al., 2005, 2012) (see Section 4.1.3),
there exists a robust alternative to operator splitting; however, preconditioning fully temporally implicit discretiza-
tions remains challenging, particularly with advanced, high-order spatial discretizations. For efficiency, it is impor-
tant to understand the interaction of the many forms of errors and mechanisms of instability, as well as the relative
costs of reducing them, particularly in the context of emerging architectures, on which traditional flop-based com-
plexity is less relevant than the complexity of transmitting or copying data.

Despite these mathematical perils, computational models of multiphysics phenomena are often approached
through operator splitting, which has attractions from a software engineering viewpoint. However, in an era of
architectures that penalize data motion but allow nearly “free” flops, splitting usually results in an increase (pro-
portional to the degree of the splitting) in the ratio of loads and stores relative to flops. That is, operator splitting
shrinks the arithmetic intensity of the simulation, which is the wrong direction of code evolution. The move to-
ward more tightly coupled approaches looms as a prime opportunity for adaptation to the exascale, with its memory
bandwidth stringencies (Brown et al., 2010; Ang et al., 2012). In Sections 5 and 6 we address opportunities in mul-
tiphysics applications, propose transferable best practices, and emphasize applications at extreme scale. The topics
to be addressed include physical modeling (fidelity, ranges of applicability), mathematical analysis (formulations,
well-posedness in the continuum sense), numerical analysis (accuracy, stability), algorithms (complexity, optimal-
ity), software engineering (programmer productivity, reusability), and implementation on emerging architectures
(performance, portability, scalability). Section 7 summarizes our conclusions. A glossary of basic multiphysics
terms as used in this report begins on page 78.

We conclude this section by quoting from recent reports of DOE communities:

The dominant computational solution strategy over the past 30 years has been the use of first-order-
accurate operator-splitting, semi-implicit and explicit time integration methods, and decoupled non-
linear solution strategies. Such methods have not provided the stability properties needed to perform
accurate simulations over the dynamical timescales of interest. Moreover, in most cases, numerical
errors and means for controlling such errors are understood heuristically at best. (Simon et al., 2007)

The following priority research direction [was] identified: develop scalable algorithms for non-hydro-
static atmospheric dynamics with quasi-uniform grids, implicit formulations, and adaptive and multi-
scale and multiphysics coupling ... Improvements in scalability alone will not be sufficient to obtain
the needed throughput (the time it takes to complete a climate simulation). Obtaining the needed level
of throughput will also require incorporating as much implicitness as possible ... (Washington et al.,
2008)

Often, scientists would ideally employ a high-order timestepping scheme and take relatively large
timesteps for computational economy. However, if operator-splitting techniques are used, the low-
order splitting error thwarts this objective. Moreover, computational challenges on the immediate
horizon – optimization for design or control, inverse problems for parameter identification, multi-
physics coupling, etc. – are most naturally tackled with fully implicit formulations. (Tang et al., 2009)

The great frontier of computational physics and engineering is in the challenge posed by high-fidelity
simulations of real-world systems, that is, in truly transforming computational science into a fully
predictive science. Real-world systems are typically characterized by multiple, interacting physi-
cal processes (multiphysics), interactions that occur on a wide range of both temporal and spatial
scales. (Rosner et al., 2010)
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2 Practices and Perils in Multiphysics Applications
In this section, we discuss examples of multiphysics applications, selected from diverse disciplines within science
and engineering. By outlining these real-world examples, we illustrate, from a practical standpoint, how multi-
physics applications are assembled and used. These examples also illustrate the rich combinatorics of possible
couplings among uniphysics components. In taking this approach, we provide a departure point from which to dis-
cuss issues that can be encountered by naively coupling two or more robust uniphysics codes to form a multiphysics
application.

One of the most important of these issues is the coupling itself—a term that we now define and discuss further
in Section 2.2.1. The concept of physical coupling within a multiphysics application is intuitive. However, upon
continued discussion, the term can become increasingly vague since coupling exists at least at both a physical level
and an algorithmic level. Hence, some definitions are in order. Throughout this report we refer to strong (versus
weak) coupling of physical models as meaning that physical components of the modeled system are coupled by a
strong (versus weak) interaction. Correspondingly, we refer to tight (versus loose) coupling of numerical models as
meaning that algorithmic components are coupled by a tight (versus loose) interaction. See the glossary (page 78)
for further discussion.

We note that there is not a direct one-to-one correspondence between strong (weak) coupling of physical
models and tight (loose) coupling of numerical models, since a tight or a loose coupling scheme may be used for
strongly or weakly coupled physical models. We also note that terminology has often been used interchangeably
in the literature; for example, in fluid-structure interactions, tight coupling schemes and strong coupling schemes
have been discussed interchangeably.

To illustrate the distinction, the effect of the fluid pressure on the displacement of a deformable structure
and of the structural displacement on the fluid velocity are instantaneous; thus, the physical interaction is strong.
However, it is possible to update the structural displacement, based on a new fluid pressure distribution, without
simultaneously adjusting the fluid velocity to respect its new bounding surface. If such is the case, the numerical
coupling is loose, and iteration between the two phases may be required to reduce the error of the tight interaction
sufficiently. Conversely, in the tightest numerical coupling, the state variables of the two phases would be updated
simultaneously, typically in an algorithm of greater complexity. Either the tight or loose numerical coupling could
satisfy a given accuracy, and either may be more computationally efficient depending upon the problem and how
they are applied.

In a reacting flow, the concentration of a chemical species may have insignificant influence on the thermody-
namic state of the fluid within a broad range, and may also be insensitive to the thermodynamic state; thus, the
physical interaction is weak. However, the numerical model may evolve these state variables independently (weak
coupling) or simultaneously (strong coupling), though the latter effort produces little benefit in this case.

We further comment that physical interaction may be strong in one direction and weak in the other, or strong
in both directions. We describe such a system as exhibiting one-way or two-way coupling, respectively. One-way
coupling leads naturally in limit to a numerical system that is triangular.

We consider such coupling issues for a variety of PDE-based multiphysics applications in Section 2.1. In
Section 2.2 we identify commonalities and differences across the application spectrum, and we touch on issues in
algorithms and software from an applications perspective, as a foundation for more detailed discussion in Sections 3
and 4.

2.1 Examples of PDE-Based Multiphysics Applications
A broad range of multiphysics simulations are under way in the computational science community, as researchers
increasingly confront questions about complex physical and engineered systems characterized by multiple, inter-
acting physical processes that have traditionally been considered separately. Sections 2.1.1 through 2.1.12 intro-
duce some large-scale PDE-based multiphysics applications, including fluid-structure interaction, fission reactor
fuel performance, reactor core modeling, crack propagation, DNA sequencing, fusion, subsurface science, hy-
drology, climate, radiation hydrodynamics, geodynamics, and accelerator design. Discussion focuses on current
practices and challenges in application-specific contexts.
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2.1.1 Interaction of fluids and structures

Numerical simulations that model interaction between incompressible laminar flows and elastic structures require
coupling a description of the fluid—typically the incompressible Navier-Stokes equations or a weakly compress-
ible lattice-Boltzmann equation—with a description of the structures. Sample application areas for this scenario
include blood flow in arteriae, veins, and heart chambers; low Mach number aerodynamics; marine propellers; and
hydroelectric power plants. The unknowns of the involved equations—velocities and pressure for the fluid, dis-
placements for the structure—are associated with different locations in the overall computational domain, resulting
in a surface-coupled problem.

Fluid–structure interaction (FSI) can be simulated in at least two ways. One approach is to solve a large system
of equations for all fluid and structure unknowns as a single system—typically ill-conditioned. Alternatively, in
a partitioned approach, one has separate solvers for the fluid and the structure, together with a suitable coupling
method. In the latter case, boundary conditions for both single physics problems at the coupling surface have to be
defined. The respective interface values are passed from one solver to the other. This approach requires mapping
methods for physical variables between (in general) nonmatching solver grids at coupling surfaces. Important
features desired of such mappings are accuracy, consistency, and conservation of energy and momentum. Two
main classes of mapping methods can be identified: interpolation methods (Farhat et al., 1998b; de Boer et al.,
2007; Jaiman et al., 2006; Bungartz et al., 2010; Scholz et al., 2006), based on geometric relations between the
involved grid points, and mortar methods, in which boundary conditions are formulated in weak form by using
Lagrange multipliers (Farhat et al., 1998b; Baaijens, 2001; Klöppel et al., 2011; Ross, 2006).

The coupling itself can be done with different methods, leading to looser or more tightly coupled timestep-
ping methods; see Figure 2 for two variants. The loosest coupling is a one-way coupling, where the flow solver
computes a force exerted on the structure using a rigid-structure geometry, and structural movements are com-
puted in a postprocessing-like manner based on these forces. This strategy is obviously applicable only for small
and static structure deformations. The most widely used class of iteration schemes is Gauss-Seidel-like coupling
iterations (see Algorithm 1), with variants ranging from a single iteration loop per timestep to repeated iteration-
to-convergence within each timestep, with or without (Aitken) underrelaxation (Irons and Tuck, 1969; Schäfer
et al., 2010; Wall et al., 2001), to interface quasi-Newton methods that efficiently compute approximate Newton
iterations based on sensitivities resulting from Gauss-Seidel iterations (Degroote et al., 2009). To account for what
are usually moderately different timescales in the fluid and the structure, a subcycling in the flow solver can be
used. In the absence of turbulence, spatial scales are essentially the same throughout fluid and structure domains.

The choice of coupling implementation can lead to development of numerical instabilities in multiphysics
codes. For incompressible fluids, the so-called added-mass effect induces instabilities in loosely coupled simula-
tions and in Gauss-Seidel-like iterations: the force exerted by the fluid on a moving structure can be interpreted
as a virtual added mass (see, e.g., (van Brummelen, 2009)) of the structure. For an incompressible flow, each
acceleration or deceleration of the structure causes an immediate change in this added mass (whereas the added
mass change for a compressible flow increases continuously over time). If this change is too large, both loosely
and tightly coupled Gauss-Seidel-like coupling schemes become unconditionally unstable; in other words, a re-
duction of the timestep does not cure the instability (van Brummelen, 2010). In the case of a massless structure,
a reduction of the timestep even worsens instabilities (Degroote et al., 2009). Typically, only a few low-frequency

structure structure

force

displ./vel.

interface quasi−Newton

underrelaxation

t
(n+1)

t
(n)force

fluid fluid

Figure 2: One-way and Gauss-Seidel-like coupling strategies for fluid-structure interaction simulations.
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Fourier modes of interface displacements or velocities are unstable (van Brummelen, 2010; Degroote et al., 2009).
Interface quasi-Newton methods rapidly capture the unstable Fourier modes and thus lead to stable coupling it-
erations (Degroote et al., 2009). However, standard multigrid techniques, with Gauss-Seidel-like iterations as a
smoother, do not work for incompressible flows. Although they smooth high frequencies, they are unstable for
low frequencies. In addition, the convergence rate for low-frequency modes does not improve on spatially coarser
grids.

Since Gauss-Seidel-like coupling iterations, including the interface quasi-Newton method, are inherently se-
quential in execution order of flow and structure solver, and since the structure solver is usually much less costly
than is the flow solver, alternative Jacobi-like methods (see (Ross, 2006) for compressible flows) are desirable on
massively parallel systems. These avoid processor idle time during the execution of the structural solver and the
coupling numerics.

As a practical application of FSI, we consider examples in high-performance, high-fidelity analysis, which
finds application in modeling the flow of airstreams over aircraft and vehicles as well as fluid flow over underwater
structures. Airflow problems necessitate the solution of nonlinear compressible FSI problems. Specific examples
include the parametric identification of an F-16 Block-40 fighter aircraft in clean wing configuration and subsonic,
transonic, and supersonic airstreams (Geuzaine et al., 2003; Farhat et al., 2003); the aeroelastic analysis of an
F/A-18 5.6 Hz limit cycle oscillation configuration; the flutter clearance of the laminar flow wing of a supersonic
business jet concept; and the aeroelastic tailoring of a Formula 1 car. Examples of incompressible FSI problems
include the study of intense implosive collapses of gas-filled underwater structures and their effects on nearby
structures (Farhat et al., 2010).

Many of these problems feature multiple spatial and temporal scales. In all of them, the fluid domain can be
occupied by one or multiple interacting fluids, the structure can be linear or nonlinear with self-contact, and the
fluid-structure interaction occurs at physical interfaces.

The AERO code (Geuzaine et al., 2003) is an example of a multiphysics FSI software package that consid-
ers these issues. The functional modules of the AERO code include some of the most important considerations
for producing accurate models: (1) the structural analyzer AERO-S, (2) the compressible turbulent flow solver
AERO-F, (3) the auxiliary module MATCHER, which enables the discretization of fluid-structure transmission
conditions at nonmatching, discrete fluid-structure interfaces (Maman and Farhat, 1995), and (4) the auxiliary
module, SOWER, which manages all parallel I/O associated with this software. AERO-F can operate on unstruc-
tured body-fitted meshes as well as fixed meshes that embed discrete representations of surfaces of obstacles around
and/or within which the flow is to be computed. The body-fitted meshes and the embedded discrete surfaces can
be fixed, move, and/or deform in a prescribed manner or can be driven by interaction with the structural analyzer
AERO-S. In the case of body-fitted meshes, the governing equations of fluid motion are formulated in the arbitrary
Lagrangian–Eulerian framework. In this case, large mesh motions are handled by a corotational approach, which
separates the rigid and deformational components of the motion of the surface of the obstacle (Farhat et al., 2001)
and robust mesh motion algorithms that are based on structural analogies (Farhat et al., 1998a). In the case of
embedded surfaces that can have complex shapes and arbitrary thicknesses, the governing equations of fluid mo-
tion are formulated in the Eulerian framework, and the wall boundary or transmission conditions are treated by an
embedded boundary method (Wang et al., 2011a). Both AERO-F and AERO-S feature explicit and implicit time
integrators with adaptive timestepping. Both modules are coupled by a family of partitioned analysis procedures
that are loosely coupled but exhibit excellent numerical stability properties and are provably second-order time
accurate (Farhat et al., 2006). AERO-F and AERO-S communicate via runtime software channels, for example,
using MPI. They exchange aerodynamic (pressure) and elastodynamic (displacement and velocity) data across
nonmatching, discrete fluid and structure mesh interfaces using a conservative method for the discretization of
transmission conditions (Farhat et al., 1998b) and the data structures generated for this purpose by MATCHER.

2.1.2 Fission reactor fuel performance

Simulating the performance of light water nuclear reactor fuel involves complex thermomechanical processes
between fuel pellets, which are made of fissile material, and the protective cladding that surrounds the pellets
(Hansen et al., 2009b). Figure 3 shows the relationship between the fuel pellet and cladding and the helium-filled
gap separating them. Advancing fuel design and analysis capability requires progress both in the modeling of the
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Figure 3: Illustration of a multiscale multiphysics calculation to predict the behavior of reactor fuel cladding
containing hydrogen inclusions (hydrides). In this process, an initial guess of the stress state in the fuel cladding
and the temperature history are calculated by using a macroscale calculation of the fuel rod. These states, defined
at the integration points of the multiscale calculation, are passed to concurrent phase field mesoscale calculations
in order to determine the morphology of the hydride inclusions. This morphology is then passed back to the
mesoscale calculation and used to calculate the stress profile within the cladding.

fuel material behavior and in the development of a multidimensional computational framework that couples these
models in a consistent, accurate, and efficient manner to describe how the fuel geometry and behavior change over
the lifetime of the fuel.

The base physics begins with heat diffusion that partially drives the mechanical response of the fuel pellet and
cladding system (Newman et al., 2009a). Thermomechanical response problems are often solved in an operator
splitting fashion, but this approach can result in convergence and stability issues as the pellet and cladding come
into contact as the fuel ages. Newman et al. (2009b) solve the fuel performance problem in a fully coupled manner
on a single mesh. Further, an oxygen diffusion equation is added since, under hyperstoichiometric conditions,
both the thermal conductivity and mechanical properties of the fuel pellet are impacted by the diffusion of oxygen
within the matrix. Additional material models are used to describe other details of the thermal and mechanical
behavior of the fuel and cladding, such as swelling of the fuel due to the accumulation of fission products within
it (Williamson and Knoll, 2009). The expansion of the pellet and, indirectly, the width of the gap separating the
pellet and the cladding are functions of the thermal profile within the pellet, the age of the fuel (the degree of fission
product driven swelling), and the creepdown of the cladding onto the outside surface of the pellet.

Given the significant radial and axial displacement of the pellet relative to the cladding, it is infeasible to
mesh the helium-filled gap between the two, especially in a multiple pellet simulation. Since the gap is long
and narrow, Rayleigh numbers are unlikely to be high enough within the gap to support significant convection.
However, it is important to accurately model the conductive heat transfer across the gap, since the gap is one of the
principal factors that influence performance of the fuel. Thus, a fully coupled thermomechanical contact model
was developed to model the evolution of the gap within the fully coupled multiphysics code (Hansen, 2011).

Irradiation of the fuel and the cladding affects the thermal and mechanical properties of both. It is difficult
to describe these effects on the coarse scale of the finite-element code described above. Modeling the irradiation
of the material is more easily done at lower-length scales, such as the mesoscale. One might employ a phase-
field simulation approach to calculate the evolution of thermal conductivity of the fuel under irradiation. Use
of this model can be challenging, however, since the characteristics of the irradiation damage change with fuel
temperature. Tonks et al. (2009, 2010) couple a mesoscale solution of the Cahn-Hilliard equation to the macroscale
approach to form a multiscale simulation. The mesoscale simulation requires coupling a temperature field from
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the macroscale as input to the simulation. Further, the thermal conductivity calculated at the mesoscale impacts the
temperature field calculated on the macroscale. A similar approach, shown in Figure 3, may be used to assess the
safety of handling used fuel after drying and storage. Here, hydrogen inclusions (hydrides), which may weaken
the cladding surrounding the fuel pellets, can form during the drying of fuel. To predict cladding performance, a
macroscale structural and thermal response analysis is linked to a mesoscale calculation that computes the structure
of the hydride inclusions (the hydride morphology). The stress and temperature at the integration points serve
as boundary conditions to the mesoscale phase field calculation hosted there; the temperature and temperature
gradient in time drive the precipitation of hydrogen from solid solution, and the stress state during precipitation
affects the orientation of the hydride inclusions. The resultant hydride morphology calculated at the mesoscale
is then upscaled for input to the mechanical response macroscale calculation that predicts the cladding behavior
under loading scenarios of potential concern.

The equations that describe reactor fuel performance are solved by using a fully coupled, Jacobian-free Newton
Krylov approach (Newman et al., 2009b; Gaston et al., 2009a,c) (see Algorithm 3 and Section 3.1.2). A fully
implicit time integration strategy is used to support accurate time integration needed over short transient events,
such as the initial warmup of the reactor and power transients during operation, and to allow long timesteps to
be taken under the long quasi-static periods of normal operation. All the phenomena within the reactor fuel are
tightly interrelated, particularly the mechanical aspects of the fuel. As the fuel warms up, the pellet expands,
thereby narrowing the gap and increasing the pressure of the gases between the pellet and cladding. The narrowing
gap increases the heat transfer efficiency across it, which cools the pellet, checking its expansion. Attempting
to decouple these processes in order to simplify the solution process can result in convergence issues and even
“numerical chatter,” where the pellet and cladding chatter on incipient contact instead of arriving at an equilibrium
solution (Hansen, 2011). In the gap integration technique presented here, fluxes and tractions are exchanged
between the pellet and cladding using the mortar finite-element method. The integration space and Lagrange
multiplier implementation employ the Moertel package (Gee and Hansen, 2012) in Trilinos.

2.1.3 Conjugate heat transfer and neutron transport coupling in reactor cores

It is well understood that nuclear fission energy is a key component of our current and future energy needs. It is
therefore urgent to develop nuclear reactors that are safe and environment friendly. Accurately predicting neutron
densities in a reactor core is a critical aspect of design and safe operation. Reactor cores are designed to balance
power generation with efficient heat transfer and fuel burnup objectives, optimizing energy density relative to
design limits for key global properties such as peak temperature and temperature gradient, neutron fluence, and
pumping power (pressure drop).

With the availability of leadership-class supercomputers, high-fidelity simulations of different physical phe-
nomena (such as neutron transport, coolant flow, structural mechanics, and materials science) inside complex reac-
tor geometries appear a feasible and attractive option. However, the modeling and simulation (M&S) tools need to
accurately represent the coupling among these physical processes while preserving the accuracy in each physics.
The existing M&S tools are based on various approximations (to reduce the computational burden) and rely on var-
ious correlations derived from experiments that can be applied for a narrow range of design space. Therefore, what
is needed is to develop a modern, integrated design tool that allows automated data transfer among different de-
sign activities and facilitates enhanced global design optimizations. Work in the Simulation-based High-efficiency
Advanced Reactor Prototyping (SHARP) project (Siegel et al., 2007; Pointer et al., 2012a) and the Center for
Exascale Simulation of Advanced Reactors (CESAR) (Rosner et al., 2012) focuses on developing such tools for
reactor design.

On relatively fast timescales (compared with the physics of neutronics/fuel coupling) and within certain pa-
rameter regimes, methods for computing the accurate coupling between the neutron transport and conjugate heat
transfer, for fixed fuel and structural configuration, become the key problem of interest for reactor analysts. His-
torically, reactor design and analysis tools have been based on weak coupling between bulk fluid characterizations
and few-group diffusion or nodal neutronics methods.

The SHARP and CESAR projects are investigating high-fidelity fluid/neutronic coupling methods for a range
of reactor phenomena. Many of the calculations require large numbers of energy groups and are crucial for sim-
ulating various accident scenarios, such as ejected control rod and loss of coolant flow without shutdown. These
accidents, which involve rapid thermal-mechanical changes in the reactor core geometry, require several minutes
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Figure 4: Illustration of multiphysics coupling in SHARP. Left: Schematic representation of interrelationships
among the different modules of SHARP. Here Ωn denotes the neutronics (UNIC) mesh, and Ωth denotes the
thermal-hydraulics (Nek) mesh (Siegel et al., 2007). Right: Predicted coolant velocity distribution in a light
water reactor (Pointer et al., 2012b). Evaluating reactor design performance accurately depends on resolving
multiphysics coupling between neutron transport and coolant flow through the complex reactor geometries.

to hours of time data. The existing tools do model these types of problems, but confidence in the solutions is
difficult to assess. Higher-fidelity solution capabilities not only will allow better understanding of the behavior of
existing reactor systems but also will predict the behavior of many newly proposed systems with as yet untested
design characteristics (i.e., those without direct experimental data to back up the approximations made in the sim-
plified modeling). High-fidelity solutions can also be used to enhance the existing simplified models by providing
improved methodologies for obtaining reactivity coefficients and heat transfer coefficients.

The neutron transport equation is volumetrically coupled nonlinearly to thermal hydraulics via fuel and coolant
temperature and density. Both neutronics and thermal hydraulics are coupled to the structural behaviors of fuel
rods (and other components as shown in Figure 4). At present, the SHARP and CESAR projects are studying the
coupling between neutronics and thermal hydraulics. The details of the discrete formulations of the governing
equations are reported in companion papers (Fischer et al., 2007, 2008; Kaushik et al., 2009) and are not essential
to understanding the intermodule coupling problem.

When the physics is split into separate components, these couplings take the form of specific data values that
are interpolated from source to target meshes and sent between the modules through well-defined interfaces. To
solve the governing equations, SHARP includes two physics modules: (1) Nek (Fischer et al., 2002, 2012), a
spectral-element code that solves the 3D, incompressible (Boussinesq), time-dependent Navier-Stokes equation
with conjugate heat transfer on unstructured, higher-order quadrilateral meshes; and (2) UNIC (Kaushik et al.,
2009; Smith et al., 2011), an unstructured, deterministic neutron transport code that incorporates parallel even
parity, sweeping, and ray-tracing algorithms.

Separating physics modules into distinct components and implementing coupling as interactions between these
components impose a number of requirements on the overall design of the SHARP framework, discussed in (Siegel
et al., 2007). SHARP couples physics components and other services through the spatial discretization or mesh
abstraction provided by MOAB (Tautges et al., 2004, 2011a,b), which is introduced in Section 4.1.3.

New research in the CESAR project is building on this foundation to develop a coupled, next-generation nu-
clear reactor core simulation tool capable of efficient execution on exascale computing platforms. The approach
incorporates tight coupling of extreme-fidelity models of neutron transport and conjugate heat transfer.
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2.1.4 Multiscale methods in crack propagation

Most physical phenomena of interest to humankind involve a range of temporal and spatial scales. For example,
brittle fracture of solids under external stresses can lead to the failure of large structures such as bridges or ships
but originates at the atomic scale with the propagation of microcracks. Likewise, tidal currents in bays extend over
many miles, but their behavior is dictated by the water viscosity, determined from the molecular-scale interactions
of water molecules. A computational approach that captures the complexity of such physical systems must be able
to treat all the relevant scales at the level of accuracy required for a realistic description. In this section and the next,
we illustrate the issues involved in such multiscale simulations through two examples that require a broad range of
scales, from the continuum to the atomistic and even to the electronic level. (Lu and Kaxiras (2005) review similar
problems and methods for their simulation.) The two examples are chosen to demonstrate both the progress that
has been made and important challenges that remain in the areas of hard and soft materials.

In this section, our example involves hard materials, specifically the modeling of crack propagation and fracture
of solids. Crack propagation is often the result of chemical impurities (corrosion), which can change the mechanical
behavior of a solid from ductile (tough, difficult to break solids) to brittle (weak, easily breakable ones). The length
scale at which this phenomenon is observed in everyday situations is roughly millimeters and above. At this scale
cracks are detectable by the naked eye and, if not arrested, can lead to the failure (occasionally catastrophic)
of large structures such as ships, airplanes, and bridges. The presence of chemical impurities, often in minute
concentrations (a fraction of a percent or lower), changes the nature of the bonds between the atoms, which is
crucial in the region near the tip of the crack where bonds are being stressed to the point of breaking. These
atomic-scale changes are ultimately responsible for the macroscopic-scale change in the mechanical behavior of
the solid.

A schematic breakdown of the different length and scale regimes relevant to this phenomenon is illustrated
in Figure 5. The macroscopic scale (10´3 m or above) on which the crack propagation is of practical interest
contains a huge number of atoms, of order 1024, and can be handled only by continuum approaches such as
elasticity theory. The response of the solid to external stresses is determined by the motion of defects such as
dislocations, which provide the mechanism for deformation. Their distribution and motion at the mesoscopic scale
(10´5 m) can be described by theories that explicitly take into account these defects and the pattern of stress
they create within the solid (Peierls, 1940; Nabarro, 1947; Hirth and Lothe, 1992; Devincre and Kubin, 1997).
The origin of dislocations and the nature of the interactions between them can be described only by considering
their structure at the microscopic scale (10´7 m) in terms of atomic degrees of freedom interacting by springlike
forces (Bulatov et al., 1998). Furthermore, the presence of chemical impurities and their effect on atomic bonding,
and by extension of the forces that hold atoms together near the tip of a crack, must include a quantum-mechanical
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Figure 5: Illustration of the length and timescales in crack propagation. Left: Schematic representation of the
length and timescales involved. Right: Multiscale simulation of crack propagation in silicon, a prototypical brittle
solid, which includes all the relevant length-scales; the color maps show the distribution of stress (highest at the
tip of the crack), with stress waves passing seamlessly from one region to the next (Abraham et al., 1998).
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description of the ion-electron interactions that can capture the chemical properties of different types of atoms.
This scale can be treated in the context of density functional theory using, for example, methodologies such as
the Car-Parrinello approach (Car and Parrinello, 1985). A first attempt to capture all these scales for the case of
fracture in silicon, a prototypical brittle solid, was the multiscale-atomistic-ab initio-dynamics approach, which
was able seamlessly to couple within the same method the quantum-mechanical scale to the classical atomistic
and to the continuum (Abraham et al., 1998). A direct link between the atomistic scale and the scale of defects
(dislocations, domain boundaries, etc.) dynamics was accomplished by the quasi-continuum method (Tadmor
et al., 1996), which enabled realistic simulations of large deformation of materials (Smith et al., 2001; Tadmor
et al., 2002). These examples addressed effectively many of the computational issues in the coupling of length
scales for multiscale simulations of materials.

In both this hard-material example and the soft-material example, which is described in the next section, there
are a number of common issues that affect the accuracy and tractability of simulations. These include boundary
conditions, model stability, error propagation, and timestep limitations. These issues are discussed at the close of
the next section.

2.1.5 Multiscale methods in ultrafast DNA sequencing

In this section, we examine models for soft materials by applying multiscale methods to the problem of ultrafast
sequencing of DNA through electronic means—a concept being vigorously pursued by several experimental groups
(Kasianowicz et al., 1996; Meller et al., 2000; Li et al., 2003; Storm et al., 2005; Dekker, 2007; Fyta et al., 2011).
The idea is to form a small pore, roughly of the same diameter as the DNA double helix, and detect the DNA
sequence of bases by measuring the tunneling current across two electrodes at the edges of the pore during the
translocation of the biopolymer from one side of the pore to the other. Estimates of the rate at which this sequencing
can be done are on the order of 10 kilobits per second, which translates to sequencing the entire human genome in
a couple of days. While this goal has not been achieved yet, the successful demonstration of this concept has the
potential to produce long-lasting changes in the way medicine is practiced.

This system is also complex, involving several scales that are shown schematically in Figure 6. At the coarsest
scale, the biopolymer in solution needs to be directed toward the nanopore. The scale of the biopolymer in solution
is on the order of micrometers, and the timescale involved in finding the pore is on the order of fractions of a
second. At these scales, the system can be reasonably modeled as consisting of a continuous polymeric chain
in a uniform solvent under the influence of an external nonuniform but continuous field that drives it toward the
pore. Understanding the translocation process involves modeling the polymer at scales set by the persistence
length („ 50 nm for DNA), while including the effect of the solvent. The coupling of the molecular motion to
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Figure 6: Illustration of the length and timescales in ultrafast DNA sequencing by electronic signals during translo-
cation through nanopores. Left: Schematic representation of the process and the various scales involved. Right:
multiscale simulation coupling the molecular scale of DNA, represented by the blue spheres at the molecular
persistence-length scale, to the motion of the fluid solvent whose local velocity is given by the colored contours.
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the fluid motion has been successfully demonstrated, with the solvent described by the lattice-Boltzmann approach
to modeling fluid dynamics (Succi, 2001; Benzi et al., 1992) and the polymer motion described by Newtonian
dynamics under the influence of local friction from the fluid motion (Fyta et al., 2006). This lattice-Boltzmann plus
molecular-dynamics (LBMD) description has successfully reproduced details of the observed translocation process
in a realistic manner, as observed in experiments for both single-file and multifile translocation. An extension of
the LBMD method to blood flow in the main arteries of the heart, including the explicit dynamics of red blood
cells, was able to capture both the effects of non-Newtonian blood flow on the arterial walls (the “endothelial shear
stress,” linked to heart disease) and the formation of correlated cell motion (Peters et al., 2010). The coupling to the
atomistic and electronic scales, required to capture the whole process of electronic sequencing during translocation,
remains a significant challenge. The electron current can be calculated from quantum-transport theories, once
the relevant electronic states are known. To this end, detailed calculations of the electronic properties of DNA
bases need to be carried out, at the level of quantum chemistry, including all the details of the atomistic structure
dictated by the morphology during the translocation process. Assembling the entire picture in a coherent model
is a serious challenge to current computational capabilities and is likely to require significant conceptual and
algorithmic innovations in the way we handle the phase-space of complex systems.

The examples outlined in this and in the previous section illustrate several of the issues that arise in the context
of multiscale simulations for hard and soft materials. The physics coupled in both cases is the motion of atoms
and electrons, at the finest scale, as dictated by boundary conditions on the system at macroscopic scales, where
continuum theories can be applied. The two ends of the spatial scale are intimately coupled, with the atomic
motion constrained by the imposed boundary conditions and, in turn, determining the response of the system
to the externally applied stress. The information passed between the scales is essentially the forces on the key
components at each scale, which are derivatives of the appropriate energy functionals. These functionals have
explicit dependence on degrees of freedom that are coupled across the scales.

Two key sources of errors and instabilities in these multiscale simulations are the differences in the energy
functionals across two scales and the loss of information in passing from the finer to the coarser scale. The
differences in energy functionals lead to the appearance of “ghost forces,” since the physical quantities that underlie
each functional may have a range much larger than the boundary region between the two scales. A case in point is
the range of electronic wavefunctions, which can extend over much larger distances than what is practical to capture
with a multiscale method involving a quantum-mechanical description at the finest length scale (for metallic solids,
these wavefunctions may extend over the entire range of the solid). The second limitation, the loss of information
due to coarsening of degrees of freedom, is intrinsic to the multiscale problem and can be addressed to some
extent by performing finite-temperature simulations at the atomistic scale. These, however, are both extremely
computationally demanding and restricted to a single temperature value. A more general framework is required to
overcome this limitation.

The most severe limitation of multiscale methods that include atomistic or electronic scales is that the timestep
is dictated by the dynamics at the smallest scale, which for atomic motion is on the order of 10´15 s. Interesting
methodologies for extending the timescale have been proposed (see, e.g., (Voter, 1997b,a)), but they have their
own limitations in the size of system that can be treated or the range by which the timescale can be extended. This
issue remains one of the most challenging theoretical problems in performing multiscale simulations for materials
problems that can be of direct relevance to real applications.

2.1.6 Magnetic confinement fusion

Magnetic fusion is a long-term solution for producing electrical power for the world, and the large international
device ITER (2012) being constructed will produce net energy and a path to fusion energy provided the computer
modeling is accurate. Fusion computation is enormously difficult because of the wide range of temporal and
spatial scales in fusion devices (Post et al., 2004; Tang et al., 2009). Consequently, the fusion community has, over
decades, developed a suite of models for tokamaks (and other confinement devices).

A model that quantitatively accounts for all the interacting physical processes at work in a tokamak discharge
has come to be known as a whole device model (WDM). Such a model must account for nonlinearly interacting
phenomena, including sources of energy and particles into the plasma; transport of energy, particles, and momen-
tum through the plasma; interface between the hot central plasma and the cool edge plasma and the material walls;
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Figure 7: Schematic diagram of a tokamak cross section. The thick black line shows the material wall. The region
inside the separatrix (closed brown contour) is the core, while outside is the edge. The physics in the core, edge,
and material walls occur at different timescales and include different physical phenomena. Coupled simulations
are needed to self-consistently understand the physics of the tokamak in order to optimize the fusion gain.

and interaction of the plasma with external magnetic coils, circuits, and control systems. While work of this kind
has been going on in fusion research for a long time, limitations of theory and computer power traditionally have
restricted such modeling to much-simplified models for the physical processes. Including this physics in a single,
integrated, multiphysics, multiscale simulation presents many challenges of physics, applied mathematics, and
computer science. Beyond the mathematics and computer science required to realize the physics components in
an integrated simulation, there are important mathematical issues related to model coupling and stable, accurate
timestepping algorithms, as well as computer science issues of data communication and efficient management of
very large-scale computer resources.

As an example of one significant WDM project, FACETS, the Framework Application for Core-Edge Transport
Simulations (Cary et al., 2009; Hakim et al., 2012; Cary et al., 2011), has the goal of providing modeling of a fusion
device from the core to the wall. Figure 7 shows the cross section of a tokamak plasma, which has a toroidal (donut)
shape. The separatrix (so labeled) separates hot plasma in the center from the cooler, surrounding plasma. The
central plasma is hot because it can move primarily only along the magnetic field lines, and those always remain
in the core of the system. Thus, the plasma is never in direct contact with material walls, which would cool the
plasma. In the edge region of the plasma, just outside the separatrix, the magnetic field lines (projections on a
poloidal plane shown in green) wrap around the core but then terminate on the walls. This contact with the walls
leads to much cooler plasma.

In the two regions, the plasma is analyzed with different approximations. In the core, the velocity distributions
of the particles are nearly Maxwellian; and bulk parameters, such as temperature and density, are nearly constant
along field lines and, hence, on flux surfaces, the surfaces on which the field lines remain. This constancy in flux
surfaces implies that the plasma has only one-dimensional variation, on the dimension that crosses flux surfaces.
In the edge, the plasma varies strongly along a field line, from the region in the midplane near the core to the ends,
which are in contact with the walls. Hence, in this region the plasma has two-dimensional variation. Being cooler,
the edge region can have a high density of atomic species, whereas in the core the plasma is for the most part fully
ionized.

Just inside the separatrix is a transition region, where the cool, two-dimensional plasma of the edge morphs
into the hot, one-dimensional plasma of the core. The atomic physics processes become less important; and the
character of the turbulence, which controls the plasma confinement, changes. In this region a pedestal may form.
At the pedestal there can be nearly a transport barrier, such that the temperature of the plasma can be very different
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across it. Good pedestals are needed for the beneficial H-mode of operation.
Important to the dynamics of this system is how the edge plasma interacts with the wall. The fuel for fusion is

hydrogen (actually, its isotopes, deuterium and tritium). The nuclei of these atoms can diffuse into the wall and be
released at a later time. These processes are important to fusion confinement devices because they act as boundary
conditions on the edge plasma, determining, in part, the influx of particles.

FACETS uses a component-based approach to couple the various physics. Currently, the core, edge, and wall
equations are evolved separately and coupled with an explicit coupling scheme; preliminary work on implicit
coupling is promising. The coupling between the core and the edge involves a transformation of the 2D edge data
to a boundary condition for the 1D core equations, while a reverse transformation is required to transfer fluxes
from the core to the edge. The edge-wall coupling is a pointwise coupling in which each cell on the edge boundary
is coupled to a wall component.

Coupled whole-device simulations of tokamaks are required in order to understand and optimize fusion gain.
The current approach to coupling is essentially code-to-code coupling between existing physics components that
were not originally designed for this purpose. Hence, the challenge is not only to retrofit these components to
work with one another but also to design robust and accurate algorithms that evolve the coupled physics. Further,
developing new WDM components that take into account emerging high-performance architectures is a significant
challenge that needs to be addressed in order to satisfy the modeling requirements as ITER and other tokamaks
become operational.

2.1.7 Subsurface science

Problems in hydrogeology encompass a broad range of multiphysics and multiscale issues. In this section, we
discuss several solution and coupling approaches in the area of subsurface fluid flow, solute transport, and reactions.

First, we consider continuum-scale subsurface reactive transport. For several decades researchers have stud-
ied the coupling of fluid flow, multicomponent solute transport, and geochemical reactions. In the 1980s, re-
searchers (Rubin, 1983; Cederberg et al., 1985; Lichtner, 1985) developed formulations for coupling multispecies
chemistry with multicomponent transport. Yeh and Tripathi (1989) and Steefel and MacQuarrie (1996) provide
overviews of these techniques, which can be divided into three general categories: (1) the global implicit approach
(GIA), where solute transport and geochemical reaction are tightly coupled and solved simultaneously in a single
system of nonlinear equations; (2) the sequential iteration approach (SIA), where solutes are transported indepen-
dently, then coupled through geochemical reaction, with the process iterating until the global residual equations
converge to a prescribed tolerance; and (3) the sequential non-iterative approach (SNIA), where the solutes are
transported independently and coupled through geochemical reaction, but with the process not iterated to conver-
gence. The SNIA approach is more commonly referred to as “operator splitting.” Steefel and MacQuarrie (1996)
present a concise overview of these three approaches and provide examples illustrating the tradeoffs of each.

Through the years, researchers have argued in favor of SNIA or SIA over the fully coupled GIA because
of GIA’s excessive computing requirements (Yeh and Tripathi, 1989). However, both SIA and SNIA, with less
coupling, present their own challenges regarding accuracy and performance (Valocchi and Malmstead, 1992; Barry
et al., 1996; Kanney et al., 2003a,b; Carrayrou et al., 2004). SNIA is known to introduce operator-splitting error in
the solution, and SIA may result in prohibitive iteration counts when geochemical species are tightly coupled to the
immobile phase (e.g., strong sorption, mineral precipitation-dissolution with fast reaction kinetics). An interesting
modification can be made to SIA by selectively coupling a subset of strongly coupled reacting species and solving
the resulting subsystem of equations with GIA within the SIA framework (Robinson et al., 2000). This selective
coupling can reduce SIA iteration counts by two orders of magnitude and model runtimes by more than an order
of magnitude.

Recent advances in high-performance computing have enabled the use of GIA to solve three-dimensional
problems comprising large numbers of chemical species. The feasibility of GIA has been demonstrated on a
groundwater-flow and reactive-transport problem involving tens of millions of degrees of freedom simulated on
thousands of processor cores (Hammond and Lichtner, 2010). With the use of increasing numbers of processor
cores (e.g., 10K or more), simulating these larger nonlinear systems of equations requires the development of new
solver algorithms to preserve nonlinear and linear iterative solver iteration counts and to minimize communication
requirements. Physics-based preconditioners have been investigated for reactive transport (Hammond et al., 2005),
where the GIA Jacobian operator is split into two separate operators for global transport and local reaction. These
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two transport and reaction operators are then applied sequentially in the preconditioning step, much like opera-
tor splitting is applied as a solution technique. This physics-based preconditioner performs well for subsurface
problems composed of primarily aqueous reactions, but more poorly for scenarios where one would expect larger
operator splitting error (e.g., fast reaction kinetics and solute retardation through sorption and mineral precipita-
tion).

Next, we go beyond the continuum scale and consider multiscale approaches that couple pore-scale to continuum-
scale models. At the pore scale, the geometry of solid grains and pore spaces is explicitly defined, and the physics
represented are Navier-Stokes equations for single-phase fluid flow, advection and diffusion as transport processes,
and various aqueous and heterogeneous reactions (both equilibrium and kinetic). Pore-scale models take vari-
ous forms, including traditional mesh-based CFD methods, lattice-Boltzmann methods, pore network models, and
fully Lagrangian smoothed particle hydrodynamics (SPH) particle methods (Gingold and Monaghan, 1977).

In this multiscale approach, at the continuum scale, the system is treated as a “porous medium” without con-
sideration of explicit grains and pores. Continuum-scale physics includes conservation of mass combined with
Darcy’s law for single-phase fluid flow, mean advection, and dispersion (including diffusion and effects of unre-
solved velocity variations) as transport processes, and a similar set of chemical reactions. Most continuum-scale
models use traditional numerical methods (finite difference, finite element, finite volume) to discretize and solve
the system of PDEs, as discussed above.

Since efforts in this treatment of multiscale-multiphysics coupling in subsurface reactive-transport problems
have been initiated only recently, the literature contains only a small number of examples. These use both con-
current and hierarchical approaches. In concurrent methods, different physics are solved on separate subdomains
with exchange of information and boundary condition matching at the boundaries between the subdomains (or in
some cases on an overlapping region). Balhoff et al. (2007) used a concurrent approach to couple a pore network
model of flow within a sand-filled fracture to a continuum model of flow in the surrounding porous matrix. Tar-
takovsky et al. (2008) have developed a coupled pore-continuum model of a diffusion/reaction system in which
SPH is used at both scales; this allows straightforward model coupling at the domain boundary but is difficult to
adapt to situations in which advective flow exists. Mortar methods (Balhoff et al., 2008) also provide a means of
coupling subdomains with different physics by solving a boundary-matching problem on the mortar grid. Battiato
et al. (2011) used an iterative boundary-matching scheme to couple pore- and continuum-scale models of reac-
tive transport including advective flow. Alternatively, hierarchical methods solve both models simultaneously over
common domains and pass information between scales using various approaches. Tartakovsky and Scheibe (2011)
have successfully applied a hierarchical method called dimension reduction with numerical closure to simulation
of mixing-controlled mineral precipitation. In this approach, conceptually similar to the heterogeneous multiscale
method of E et al. (2003), macroscopic properties and states are defined in terms of pore-scale variables, and short
bursts of pore-scale simulation are used to provide numerical closure for a given set of local conditions. Then, a
larger timestep is taken with the macroscopic model (eliminating a significant amount of pore-scale simulation)
before it is necessary to update the numerical closure to reflect new macroscale conditions.

2.1.8 Surface and subsurface hydrology

A blueprint for modeling fully integrated surface, subsurface, and land-surface processes, originally proposed forty
years ago (Freeze and Harlan, 1969), is now becoming a reality. Although truly coupled models have appeared
only recently in the literature (VanderKwaak and Loague, 2001; Panday and Huyakorn, 2004; Jones et al., 2006;
Kollet and Maxwell, 2006; Qu and Duffy, 2007; Kollet and Maxwell, 2008), a growing library of models and com-
munity of modelers now contribute considerably to our understanding of the coupled terrestrial hydrologic and
energy cycles. These coupled and integrated hydrologic models are being used on a range of important issues. The
models have common features in that they solve some form of the nonlinear diffusion equation (e.g., Richards) for
subsurface water flow and some form of the shallow water equations (e.g., kinematic or diffusive wave) for surface
flow. Additionally, these hydrologic models are being coupled to land-surface energy, biogeochemistry/ecology
models and to atmospheric models (VanderKwaak and Loague, 2001; Panday and Huyakorn, 2004; Maxwell and
Miller, 2005; Kollet and Maxwell, 2006; Maxwell et al., 2007; Kollet and Maxwell, 2008; Maxwell et al., 2011).
Updated numerical and computational technologies have, in part, enabled new approaches for modeling these cou-
pled interactions. While these models all take different numerical, discretization, and coupling approaches, they
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share the common goal of modeling—rigorously and mathematically—the terrestrial hydrologic and energy cycle
as an integrated system. Research addressing these issues encompasses a range of scales and includes a variety of
processes (Ebel et al., 2009). Hydrologic simulation models break into two broad solution categories: a globally
implicit formulation and operator-splitting or Gauss-Seidel methods. Among the globally implicit hydrologic mod-
els, there are two distinct formulations for solution of surface and subsurface flow (Ebel et al., 2009): first-order
exchange (VanderKwaak and Loague, 2001; Panday and Huyakorn, 2004) and continuity of pressure (Kollet and
Maxwell, 2006). Integrated hydrologic models solve equations for surface flow (generally the shallow wave equa-
tions) and subsurface flow (generally Richards equation) simultaneously (VanderKwaak and Loague, 2001; Pan-
day and Huyakorn, 2004; Jones et al., 2006; Kollet and Maxwell, 2006; Qu and Duffy, 2007; Kollet and Maxwell,
2008; Camporese et al., 2009; Kumar et al., 2009; Park et al., 2009b) and represent both coupling approaches and
a range of numerical implementation of solution (finite-element methods and finite-difference/finite-volume meth-
ods). While not widespread, integrated hydrologic models have been designed to run on large-scale computing
infrastructure and, in one case, demonstrate very good weak scaling out to large numbers of processors (Kollet
et al., 2010).

ParFlow solves the variably saturated Richards equation in three dimensions. Overland flow and groundwa-
ter surface water interactions are represented through a free-surface overland flow boundary condition, which
routes ponded water as via the kinematic wave equation (Kollet and Maxwell, 2006). The coupled subsurface-
overland equations are solved simultaneously using a highly efficient and robust Newton-Krylov method with
multigrid preconditioning, which exhibits excellent parallel scaling and allows simulation of large-scale, highly
heterogeneous problems (Ashby and Falgout, 1996; Jones and Woodward, 2001). Simultaneous solution ensures
full interaction between surface and subsurface flows; this is particularly important in regions with spring-fed
streams, large baseflows, and rivers that alternate between gaining and losing.

As one example of multiscale hydrological modeling, ParFlow solves the coupled water and energy balance
at the land surface by incorporating a modified version of the Common Land Model (CLM3.0) (Dai et al., 2003),
which calculates evaporation from vegetation canopy and the ground surface; transpiration and plant water uptake
over the soil column; snow accumulation and melt; and latent, sensible, and ground heat fluxes. Vegetation and
land-energy processes are calculated at each timestep by using an operator-splitting approach that ensures full
mass and energy conservation (Maxwell and Miller, 2005; Kollet and Maxwell, 2008). A fully coupled hydrologic
and climate model PF.WRF was developed by combining ParFlow with WRF (Maxwell et al., 2011). The general
solution procedure begins with explicit advancement of the atmospheric code. Using the operator-splitting ap-
proach, surface fluxes that are relevant to ParFlow, such as infiltration and evaporation rates, are integrated within
the atmospheric model over the ParFlow timestep. These accumulated surface fluxes are applied to ParFlow at the
start of its implicit time advancement. The subsurface moisture field calculated by ParFlow is passed directly to
the Noah land-surface model (Mitchell, 2005) within WRF for use in the next timestep. Noah is advanced for each
WRF timestep to provide the necessary land-surface fluxes, but soil moisture values are now specified by ParFlow.
ParFlow is incorporated as a subroutine in Noah, with communication over all Noah soil layers; subsurface hy-
drology in Noah is entirely replaced by ParFlow. The combined model is fully mass and energy conservative.

2.1.9 Climate modeling

Earth system modeling, specifically coupled global climate modeling (GCM), is one of the truly definitive mul-
tiphysics applications in several respects. GCMs encompass physical behavior ranging in spatial scales from
molecular dynamics to global atmospheric wave patterns. Moreover, GCMs capture climate variations covering
months to ten thousand years over regional to global areas of the Earth’s surface. A number of GCMs are under
active development around the world, and the Community Earth System Model (CESM), which has been devel-
oped by hundreds of scientists and contributes to the Intergovernmental Panel of Climate Change Assessment
Report (Solomon et al., 2007), is a good example to illustrate the multiphysics nature of global climate modeling.
In most cases, the multiphysics characteristics of the CESM apply to other GCMs.

The CESM comprises five Earth system components—atmosphere, land surface, ocean, sea ice, and ice
sheets—and has provision for future components, as shown in Figure 8. These components periodically exchange
data as fluxes at component boundaries through a flux coupler, which coordinates the transfer of coupled physics
across model components—except for ice sheets, which currently receive one-way surface–mass balance values
from the land model. Typically, coupling occurs every simulated day, although recent high-resolution coupled
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Figure 8: A schematic diagram illustrating the multi-fidelity structure of the earth-system model. Except for the
ice sheet model, all components in the model mutually couple through the flux coupler, which is shown as the
hub of the diagram. The ice sheet model does not couple in the same way. It is coupled only to the land model,
receiving surface-mass balance values. As is shown, this coupling is one way–the land model receives no feedback
from the ice sheet model.

model development has indicated the necessity of exchanging this information more frequently (Dennis et al.,
2012). The source-model flux data is interpolated to the target component by using second-order or conserved
mapping weights within the coupler. Coastal “masks,” which account for the boundary between land surface and
ocean, are created as a data file to determine whether atmosphere model grid cells couple to the land surface or
ocean below and vice versa. These masks need to be created for each combination of component grids used in a
coupled-model run.

Within each model component, resolved physics are represented by discretized equations referred to as the
dynamical cores, or dycores. Currently, all the physics and dynamics variables exist on the scale of the three-
dimensional discretized grid, although the land model performs computations using statistical representations of
subgrid-scale land-use characteristics. The atmospheric component in CESM, the Community Atmosphere Model
(CAM), has several dycore options that scientists can choose, based on desired attributes such as computational
efficiency and local conservation properties. Each model component uses a different strategy for solving the model
equations. For details, the reader is referred to the model documentation (Gent et al., 2011). Unlike CAM, which
has several choices for spatial discretization, the ice sheets, sea-ice, and ocean components in CESM use a finite-
difference scheme on regularly spaced grids. Their time integration methods are diverse, arising from the different
equations and physical scales being treated in each component. These methods include subcycled fully explicit
(sea-ice), semi-implicit to “step-over” barotropic dynamics (ocean), and fully implicit velocity, with subcycled
advection (ice-sheets) methods. Several of these components have developmental dycores using an unstructured
grid to allow local refinement (Ringler et al., 2011) and a testbed of fully implicit algorithms to overcome stability
limitations (Evans et al., 2009).

As mentioned above, CAM has several dycore options for scientists to select when configuring the coupled
climate model for experiments. These options include a spectral-element-discretized cubed-sphere configuration,
which uses a subcycled fully explicit numerical scheme. Other dycore options include an Eulerian spectral and
spherical finite-volume discretization, which both use an operator-splitting, semi-implicit time integration method
to separate waves of different scales. In this case, a common splitting of advection and gravity waves adapted
from the geophysical fluid dynamics community is employed because it takes advantage of a natural separation at
coarse resolution and favorable numerical properties of the resulting equations. The atmospheric dynamical core
resolves horizontal waves ranging from vertically propagating gravity waves („ 200 m/s) to low-frequency global
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modes within the background flow („ 2–20 m/s). Vertical motions are smaller in scale and are represented by the
hydrostatic approximation, which assumes that the vertical pressure gradient is largely balanced by gravity and is
valid to scales down to individual cloud systems of about 100 km in extent.

Climate is uniquely challenging because the most important drivers of global climate change—chemistry, mois-
ture, and radiation—vary over microscopic spatial scales but impact the global-scale net energy balance of the
Earth system. The global-scale atmospheric flow is coupled to local chemical, cloud, and radiative forcings; and
the time scale for this coupling ranges from the diurnal cycle to decades. Subgrid-scale effects are treated either as
prescribed values from datasets or as separate, vertical-column, horizontally independent models that are updated
as forcings to the dynamical equations. These independent models are themselves multiphysical. For example, the
chemistry model in CESM (Horowitz et al., 2003) uses a split explicit-implicit solution method for the slow and
fast species reactions, respectively.

2.1.10 Radiation hydrodynamics

Physical processes that involve radiation or hydrodynamics individually are part of many phenomena of every-
day life and everyday scientific research. However, phenomena where radiation and hydrodynamics couple and
stand together on an equal footing—where strong coupling between the two components affects the evolution of
each—rarely occur terrestrially but are common astrophysically. The energetics involved explains this apparent
dichotomy. In astrophysics, radiation hydrodynamics plays a part in highly energetic phenomena, such as stellar
core collapse, supernova shock propagation, supernova remnants, stellar pulsations, and accretion flow. Where
radiation-hydrodynamic phenomena occur terrestrially, they are restricted to high-energy density environments:
inertial-confinement fusion, laboratory astrophysics, and high-temperature shock-wave and explosive phenomena.

In addition to radiation hydrodynamics (RHD) being a multiphysics field, in that it strongly couples the evolu-
tion of distinct physical components (matter and radiation), many problems in RHD introduce other multiphysics
aspects. For example, a single problem can involve any number of the four fundamental interactions across mul-
tiphysics domains and can mix classical- and modern-physics paradigms (e.g., classical or relativistic space-time
and gravity, quantum statistics, electroweak, and strong nuclear interactions).

Numerical RHD models are typified by a number of common features (Pomraning, 1973; Mihalas and Mihalas,
1984; Castor, 2004): Conservation PDEs play a fundamental role (e.g., mass, species, energy, momentum). As a
result of the energies involved, shock waves are frequently present in such systems, leading to discontinuities in
physical quantities. Additionally, material interfaces, which are part of many models of terrestrial setups, introduce
another form of discontinuity into the problem. Some RHD problems can be classified as reactive-flow problems,
as evidenced by complex and strong coupling terms between components. Figure 9 shows an example of the
complexity of these systems: Interacting shock waves are propagating in a simulation of a terrestrial shock-tube
experiment as part of the CRASH project (Drake et al., 2011). A beryllium foil is driven into a xenon-filled shock
tube by a drive laser to speeds in excess of 100 km/s. This process generates a radiative primary shock wave, which
in turn generates a wall shock as the plastic walls of the shock tube are heated and ablated.

Other complexities also are common in RHD models. Frequently, the equations for the radiation are nonlin-
ear, requiring solution by nested iterative procedures, such as preconditioned Newton–Krylov methods. (These
nonlinearities can be caused by strong coupling between matter and radiation as well as by quantum-mechanical
degeneracy effects.) Coupling between physical components can be a sensitive issue because, in complex phenom-
ena, coupling varies in strength as a function of time, position, and/or energy and thus can require different solution
approaches in different situations. High dimensionality is also an issue. Proper treatment of the radiation requires
solution of the Boltzmann transport equation over six-dimensional phase space as a function of time. Almost al-
ways, finite computer resources force a compromise, leading to reduced dimensionality in some fashion (Graziani,
2005). Such compromises can affect self-consistency of coupling (e.g., radiation–matter momentum exchange in
flux-limited diffusion approximations).

Since numerical solution of RHD problems predates the computer age, solution techniques are many and
varied. Today, however, solutions typically involve the solution of Euler’s equations for the matter component.
(Reynolds numbers are typically very high in such systems.) Standard methods include finite-difference and finite-
volume methods. Lagrangian, Eulerian, and hybrid approaches (e.g., arbitrary Lagrangian–Eulerian [ALE] meth-
ods) are used. Such techniques also translate to solution of the radiation (Bowers and Wilson, 1982; Bruenn, 1985;
Myra et al., 1987; Turner and Stone, 2001; Swesty and Myra, 2009; van der Holst et al., 2011). Here, however,
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Figure 9: Interacting shock waves propagating in a simulation of a high-energy-density physics shock-tube exper-
iment (Drake et al., 2011). The figure shows a slice representing a half cross-section of the cylindrical shock tube
with the central axis at the bottom of the figure. In addition to the shock fronts, a number of material interfaces are
shown, which represent boundaries between the multiple materials used in the experiment (beryllium and xenon
within a polyimide-plastic shock tube). The horizontal extent of this schematic represents roughly 0.6 mm of a
shock tube that is about 4.0 mm in total length.

finite-element methods also find use (Lewis and W. F. Miller, 1993).
When a similar discretization is used for both matter and radiation, coupling between components reduces to a

problem of obtaining consistency and accuracy of paired coupling terms. However, when different discretizations
are used for matter and radiation (e.g., finite volume for matter and finite element for radiation), then accuracy of
the transfer operator can become problematic. Unlike frequently encountered multiphysics couplings discussed in
this report, matter–radiation coupling occurs, in some strength, over the entire physical domain of interest; it is a
volumetric coupling. Methods for improving the accuracy of this coupling are an area of active research.

RHD models commonly use a mixture of explicit and implicit approaches within the context of operator split-
ting. Choices stem from the timescales involved. Typically, hydrodynamic timescales are much greater than
radiative timescales. This situation leads naturally to use of explicit methods for the matter and implicit methods
for the radiation (usually sparse iterative approaches for the latter). However, for problems with long evolutionary
timescales (e.g., neutrino emission for cooling neutron stars (Reynolds et al., 2008)), implicit approaches increas-
ingly are being used for both components.

The difficulties inherent in adequate treatment of multiphysics coupling in RHD models are illustrated by
a sample list of the myriad of relevant timescales involved: acoustic, radiation-transport and radiation-source,
electron–ion equilibration, electron diffusion, and viscous (if present). Arrayed in relative size, these may span a
range of 1015. A challenge for the application modeler is to determine which of the associated processes are to be
followed in detail and which can be assumed to occur so quickly that an equilibrium approximation is adequate.

2.1.11 Geodynamics

Geodynamics is the study of dynamic processes in the Earth from crust to core. Processes range from earthquakes
to plate motions, large-scale convection to microscale melt migration. Physical coupling occurs over a wide range
of simulations in geodynamics. Short-term crustal behavior is generally modeled with some combination of a
porous, viscous, elastic, or plastic material model (Watts, 2001). Beneath the crust, incompressible mantle flow
calculations couple the advection-diffusion of energy/temperature to the Stoke’s equations (Schubert et al., 2001).
The complexity may be increased by introducing the advection of chemical components with low or zero diffusiv-
ity, which is often achieved by using particle-based methods (van Keken et al., 1997). Compressible flow, which
normally uses an anelastic approximation to filter out seismic waves and timescales, may also introduce reference
equations of state derived from models of seismic wave propagation (King et al., 2010). These simulations are
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Figure 10: The “drunken sailor” instability. In a simple case of a compositionally (grey shading) driven Rayleigh-
Taylor instability, an explicit coupling between the incompressible Stokes equations and the kinematic free-surface
on the top boundary leads to a sloshing instability in the velocity field (vectors) (Kaus et al., 2010).

often multiscale, including narrow plume conduits in large domains (Tarduno et al., 2009; Davies et al., 2011),
along with physical discontinuities in material properties at a variety of depths (Christensen and Yuen, 1985). At
greater depths, in the outer core, models couple turbulent flow from the Navier-Stokes equations to thermal and
magnetic models of rapidly convecting liquid iron (Glatzmaier and Roberts, 1995; Kuang and Bloxham, 1999).

The change of behavior and physical timescales with depth generally leads to different models being used for
different shells of the Earth. Boundary conditions are then used to parameterize the fluxes between models. As an
example, owing to high convective vigor in the outer core, the lower thermal boundary condition on the mantle may
be treated as a Dirichlet condition (Blankenbach et al., 1989), while the motions of crustal plates may be treated
as a rigid shell, with prescribed shear at the upper boundary of the mantle (Bunge et al., 1998). Depending on
the application, this outer boundary may also be treated as a free surface, supporting dynamic topography, which
involves coupling the solution of a kinematic boundary condition to the flow solution in the global domain. This
approach potentially introduces instabilities in incompressible flows (Kaus et al., 2010), as shown in Figure 10.
Smaller-scale, higher-resolution studies may occur on overlapping domains. As an example, one could focus on
the production of melt in subcrustal regions, such as mid-ocean ridges or subduction zones. The differing temporal
and spatial scales of pore-filling fluid and melt lead to calculations that are often multiphase, coupling Darcy’s
flow with Stokes flow in the mantle or poro-visco-elastic flow in the crust (Spiegelman, 1993a,b; Katz et al., 2007).
Experimental, theoretical, and numerical work attempts to link these high-resolution studies to larger domains
through parameterizations of rheology and melting (Katz et al., 2003).

2.1.12 Particle accelerator design

A key component technology in particle accelerators is the accelerator cavity, which is used to generate elec-
tromagnetic fields that control acceleration of the subatomic particles in the accelerator beam. To achieve high
efficiency, a modern accelerator cavity uses superconducting devices to generate the fields that drive the cavity at
its resonant frequency.

In radio-frequency (RF) cavity design, finding a sufficiently accurate resonant frequency for real geometry has
become possible with the help of a higher-order, high-fidelity finite-element method (Jin, 2002; Morgan, 1996;
Gupta et al., 1997; Sun et al., 2002). One of the main sources of operational failures of RF cavities is strongly
related to the excessive thermal heating arising from high power or high currents in operation (Cheng et al., 2011;
Reece et al., 2007). As the power and current increase for future experiments, optimizing the performance and
cost effectiveness of RF cavities becomes an increasingly important technological challenge for designing next-
generation accelerators. TEM3P, a multiphysics analysis tool using finite-element methods, has been developed to
capture thermal, structural, and electromagnetic effects such as cavity wall heating (Akcelik et al., 2009), structural
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deformations (Akcelik et al., 2008a), and Lorentz force detuning (Liepe et al., 2001). Parallel implementation of
TEM3P utilizes supercomputers for large-scale computations (Lee et al., 2004; Liao et al., 2006; Li et al., 2007)
with high geometric fidelity and high numerical accuracy. TEM3P solves the thermoelastic equation, in which the
heat flux and radiation pressure are interpolated from the electromagnetic solution file from Omega3P (Lee et al.,
2009), a parallel finite-element code for frequency domain analysis of accelerator cavities.

The design process starts with accurate electromagnetic solutions obtained from Omega3P analysis. Omega3P
solves Maxwell’s equations with higher-order curved elements for highly accurate solutions. TEM3P reads the
electromagnetic solution file (in NCDF format), which is interpolated to produce accurate physical quantities of
interest for the given multiphysics application. Heat flux is calculated for the thermal solver in TEM3P (Akcelik
et al., 2009), while radiation pressure is calculated for the structural solver in TEM3P (Akcelik et al., 2008a).
Interpolation of the electromagnetic fields accounts for the general case, in which the nodal points in the TEM3P
mesh do not coincide with the nodal points in the Omega3P mesh. Once the desired heat flux or radiation pressure
is obtained, it is applied as a boundary condition to the existing thermal model for an RF heating problem or to the
existing structural model for a Lorentz Force detuning problem.

(a) Magnetic field distribution of the accelerat-
ing mode.

(b) Temperature field caused by EM heating
(hot region represented by red color).

(c) Axial stress distribution calculated by using
TEM3P.

Figure 11: Multiphysics coupling analysis of a Linac Coherent Light Source (LCLS) gun.

Internally, TEM3P couples its thermal solution to its structural solver. When a temperature distribution is
known, thermal stresses due to the high-temperature gradient can be readily calculated from the structural solver.
As shown in Figure 11(b), the high-temperature gradient in the RF gun is strong enough to cause geometric
distortions so that the resulting frequency shifts can be larger than the operating frequency bandwidth (Akcelik
et al., 2008a).

Commonly, in multiphysics analysis, the primary source of heat flux is RF heating. In this case, an electro-
thermo-structural coupling, as shown in the figure, is used to provide viable solutions that address frequency shift
problems. TEM3P has also been applied to thermal instability problems in superconducting cavities (Akcelik
et al., 2009). Thermal instability can lead to serious problems such as thermal quenching, which terminates the
superconducting state of a cavity (Kim, 2003). In the face of this instability, operation is usually not possible, or
only at a significantly reduced efficiency if it is possible (Lesrel et al., 1997). Superconductor materials exhibit
highly nonlinear thermal characteristics, and nonlinear boundary conditions need to be applied in order to obtain
an accurate solution. A robust nonlinear solver is implemented in TEM3P to address these problems arising from
the nonlinear material properties.

The current version of TEM3P provides steady-state solutions for both thermal and structural problems. Mul-
tiphysics problems with multiple spatial and temporal scales are not yet addressed in TEM3P. As designs become
more concerned with fully time-dependent multiphysics coupling, further research and development become in-
creasingly important.

Shape optimization studies have been performed with adjoint gradient information (inverse eigenvalue prob-
lems) (Akcelik et al., 2005, 2008b). Because adjoint variables enable gradient calculation at a given design point
regardless of the number of design variables, achieving a near-optimal shape in a reasonable turnaround time has
become feasible (Lee, 2010; Choi et al., 2008; Xiao et al., 2011). With the successful implementations of multi-
physics coupling, applying its solution to optimization problems could open up new research areas. The solutions
from the multiphysics coupling could provide insights in the complex physical interactions not resolvable from
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single-physics analysis. Thus, combining an adjoint-based gradient optimization with multiphysics coupling could
potentially play an important role in achieving near-optimal solutions in multiphysics environments.

2.2 Crosscutting Issues in Multiphysics Applications
The previous subsection contains a diverse collection of multiphysics applications, including brief descriptions of
solution approaches, treatment of multiphysics coupling, and various application-specific issues. Here, we extract
commonalities and differences from those descriptions. Our goal is twofold: (1) to identify issues in algorithms
and software that need to be addressed through, perhaps, different approaches and more rigorous analysis, and
(2) to provide pointers to related discussion in the remainder of the document. Many of the implementation
issues in multiphysics applications can be classified as relating to either splitting or coupling of physical processes
among or between solution modules. We consider both spatial and temporal coupling issues. We also introduce
software engineering questions that touch on best practices issues as well as the cultural environment for software
collaboration and the hard choices that must be made when mapping an application to specific hardware.

Many multiphysics applications owe their coupling to historical accident. Multiphysics applications have rarely
been designed as a first creation. Instead, such applications typically represent the product of collaboration between
two scientific groups of diverse fields who find a common interest that merits joint investigation. The result is a
marriage of two diverse codes (or algorithms); common practices from a software perspective are discussed in
Section 4.1.1. The driving force is the new capability that this union makes available; the drive toward an answer
trumps the drive toward an accurate answer or a computationally efficient simulation. In spite of valuable scientific
advances that may be made, time is rarely made for mathematical rigor. Thus, it is common that, for example, two
well-constructed second-order accurate codes are coupled by a quick ad hoc scheme that may be, at best, first order.
In this report, our goal is to suggest approaches for more formal analysis of spatial and temporal coupling methods
in such areas as accuracy and order of convergence. Of special importance are interfaces between subdomains of
a problem, volumetric interfaces, and temporal interfaces.

2.2.1 Choices and challenges in coupling algorithms

Spatial interfaces remain a primary challenge, especially between subdomains using different computational ap-
proaches and discretizations (e.g., an interface between two subdomains—one discretized by finite elements and
the other by finite volumes). Many commonly used interpolation approaches are noncommutative and thus can
lead to nonconservation of supposedly conserved quantities. A number of applications we have described use
mortar methods to bridge this difficulty (see Sections 2.1.1, 2.1.2, and 2.1.7). Methods for coupling multiphysics
components in space are discussed in Section 3.2.1.

The collection of applications described in Section 2.1 suggests that explicit methods are still prevalent across
many fields, especially for “production” applications. This situation is understandable: compared with implicit
approaches, explicit methods are easier to implement, maintain, and enhance from a software-engineering per-
spective, as discussed in Section 4.1.1. Maintaining the stability of an explicit method mandates that the pro-
grammer understand at least some the important timescales involved in the problem. Implicit methods are free of
splitting errors that are introduced by operator splitting, and may allow the use of much larger timesteps than an
explicit method. However, when using an implicit method, time steps must be carefully selected to control at least
local time integration error in order to avoid “silently” producing inaccurate answers by potentially taking large
timesteps over important processes having fast timescales. This is of special concern when, as occurs frequently,
the equations being solved are nonlinear. (Nonlinearities can occur in nearly all the application examples above,
but notably those described in Sections 2.1.1, 2.1.3, 2.1.6, 2.1.7, 2.1.8, 2.1.9, 2.1.10, and 2.1.12.) In summary, the
explicit-implicit debate becomes one of accuracy versus efficiency. Given the increasing use of implicit methods, it
is necessary to ask how we should approach judging the accuracy of a method. For example, it is easy to integrate
y1ptq “ yptq2 from yp0q “ 1 in a stable way that completely misses the singularity at t “ 1 and continues smoothly
with unbounded error into t ą 1. How do we know we are not skipping over physics? What is the collection of
metrics we can use to provide confidence in our answers? Which integrated metrics are of greatest value? Which
pointwise metrics are reliable?

A number of the applications discussed in this report have timescales for important physical processes that
may vary by many orders of magnitude. (See Sections 2.1.4, 2.1.5, 2.1.9, 2.1.10, and 2.1.11.) The challenge for
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the model builder is to have a clear picture of what quantities need to be tracked in the problem being solved.
Such insight helps to determine which of the associated processes need to be followed in detail and which can be
assumed to occur too quickly for their evolutionary details to be important. An additional challenge is to write that
intelligence into the code itself. Section 3.2.2 discusses methods for coupling multiphysics components in time,
including implicit-explicit (IMEX) and adaptive techniques, which can help address such multiphysics challenges
in temporal coupling. Additional opportunities are considered in Section 5.

Since diverse timescales are common in multiphysics applications, it is worth asking whether an approach
using uncertainty quantification (UQ) methods may yield insight into the relation between timestep selection and
results obtained; UQ issues are discussed in Section 3.5.

A related issue involves quantifying certain cultural knowledge that allows one to “cheat” a little on constraints
when quantities of interest are not affected. An example is the careful violation of the Courant-Friedrichs-Levy
(CFL) condition in explicit codes.

Another interesting challenge is spatial coupling of the discrete to the continuum. This issue arises in problems
in which the macroscopic evolution of the system relies on detailed knowledge of phenomena occurring on a
microscopic level. Examples include the modeling of crack propagation and the ultrafast sequencing of DNA
discussed in Sections 2.1.4 and 2.1.5. An additional class of problems in this vein is nonequilibrium fluid flow:
adequate description of state variables in the fluid may rely upon, for example, the result of a simulation at the
molecular, atomic, or even electronic or nuclear scale. Problems in radiation hydrodynamics (see Section 2.1.10)
can fall into this class.

Discrete-to-continuum coupling may also arise at interfaces between diverse materials where, in one material,
a microscopic model is required for a satisfactory physical description, while in the other material, a classical
continuum description is adequate. Whenever these sorts of couplings arise, one or more additional mesoscale
descriptions that link the two extremes has found use. (Section 2.1.4 describes an application that benefits from
this approach.) We discuss discrete-continuum coupling more fully in Section 3.3.

Any need for adaptivity in algorithms throughout a given multiphysics simulation also presents challenges.
As an example, consider a multiphysics application in which a key piece of science changes in the middle of the
model’s evolution (e.g., a rate may become much larger or smaller as a result of some change in a linked quantity).
This situation often leads to the component equations having a changed character. For example, what might have
previously been a parabolic problem might now take on hyperbolic behavior. This circumstance may require a
change of solution methods (introduced in Section 3.1), anywhere from the preconditioner to the whole solver
approach. Equally extreme are phase transitions: solution methods are likely to be different for a subdomain
now containing a solid phase instead of a gaseous phase. These issues, as well as related challenges in support-
ing changes in modeling and algorithms over the lifetimes of multiphysics applications, are considered from a
software-design perspective in Section 4.

2.2.2 Software engineering

The current status of multiphysics software is discussed in Section 4.1, including current practices for multiphysics
coupling in production codes, common needs, and examples of libraries, frameworks, and tools that support mul-
tiphysics simulations in high-performance computing environments. The development of large-scale multiphysics
applications raises many of the same issues as does development of any large-scale application. One of the most
fundamental issues is the “buy” versus “build” choice. In the multiphysics world, however, this question takes
on increased importance because of the added complexity. The “build” approach frequently requires large col-
laborations of diverse expertise. However, the sources where one may “buy” are often similarly scattered among
disciplines and institutions. Neither approach alone guarantees robust, accurate code. Risk mitigation also plays
a role in this choice. On the one hand, third-party code is not designed with the end user’s specific purpose in
mind. Learning the code (and perhaps learning that the code is not suitable) can be time consuming. Even if such a
third-party code is suitable, additional investment is required to maintain multiple, interacting software packages.
A decision to “build” can be equally risky. In addition to the obvious issues of funding, assembling, and directing
a collaborative team, and then having the team deliver on time, there is an ever-present danger that the drive for
science leads to compromises in code accuracy, especially where the subtle coupling of multiphysics models oc-
curs. Challenges, near-term needs, and risks in multiphysics software are discussed in Sections 4.2 and 4.3, while
longer-term opportunities and insertion paths are considered in Sections 5 and 6.
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2.2.3 Analysis and verification

Analysis and verification of coupled models involve issues that span throughout both algorithms and software
and have been only partially addressed by the community overall. Section 3.4 discusses error estimation and
uncertainty quantification for multiphysics problems from an applied mathematics perspective, while Section 4.2
considers issues in software testing. Verification of coupled codes is challenging. Unit tests do not test the syn-
ergistic effects of coupling—the very aspect of simulation that probably requires the greatest testing. In addition,
large multiphysics codes have too many coupling combinations to allow practical coverage of the code space by
any conceivable test suite. Furthermore, standard reference problems are lacking. Given this situation, verification
tests tend to devolve into regression tests, whose value further devolves when existing physics is changed or new
physics introduced.
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3 Algorithms for Multiphysics Coupling
In this section, we discuss methods for formulating and solving multiphysics problems. The formulation of a
multiphysics problem is highly dependent on the nature of the problem and how the component physics fields are
coupled in space and time. In some circumstances, coupling between continuum and discrete models is required.
Examples include heat conduction problems that require calculation of temperature-dependent thermal conductiv-
ity from first principles and plasticity problems where empirical stress-strain relationships are not available.

This section also addresses error estimation and uncertainty quantification for multiphysics problems. The
complexity of multiphysics problems makes assessment of errors and uncertainties both problematic and essential.
We note that in practical terms, it is often difficult or impossible to obtain solutions of multiscale, multiphysics
models that are asymptotically accurate uniformly in space and time. Hence, the fruits of classical numerical
analysis may be unobtainable in the study of multiphysics models. Further, while uncertainty quantification is a
relatively young field with many foundational research problems remaining to be tackled, uncertainty quantification
for multiphysics models is simply nascent.

We begin with a general discussion of solver methods in Section 3.1. These algorithms form the building blocks
of many multiphysics codes that run on the largest currently available high-performance computing systems. This
is followed by a discussion of strategies for coupling physics components in space (Section 3.2.1) and in time
(Section 3.2.2). The special case of coupling continuum and discrete models is discussed in Section 3.3. We then
discuss error estimation in Section 3.4 and uncertainty quantification in Section 3.5.

3.1 Solver Methods
While multiphysics problems (1a–1b) and (2a–2b) are inevitably nonlinear, most solution methods require solving
a series of linear subproblems. Here we briefly summarize currently available techniques for solving systems of
linear equations, followed by a review of methods for nonlinear problems. Related issues in software are discussed
in Section 4.

3.1.1 Methods for systems of linear equations

Consider the system of linear equations

Au “ f, A P RNdˆNd , u, f P RNd , (4)

where Nd is the number of degrees of freedom. Equation (4) can represent an entire multiphysics problem or some
subproblem encountered in a multiphysics solution algorithm. Methods for solving (4) fall into two categories:
direct and iterative methods. Direct methods generally rely on some canonical decomposition of A and scale
poorly (in both storage and operations) when applied to large problems, even when sparsity in A is effectively
exploited. For many years, researchers relied on stationary iterative methods, such as classical Jacobi, Gauss-
Seidel, or successive overrelaxation methods. While effectively alleviating the large storage requirements of direct
methods and being easy to implement, stationary methods lack robustness and generally do not converge fast
enough to be considered practical for realistic multiphysics problems. Current best practices for efficient solution
of (4) are based almost exclusively on multigrid methods and preconditioned Krylov subspace methods.

Multigrid methods. Systems of linear equations (4) usually must be solved many times in a multiphysics appli-
cation. Consequently, linear solvers are often bottlenecks in multiphysics applications. This situation places a
premium on algorithms that have optimal arithmetic complexity; ideally, solutions to (4) should be computed with
OpNdq floating-point operations. Multigrid methods (Brandt, 1973, 2002; Trottenberg et al., 2001) achieve this
objective for a large class of problems.

Multigrid methods are based on the observation that different components of error can be more efficiently
represented and eliminated on grids of different resolution. This idea can then be applied recursively to develop
solution algorithms that utilize a grid hierarchy to achieve high efficiency. The key ingredients are an inexpensive
smoothing method to apply on each level in the grid hierarchy (typically a stationary method), transfer operators
to move data between successive grid levels, and a schedule for visiting each grid level in the hierarchy, resulting
in the well-known V-cycle, W-cycle, or full multigrid cycle.
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Developed in the context of elliptic and parabolic PDEs that typically enjoy smooth solutions, multigrid meth-
ods have demonstrated near-optimal OpNd logNdq scaling on such problems on up to hundreds of thousands of
processors on modern parallel architectures (Baker et al., 2012; Bergen et al., 2006; Gmeiner et al., 2012). Vari-
ations for anisotropic problems and problems with discontinuities have also been developed. While the early
development of multigrid methods focused on constructing coarser problems through reference to the underlying
grid, the fundamental properties of smoothing and grid transfer operations were soon abstracted and combined
with coarsening strategies that are adaptively based on analysis of the matrix entries. This research led to the
class of algebraic multigrid methods, which offer the potential for near-optimal black-box solvers for large-scale
problems without any reference to an underlying mesh structure. Current research in multigrid methods strives
to improve the scalability of coarsening strategies (Henson and Yang, 2000; Gee et al., 2006). High-performance
implementations of both geometric and algebraic multigrid methods are available in numerous software libraries
(Falgout et al., 2011; Heroux et al., 2005; Balay et al., 2012).

Krylov subspace methods. Let u0 P RNd be an initial approximation to the solution of (4), r0 “ f ´ Au0 the
initial residual, and for each integer k ě 1 let

Kkpr0, Aq “ spantr0, Ar0, . . . , A
k´1r0u

be the Krylov subspace generated by r0 and A. Consider first the case where A in (4) is symmetric and positive
definite. In this case,A induces an inner product xu, vyA “ uTAv and corresponding proper norm }u}A “ xu, uyA.
For symmetric positive definite A, the conjugate gradient (CG) method (Hestenes and Stiefel, 1952) generates a
sequence uk P u0 ` Kkpr0, Aq of approximations to the solution u‹ of (4) such that }uk ´ u‹}A is minimized
over u0 ` Kkpr0, Aq and the residuals rk “ f ´ Auk are orthogonal to Kkpr0, Aq. Because of these optimality
properties, CG is guaranteed to converge in at mostNd iterations in exact arithmetic. Remarkably, these optimality
properties can be achieved by using simple, three-term recurrence relations and a small number of auxiliary vectors.
Hence, CG was initially seen as a direct method with low storage that could compete with factorization-based direct
solution methods. It was soon realized, however, that the key orthogonality relationships could not be maintained
with finite precision, and interest in CG waned until the early 1970s. At that time, it was pointed out (Reid,
1971) that CG could still be used effectively as an iterative method. Ideas for accelerating convergence using
preconditioning appeared soon afterward (Axelsson, 1972; Concus et al., 1976). See (Golub and O’Leary, 1989)
for an early history and (Freund et al., 1992; Saad and van der Vorst, 2000) for more complete recent overviews of
Krylov subspace methods.

When paired with a suitable preconditioner, CG is a robust and efficient method for solving (4) when A is
symmetric positive definite. In multiphysics problems, however, few circumstances are encountered where A is
symmetric positive definite. Numerous generalizations of CG to nonsymmetric problems that seek to exploit the
optimality properties of CG have been proposed. Two principal approaches have been taken. One is to main-
tain rk K Kkpr0, Aq through an explicit Gram-Schmidt orthogonalization process. This approach constructs an
orthonormal basis ofKkpr0, Aq and leads to the Arnoldi family of iterative methods, of which the generalized min-
imum residual (GMRES) method (Saad and Schultz, 1986) is the best-known variant. The main disadvantages of
this approach are the storage requirements for the basis of Kkpr0, Aq and growth in the operation count for incre-
mentally constructing that basis. Practical approaches to dealing with this difficulty amount to setting a maximum
dimension of the Krylov subspace. Alternatively, a three-term recurrence relationship can be used. This approach
is unable to maintain orthogonality, but it is inexpensive and can often be effective when paired with a suitable
preconditioner. This strategy leads to the Lanczos-based family of methods. BiCGStab (van der Vorst, 1992)
is perhaps the most widely used method in this class. For general nonsymmetric A, maintaining orthogonality
while using short recurrence relationships is not possible (Faber and Manteuffel, 1984). Flexible Krylov variants
(see e.g., (Saad, 1993; Golub and Ye, 1999; Szyld and Vogel, 2001; Vogel, 2007; Chen et al., 2012)), where the
preconditioner may change across iterations, offer promise for multiphysics scenarios. High-performance imple-
mentations of Krylov subspace methods are widely available (Balay et al., 2012; Falgout et al., 2011; Heroux et al.,
2005).

Preconditioning. The key observations for Krylov subspace methods are that tKkpr0, Aq u
Nd

k“1 is a nested se-
quence of subspaces that approximates the range of A and that the efficiency of a Krylov subspace method is
determined by how well (4) is represented by its restriction to a low-dimensional Krylov subspace. Precondi-
tioning is a technique for transforming (4) to an equivalent system where a lower-dimensional Krylov subspace
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provides a better approximation. This amounts to the introduction of a preconditioner P « A´1; and typical
formulations include left, right, and split preconditioning:

P Au “ P f, (left),

AP P´1u “ f, (right),

P1AP2 P
´1
2 u “ P1 f, (split).

Observe, in particular, that for left preconditioning, the sequence of approximations tuku now resides in the Krylov
subspaces tKkpPr0, PAq u

Nd

k“1. To illustrate with an extreme case, if P “ A´1, then Pr0 “ u‹ ´ u0 (i.e., the
initial error), and the Krylov subspace method converges in one iteration. Thus, the art in selecting a preconditioner
is managing the tradeoff between the cost of applying the preconditioner and the reduction in the number of
required iterations.

Many strategies are available for constructing a preconditioner. Early efforts were based on the notion of
incomplete factorizations (Meijerink and van der Vorst, 1977), and much research into black-box, algebraic pre-
conditioning techniques is built around this idea. Using a stationary iterative method as a preconditioner was first
explored by Axelsson (1972), and preconditioning with a multigrid method was first explored by Kettler (1982).

Parallel computing introduces new requirements for preconditioners that have a high ratio of computation to
communication. A popular preconditioning approach is to use sparse direct solvers or incomplete factorizations in
serial on each parallel process, in which each process solves only the portion of the overall problem that resides on
its subdomain. Since these methods follow from the natural parallel decomposition of a problem into tasks, they are
referred to as domain decomposition methods (Smith et al., 1996; Toselli and Widlund, 2005). Such solvers make
good reuse of existing serial solver infrastructure, can attain excellent flop performance, work well for problems
posed on unstructured meshes, and naturally couple multiphysics processes tightly within each solve.

Consider the full computational domain Ω as being given by a set of p nonoverlapping subdomains Ω1, . . . ,Ωp;
that is, Ω “ Y

p
i“1Ωi. Then we can partition the unknowns of (4) into two subsets: the first consists of unknowns

belonging to a single subdomain, uI , and the second consists of unknowns that lie on inter-subdomain boundaries
and couple subdomains together, uΓ. Applying this partition to the matrixA as well results in a block linear system
of the form

„

AI,I AI,Γ

AΓ,I AΓ,Γ

 „

uI
uΓ



“

„

fI
fΓ



, (5)

where the matrixAI,I is block-diagonal. We further define restriction operatorsRi that take a full set of unknowns,
u, and return only the set of unknowns on the interior of Ωi for each i “ 1, . . . , p.

The simplest domain decomposition method is block Jacobi, where all the interprocessor couplings are ignored—
that is, Γ is empty—and (5) is solved by using only the decoupled subdomain solves,

uk`1 “ uk `

˜

p
ÿ

i“1

RT
i A

´1
i Ri

¸

`

f ´Auk
˘

, (6)

where Ai is block of AI,I belonging to Ωi. A block Gauss-Seidel strategy, which sacrifices a lower degree of
parallelism for faster convergence, can also be formulated, provided some coloring of the subdomains tΩiu

p
i“1 is

available. For problems with indefinite or singularAi, artificial Dirichlet, Neumann, or Robin boundary conditions
are typically employed at interprocessor interfaces. Because of the resulting decoupling between each subdomain,
these methods do not perform well at large scales, especially for problems whose Green’s functions have global
support, e.g., elliptic and parabolic PDE problems. As a result, various methods have been proposed to increase
the coupling between subdomains and attain improved scaling performance.

Additive Schwarz methods (Dryja and Widlund, 1987; Cai, 1989; Chan and Zou, 1994; Smith et al., 1996) in-
crease coupling by extending each subdomain to overlap with neighboring subdomains, increasing the size of each
Ai matrix and redefining each Ri appropriately, then using (6). Extensions of this method include modification of
the prolongation matrix RT

i (Cai and Sarkis, 1999) and inclusion of coarse-grid solves (Bramble et al., 1990). A
multiplicative variant, using the same components of the block Jacobi strategy above, is also possible.

Other classes of domain decomposition methods (e.g., FETI (Farhat and Roux, 1991), BDD (Mandel, 1993),
BDDC (Dohrmann, 2003)) instead increase subdomain coupling by using a nonempty interface set Γ and following
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a Schur complement-like formulation to solve the full problem

uk`1 “ uk `

„

I ´A´1
I,IAI,Γ

0 I

 „

A´1
I,I 0

0 S´1

 „

I 0
´AΓ,IA

´1
I,I I



`

f ´Auk
˘

,

where S “ AΓ,Γ ´ AΓ,IA
´1
I,IAI,Γ is the Schur complement matrix. Primary differences in methods following

this approach lie in their choice of artificial boundary conditions at interior subdomain interfaces and how much
of Γ they include, typically choosing only a small subset of the interface problem within S´1 at each iteration.
Extensive support for constructing domain-decomposed preconditioners is available in high-performance libraries
(Balay et al., 2012; Heroux et al., 2005).

3.1.2 Methods for systems of nonlinear equations

Perhaps the simplest and most robust approach for solving systems of nonlinear equations (3) is the fixed-point
iteration, also known as the Picard or nonlinear Richardson iteration. These methods are performed through refor-
mulation of the root-finding problem (3) into a fixed-point problem u “ Gpuq, through definition of a fixed-point
iteration function, for example,

Gpuq :“ u´ αF puq, (7)

where α ą 0 is a fixed-point damping parameter that is typically chosen to be less than 1. Fixed-point methods
then proceed through the iteration

uk`1 “ Gpukq, (8)

with the goal that }uk`1´uk} ă ε. A particular attraction of the fixed-point iteration is that if the iteration function
is a contraction, that is, if there exists some γ P p0, 1q such that

}Gpuq ´Gpvq} ď γ}u´ v},

for all vectors u and v in a closed set containing the fixed-point solution u‹, the fixed-point iteration is guaranteed
to converge based on the Banach fixed-point theorem (also called the contraction mapping theorem (Banach, 1922;
Granas and Dugundji, 2003)). This convergence is typically linear, however, and can result in slow convergence
even when starting with a good initial guess at the solution.

Fixed-point iterations can converge slowly, in particular when the contraction constant γ is close to one. New-
ton’s method (Algorithm 3) offers faster (up to quadratic) convergence. Direct computation of δu in Algorithm 3
may be prohibitively expensive for large-scale problems. Inexact Newton methods (Dembo et al., 1982) gener-
alize Algorithm 3 by allowing computation of δu with an iterative method, requiring only that }Jpuk´1qδu `
F puk´1q} ă εk for some carefully selected set of tolerances tεku; see (Eisenstat and Walker, 1994, 1996) for theo-
retical details. Newton-Krylov methods are important variants of inexact Newton methods in which δu is computed
with a Krylov subspace method. This choice is advantageous because the only information required by the Krylov
subspace method is a method for computing Jacobian-vector products Jpukqv. A key consequence of this reliance
on only matrix-vector products is that if these directional derivatives may be approximated, the Jacobian matrix
Jpukq is never itself needed. The Jacobian-free Newton-Krylov (JFNK) method exploits this approach, using a
finite-difference approximation to these products

Jpukqv «
F puk ` σvq ´ F pukq

σ
, (9)

where σ is a carefully chosen differencing parameter (Brown, 1987; Kelley, 1995) and F is sufficiently smooth.
This important specialization facilitates use of an inexact Newton method by eliminating the need to identify and
implement the Jacobian. Of course, efficiency of JFNK depends critically on preconditioning the inner Krylov
subspace method, and the need to track changes in the Jacobian places a premium on preconditioners with low
setup cost; see (Knoll and Keyes, 2004; Anderson et al., 1999; Gropp et al., 2000; Pernice and Tocci, 2001; Chacón
and Knoll, 2003; Mousseau, 2004; Knoll et al., 2005; Reynolds et al., 2006; Yeckel et al., 2009). Implementations
of inexact Newton methods are available in several high-performance software libraries (Balay et al., 2012; Heroux
et al., 2005; Hindmarsh et al., 2005).
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Fixed-point and inexact Newton methods can be used to solve multiphysics problems in a fully coupled manner,
but they can also be used to implement multiphysics coupling strategies such as Algorithms 1 and 2. With an
implicit method for one of the components, one can directly eliminate it in a linear or nonlinear Schur complement
formulation. The direct elimination process for u1 in the first equation of the equilibrium system (1a), given u2,
can be symbolically denoted

u1 “ Gpu2q,

with which the second equation (1b) is well defined as

F2pGpu2q, u2q “ 0,

and each iteration thereof requires subiterations to solve (in principle to a high tolerance) the first equation. Unless
the first system is much smaller or easier than the second (a special case of merit), this is not likely to be an efficient
algorithm, but it may have robustness advantages.

If the problem is linear,
F1pu1, u2q “ f1 ´A11u1 ´A12u2

F2pu1, u2q “ f2 ´A21u1 ´A22u2,
(10)

then F2pGpu2q, u2q “ 0 involves the traditional Schur complement

S “ A22 ´A21A
´1
11 A12.

If the problem is nonlinear and if Newton’s method is used in the outer iteration, the Jacobian

dF2

du2
“
BF2

Bu1

BG

Bu2
`
BF2

Bu2

is, to within a sign, the same Schur complement.
Similar procedures can be defined for the evolution problem, which, when each phase is implicit, becomes a

modified rootfinding problem on each timestep with the Jacobian augmented with an identity or mass matrix.
If the types of nonlinearities in the two components are different, a better method may be nonlinear Schwarz

or ASPIN (Cai and Keyes, 2002). In nonlinear Schwarz, one solves component subproblems (by Newton or any
other means) for componentwise corrections,

F1pu
k´1
1 ` δu1, u

k´1
2 q “ 0

F2pu
k´1
1 , uk´1

2 ` δu2q “ 0,

and uses these legacy componentwise procedures implicitly to define modified residual functions of the two fields:

G1pu1, u2q ” δu1

G2pu1, u2q ” δu2.

One then solves the modified rootfinding problem
"

G1pu1, u2q “ 0
G2pu1, u2q “ 0

by any means. If one uses Algorithm 3 to solve the modified problem, the Jacobian is

«

BG1

Bu1

BG1

Bu2

BG2

Bu1

BG2

Bu2

ff

«

»

—

–

I
´

BF1

Bu1

¯´1
BF1

Bu2
´

BF2

Bu2

¯´1
BF2

Bu1
I

fi

ffi

fl

, (11)

which clearly shows the impact of the nondimensionalized cross-coupling in the off-diagonals, since the diagonal
blocks constitute the identity. (This makes sense since the componentwise rootfinding problems are already solved
at this outer level.) In practice, the outer Newton method must converge in a few steps for ASPIN to be worthwhile,
since the inner iterations can be expensive. In nonlinear Schwarz, the partitioning of the global unknowns into u1

32



3 ALGORITHMS FOR MULTIPHYSICS COUPLING

and u2 need not be along purely physical lines, as they would be if they came from a pair of legacy codes. The
global variables can be partitioned into overlapping subsets, and the decomposition can be applied recursively to
obtain a large number of small Newton problems. The key to the convenience of nonlinear Schwarz is that the
outer iteration is Jacobian-free and the inner iterations may involve legacy solvers. (This is also true for JFNK,
where the inner preconditioner may involve legacy solvers.)

Unless linear preconditioning of the global system is required to complement what is in effect nonlinear precon-
ditioning through the inner solves, only distributed vector operations are needed to migrate legacy codes requiring
coupling to this framework.

Error bounds on linear and nonlinear block Gauss-Seidel solutions of coupled multiphysics problems are de-
rived in (Whiteley et al., 2011), wherein it is shown how the norm of the product of the off-diagonal blocks in (11)
enters the analysis. Consider the linear case (10) for which the Jacobian of the physics-blocked preconditioned
system is

„

I A´1
11 A12

A´1
22 A21 I



.

Let the product of the coupling blocks be defined by the square matrix C ” A´1
11 A12A

´1
22 A21, the norm of which

may be bounded as ||C|| ď ||A´1
11 || ||A12|| ||A

´1
22 || ||A21||. Whiteley et al. (2011) show that, provided ||C|| ď

1, any linear functional of the solution pu1, u2q of (10) solved by physics-blocked Gauss-Seidel (Algorithm 1)
satisfies conveniently computable bounds in terms of residuals of the individual physics blocks of (10). The cost
of evaluating the bounds involves the action of the inverse uniphysics operators A´1

11 and A´1
22 on vectors coming

from the uniphysics residuals and the dual vectors defining the linear functionals of interest. The extra work
required to evaluate the bounds provides confidence that block Gauss-Seidel has been iterated enough to produce
sufficiently accurate outputs of interest, be they point values, averages, fluxes, etc. The required actions of the
inverse uniphysics operators are a by-product of an implicit method for each phase. The nonlinear case is similar,
except that the Jacobian matrices from each physics phase that compriseC may change on each block Gauss-Seidel
iteration.

Design patterns for multiphysics preconditioning. Preconditioning is essential for efficiency when a Krylov sub-
space method is used. While there has been considerable success in developing black-box, algebraic strategies for
preconditioning linear systems (4), preconditioners for multiphysics problems generally need to be designed by
hand, using building blocks described above for implementation. A few strategies for doing so are described next.
A more complete discussion can be found in (Knoll and Keyes, 2004).

A simple strategy for constructing a multiphysics preconditioner is to use a Picard linearization to construct an
approximate Jacobian for use in a JFNK solution strategy. Another strategy is to mimic operator splitting strategies
to construct an approximate inverse through sequential application of single physics solvers. This can be especially
useful when the individual physics components have no knowledge of each other but can solve appropriately posed
linear subproblems.

Another approach is to use the multiphysics application itself as an approximate solution strategy. In this
context, we can think of the outer Krylov or Newton iteration as acting to accelerate and/or stabilize the existing
solution method. This idea first appeared in (Wigton et al., 1985). The multiphysics application has to satisfy
certain properties for this idea to be used; in particular, the ability to calculate a clean, full residual and calculating
corrections rather than full updates to solution variables are needed.

A widely used approach is to use a block diagonal approximation of the Jacobian of the system, which can be
effective in many circumstances. This approach ignores the off-diagonal coupling, however, and analysis of the
problem can help to identify the strongly coupled physics. Improved performance can generally be achieved by
capturing the strong couplings with the preconditioner and leaving the weak couplings to be resolved by the outer
Krylov/Newton iterations. Such approaches generally lead to identification of a Schur complement that embodies
the important coupling, and their success relies on judicious approximation of the Schur complement (Chacón
et al., 2002; Elman et al., 2003).

3.2 Continuum-Continuum Coupling
Multiphysics problems require the computation of interacting fields that may feature different scales in time and/or
space and may additionally be defined over different spatial regions. Mathematical modeling of such complex
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systems can lead to large systems of PDEs, possibly with different structures on different domains. Roughly
speaking, two approaches are used. In a single-domain approach, the coupled system is considered globally, and the
state variables are defined over the entire spatial domain of the problem; a simple example is a thermomechanical
system whose solution consists of the temperature and displacements. Alternatively, different sets of state variables
and/or models may be considered on different spatial or physics domains. A simple example for different spatial
domains is fluid-structure interaction, where the fluid velocity and pressure are defined in the fluid domain and
displacements are defined in the solid domain.

In general, single-domain approaches can be conceptually simple and straightforward. However single-domain
models may lack flexibility; solution of the single domain problem may be expensive; and, more important, gen-
eralization to more complicated models may not be possible. For example, no single-domain approaches exist for
coupling multiphase, multicomponent flow in porous media with multicomponent free flow, whereas transfer con-
ditions based on mechanical, chemical, and thermal equilibrium can be derived for a model posed on two domains
(Mosthaf et al., 2011). On the other hand, the divide-and-conquer approach of multidomain models allows the use
of different numerical strategies tuned to the physics of each component. The price of such flexibility is the need
to formulate suitable transfer conditions, in both model formulation and model discretization, which guarantee
equilibrium and well-posedness of the coupled system, and to devise efficient solution techniques that are robust,
stable, and accurate.

Multidomain approaches require coupling of continuum models in space and, for time-dependent problems,
in time. This coupling must respect the mathematical formulation of the coupled problem and must account for
different meshes and discretizations used in each domain. Coupling components that are allowed to proceed at
their own timescales can be particularly problematic. The following subsections describe techniques currently
being used in several selected multiphysics applications. We note that, currently, highly scalable algorithms for
these operations are not readily available.

3.2.1 Methods for coupling multiphysics components in space

Multiphysics applications require some means to exchange information between physics components. Preserving
important properties, such as conservation or order of accuracy, is a principal concern. In the simplest case, all
the physics components are defined on the same physical domain Ω and use the same mesh Ωh. In this situation,
the coupling is defined by the physical model, and no error is incurred in transferring data between meshes. Nu-
merically, some additional interpolations may be needed to align variables with different centerings or to achieve
some consistency between different discretization schemes. In addition, the resolution must be fine enough to meet
the requirements of all the physics components that share the mesh. More often, each physics component uses a
mesh that is tailored to best represent the physics. These meshes can either fully2 or partially overlap and can
also introduce different discrete representations of the geometry of Ω. Moreover, different physics components
can be defined on distinct physical domains Ωi (where i indexes the physics components) and are coupled across
lower-dimensional interfaces Γij “ BΩi X BΩj , i ‰ j, between the domains, which may also evolve in time. In
this case, the meshes Ωhi

i and Ω
hj

j may or may not match along the interface. When the restrictions Γhi
ij and Γ

hj

ij of
the meshes to the common interface Γij do not match, information transfer across the interface must account for
these differences in the discrete representation of Γij . In some cases the picture can be further complicated when
Γij is determined as part of the calculation. The rest of this section provides a brief overview of methods currently
used by multiphysics applications, and Section 4.2.3 considers related software issues.

At its core, transferring discrete fields between different meshes is a form of interpolation that is determined
by how the field is represented on the source and target meshes. Search algorithms that determine the support
of the interpolation on the source mesh are critical for constructing efficient transfer operations. Tree structures
such as octrees, alternating digital trees, and k-d trees are used when the points to be evaluated are randomly
distributed. Mesh topological adjacencies are used when the points are ordered such that the next point is from a
nearby element. When the geometries of the discrete domains do not match, a destination point may lie outside
the discrete source domain. In this case extrapolation can be used; ideally, information about the physical domain
and boundary conditions will inform the extrapolation process.

In more complex cases, the transfer process must satisfy various kinds of local and global constraints. Examples

2A similar need is encountered for arbitrary Lagrangian-Eulerian (ALE) methods, where periodic mesh remapping is needed.

34



3 ALGORITHMS FOR MULTIPHYSICS COUPLING

include matching the integral of the solution and guaranteeing a divergence-free property (Bochev and Shashkov,
2005). In many circumstances, local conservation constraints are imposed. For a mesh transfer T to be conservative
in a regionR Ă Ω, it must satisfy

ż

R
T f “

ż

R
f,

where f is the source grid data. Enforcement in a discrete sense can be represented as
ż

R
φiT f “

ż

R
φif,

where tφiu is a set of test functions. For interpolation, they are simply delta functions at points on the destination
mesh. If f is represented in a Galerkin formulation, tφiu is the basis that is used on the destination mesh. Because
f and φi are only piecewise smooth on source or target meshes, the product φif is in general smooth only within
the intersection of source and target elements. Therefore, using quadrature rules over source or target elements to
compute

ş

φifdx may violate the regularity assumption of quadrature rules, and large errors and even instabilities
can result from computing these integrals using quadrature rules based on only the source or destination mesh (Jiao
and Heath, 2004a; Jaiman et al., 2011b). Knowledge of the complete intersection of the source and target meshes
can then be used together with appropriate quadrature rules to construct T (Grandy, 1999; Jaiman et al., 2011a;
Jiao and Heath, 2004a,b,c; Solin et al., 2010).

Transferring information across a shared interface between two domains depends on the smoothness of so-
lutions on either side of the interface, discretization schemes, and alignment of the two meshes on either side
of the interface. When the meshes align at the interface, direct transfer can be used effectively. For an illustra-
tion, consider coupling Navier-Stokes flow on the surface and Darcy flow in subsurface porous media (Figure 12)
(Chidyagwai and Rivière, 2010). The free-flow region is denoted Ω1, and the porous medium is represented as
several layers (regions A, B, C) with different permeability and faults (region D). The interface conditions enforce
continuity of the normal component of the velocity across the interface, a force balance at the interface, and the
Beavers-Joseph-Saffman model relating the tangential free flow velocity to the shear stress at the interface (Girault
and Rivière, 2009). Let aNS represent the bilinear form for the Navier-Stokes flow discretized with a continuous
finite-element method, and aD represent the bilinear form for the Darcy equations discretized with a discontinuous
Galerkin method to accurately capture irregularities in the subsurface region. A grid is used that covers the entire
domain but captures the interface between the two models. This means that the bilinear form aΓ for the interface
coupling conditions across the interface can easily be constructed by simply using values of the solution obtained
at the interface. The fully coupled problem is then given by

aNSpu, vq ` aDpu, vq ` aΓpu, vq “ Lpvq, (12)

where v is drawn from suitable test spaces and L is a forcing term.

Figure 12: Computational domain (left) and pressure and velocity contours (right) for coupling of Navier-Stokes
flow on the surface and Darcy flow in subsurface porous media.

A fully coupled solution method is the most stable and accurate approach to solve (12). However, this leads
to a large system of nonlinear equations that may be difficult to precondition and expensive to solve. One way
to lower the cost of solving (12) is to use a two-grid technique (Chidyagwai and Rivière, 2011). In the first step,
(12) is solved on a coarse mesh with resolution H; in the second step, decoupled “single physics” problems are
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solved on a finer mesh, with resolution h “ H2. Boundary data along the interface for the decoupled problems is
obtained from the coupled coarse mesh solution. This approach is nearly an order of magnitude faster and produces
solutions with accuracy comparable to the fully coupled approach, but it is less stable and accurate. The solution
obtained with this algorithm (Figure 12) shows smooth velocity contours, even into the fault regions. For details,
see (Chidyagwai and Rivière, 2011).

The mortar finite-element method is another approach for treating interface conditions (Bernardi et al., 1993,
1994). It is especially effective when the meshes on the two sides of the interface do not match and when some
quantity (such as flux or stress) is needed at the interface. The mortar finite-element method yields a variationally
consistent formulation and provides an abstract framework for analyzing the weakly coupled discrete model. The
algebraic problem can then be stated as a saddle point or, equivalently, as a constrained system where static con-
densation of the Lagrange multiplier is realized and the coupling conditions are imposed on the spaces. Mortar
formulations are widely used in the context of nonlinear contact problems in structural mechanics and replace
simple node-to-node or node-to-segment penalty approaches; see, for example, (Wohlmuth, 2011). The surface
traction plays the role of the Lagrange multiplier, which has to satisfy a sign condition in the normal direction,
which is due to the nonpenetration condition, and the friction law, which combines normal and tangential sur-
face forces. The inequality conditions can be reformulated as a weakly consistent saddle point system in terms
of a nonlinear complementarity function. Then semi-smooth Newton methods provide a superlinear solver, and
an efficient algorithmic implementation can be based on the choice of biorthogonal basis functions, resulting in a
diagonal mass matrix.

Figure 13 illustrates the acoustic-structure interaction for a 3D loudspeaker geometry; see (Flemisch et al.,
2010). The problem has been formulated in a weakly consistent mortar setting, and highly nonmatching meshes
are applied for the numerical simulation.

Of crucial importance for the stability of the method is a uniform inf-sup condition for the pairing between
dual and primal variables. In order to obtain optimal a priori error results, the discrete Lagrange multiplier space
must additionally satisfy a best approximation property. With these two ingredients, one can easily construct
locally defined higher-order methods. Moreover, the influence of curvilinear interfaces can be analyzed within
the framework of variational crimes, and the weak coupling concept can be easily combined with blending or
isogeometric finite elements.

Although mortar techniques were originally designed for nonoverlapping domain decomposition methods,
the idea of weakly coupled subdomain formulations can be used to design two-scale overlapping subdomain ap-
proaches. Globally, a simple, coarse-scale discrete model is used, whereas a more sophisticated model is applied
locally on a small patch. Different equations, mesh sizes, and geometries can be considered. Here, one has to dis-
tinguish between one- and bidirectional couplings. One-directional coupling can be regarded as a postprocess and
allows locally for a higher resolution of the numerical solution. The possibly nonlinear system has the structure
of a lower triangular block system and thus can easily be solved in terms of a Gauss-Seidel-type solver, possibly
in combination with massive parallel algebraic multigrid or domain decomposition techniques. For bidirectional
coupling, iteration between the small patch and coarse-scale models is required to obtain a physically correct
solution.

Figure 13: Schematic view of the geometric and acoustic pressure field in acoustic-structure interaction for a 3D
loudspeaker geometry.
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3.2.2 Methods for coupling multiphysics components in time

Coupling time-dependent continuum models depends on the temporal resolution requirements of the physics com-
ponents. Typically, each component of the solution is allowed to evolve governed by its own physics. However,
there can be wide disparity in the timescales of the constituent physics components, which may in turn be quite
different from the timescale of the problem being solved. Replacing instantaneous interactions between different
physics with discrete interactions can introduce subtle stability and accuracy issues. Likewise, the multiphysics
problem may conserve some global quantity (such as energy), but this property may not be preserved by the simu-
lation.

In evolutionary problems (2a–2b), the spatial discretization leads to a system of ordinary differential equations
(ODEs) or differential algebraic equations (DAEs) in general, that is, ordinary differential equations possibly with
algebraic constraints. A timestepping approach is then used to advance the solution in time. This strategy is
called the method of lines. For exposition brevity, we initially focus on ordinary differential equations, with initial
conditions upt0q and computing values of the solution tuptnquNt

n“1 at discrete times t1 ă ¨ ¨ ¨ ă tNt
.

In an explicit method, future states are given by a formula involving known computed quantities that can be
evaluated directly. The simplest example is forward Euler:

uptn`1q “ uptnq `∆tfpuptnqq,

where ∆t “ tn`1 ´ tn. Explicit methods are inexpensive per iteration because they require a fixed number of
function evaluations to complete the step; however, they typically have severe stability restrictions and, therefore,
are suited only for nonstiff problems.

A fully implicit method advances the solution in time by using current information and an inversion process
with no explicit steps. The simplest example is backward Euler:

uptn`1q “ uptnq `∆tfpuptn`1qq.

Fully implicit methods are relatively expensive because of the need to solve (non)linear systems at each step; how-
ever, they have favorable stability properties (Shampine and Gear, 1979; Higham and Trefethen, 1993). Inclusion
of explicit elements gives rise to semi-implicit methods (Zhong, 1996; Giraldo, 2005).

Spatial discretization of multiphysics problems (2a–2b) may result in problems in which the tendency fpuq
has components with widely different dynamics, often classified as stiff and nonstiff (Ascher et al., 1997; Verwer
and Sommeijer, 2004; Shampine et al., 2006; Hundsdorfer and Ruuth, 2007; Constantinescu and Sandu, 2010b;
Connors and Miloua, 2011). This case, called additive splitting, generally corresponds to problems in which the
physics components act in the same spatial domain, such as reactive transport or radiation-hydrodynamics (Giraldo
et al., 2003; Estep et al., 2008a; Giraldo and Restelli, 2009; Durran and Blossey, 2012; Giraldo et al., 2010; Ruuth,
1995). When a partitioned time integration method is used with physics components defined on the same spatial
region, some work must be done to synchronize the timestepping in each physics component. When one component
has a much faster timescale relative to another, a simple strategy is to use an integer multiple of the faster timescale
for the slow timescale. In component partitioning some solution components correspond to a stiff subproblem and
the others to a nonstiff one; examples are fluid-structure interaction and flow with different speeds (Constantinescu
and Sandu, 2007; Sandu and Constantinescu, 2009; Constantinescu et al., 2008). Component partitioning can be
used, for instance, if physics components are defined on different spatial domains; the same subcycling idea can
work, but some protocol for communicating information across the interface is needed to ensure accuracy and
stability. This leads to the following two conceptual types of partitioning:

fpuq “ f1puq ` f2puq additive partitioning , (13)

fpuq “

„

f1pu1, u2q

f2pu1, u2q



component partitioning . (14)

Simple transformations can be used to cast one type of splitting into the other (Ascher et al., 1997; Constantinescu
and Sandu, 2010b). We will henceforth use form (13) in which f1 is relatively nonstiff and its presence points
one to use an explicit integrator for efficiency, whereas f2 is relatively stiff and requires an implicit integrator
for stability reasons. For instance, in (13) f1 can incorporate all slow transport components and f2 stiff kinetic
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terms, and with (14) u1 may represent coarse-grid points and u2 finely refined states or structure and fluid states,
respectively. Partitioned integrators were introduced to solve such problems efficiently.

Partitioned methods use time integrators with different properties or timesteps for each (physics) component.
They allow black-box implementation of the physics components and different time steps in each physics compo-
nent. Nevertheless, this formalism allows one to analyze rigorously the stability and accuracy of the compound
scheme. Partitioned methods can be tightly coupled (in time); one simple example is the forward-backward Euler
method:

uptn`1q “ uptnq `∆tf1puptnqq `∆tf2puptn`1qq.

Strang splitting methods (Strang, 1968) are also particular cases of (loosely coupled) partitioned schemes:

u‹ “ uptnq `
∆t
2 f2pu‹q

u‹‹ “ u‹ `∆tf1pu‹q

uptn`1q “ u‹‹ `
∆t
2 f2pu‹‹q

.

The caveats of such a strategy include order reduction and low accuracy as illustrated in (Knoll et al., 2003). Also,
reduced order or even loss of consistency may occur at boundaries for additive splitting methods. One solution
to restore consistency in this case is to apply intermediate boundary conditions that are specific to each substep
in the method (Connors et al., 2012; LeVeque and Oliger, 1983). The temporal splitting error can be fairly easily
avoided in tightly coupled schemes (Kennedy and Carpenter, 2003; Constantinescu and Sandu, 2010b). Other
tightly-coupled strategies involve embedding explicit evaluations inside an implicit solver (Kadioglu et al., 2010c).

We differentiate two cases that have a more practical flavor: multirate and implicit-explicit (IMEX). Multirate
methods are partitioned methods that use the same scheme in each partition but with different timesteps (Gear
and Wells, 1984; Bartel and Günther, 2002; Logg, 2003a,b, 2004, 2006; Savcenco et al., 2007; Constantinescu
and Sandu, 2007; Sandu and Constantinescu, 2009; Constantinescu et al., 2008); this goes back to subcycling.
Multirate schemes are also used to address accuracy considerations. One instance is applications that employ
temporal and spatial adaptive grids. Another instance is shown in Figure 14, which illustrates a multirate scheme
that uses smaller timesteps for the reaction component in a reaction-diffusion problem.

Figure 14: Illustration of multirate operator-splitting time discretization.

An IMEX method is a partitioned method that uses an implicit integrator on one partition and an explicit inte-
grator on the other. Therefore, an optimal tradeoff between efficiency and stability becomes possible (Crouzeix,
1980; Filbet and Jin, 2010; Kennedy and Carpenter, 2003; Constantinescu and Sandu, 2010b). Moreover, it is gen-
erally desirable to use an explicit integrator when nonlinear or nondifferentiable spatial discretizations are used,
such as shock resolving schemes (LeVeque, 2002). In this case IMEX alleviates the difficulties posed by such
a problem on the nonlinear solver, which is applied only on the stiff component. Furthermore, IMEX methods
generalize fully implicit (f1 ” 0 , f Ñ f2) and fully explicit (f2 ” 0 , f Ñ f1) methods and can provide the
best balance between accuracy and efficiency. In both cases the temporal splitting error can be made of the same
order as the schemes used separately; however, stiffness leakage can be a concern (Kennedy and Carpenter, 2003).
Partitioned methods based on the classical linear multistep (Ascher and Petzold, 1998; Ascher et al., 1995; Hunds-
dorfer and Ruuth, 2007), Runge-Kutta (Ascher et al., 1997; Kennedy and Carpenter, 2003; Verwer and Sommeijer,
2004; Constantinescu and Sandu, 2007), and extrapolation methods (Gragg and Stetter, 1964; Constantinescu and
Sandu, 2010b) have been proposed and successfully applied in practice (see, e.g., (Butcher, 2008)). In Figure 15
we illustrate the temporal convergence rate for a 2D Euler rising-bubble problem by using high accuracy in space
(Giraldo and Restelli, 2009) and different IMEX time integration schemes. The splitting is based on linearizing
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Figure 15: Global convergence and timing of implicit-explicit schemes for a 2D Euler rising-bubble test problem.
Method SI-BDF is second order, and the rest have the order suffixed to their name.

the PDE: extracting the stiff wave components, L; and then integrating (2a–2b) as

Btu “ pfpuq ´ Luq ` Lu,

where the first term is treated explicitly and the last linear term implicitly. The efficiency advantage of IMEX
schemes increases with temporal discretization order. Given a timestep selected for accuracy, in terms where the
timestep is below the stability limit, explicit integration is employed for efficiency, and in terms where the stability
is limiting, implicit integration is employed.

Interest in IMEX schemes is far from limited to multiphysics problems. An early use of implicit-explicit tem-
poral integration, with consideration of stability and numerical efficiency, was in solid mechanics and heat transfer
applications (Hughes and Liu, 1978a,b). A common source of localized stiffness apart from multiphysics problems
is stiffness induced by adaptive meshes, for example, in boundary layers in fluid mechanics or electromagnetism.
In (Kanevsky et al., 2007), IMEX methods are introduced for this purpose, and implicitness is employed in the
diagonal terms only of the highly refined portions of the domain, in pursuit of further efficiency.

Truly multiphysics applications of IMEX methods now abound. An algorithmic variant that exploits the
Jacobian-free Newton-Krylov method for the implicit part and fully eliminates splitting error is employed by
Kadioglu et al. (2010a,b) in radiation-hydrodynamics problems. In these studies, a second-order IMEX technique
resolves the explicitly treated nonstiff hydrodynamics subsystem inside every nonlinearly implicit Newton step of
the radiation subsystem. This causes each Newton correction of the implicit block to be felt immediately by the
unknowns governed by the explicit block; however, there is no additional software or data structure complexity for
the implicit solver.

Related to the self-consistent IMEX method enabled by the use of JFNK for the outer implicit part is the concept
of implicit balancing introduced in (Knoll et al., 2003), in which in multirate multicomponent problems all non-
linear couplings between the components are evaluated at the same point in time, rather than just semi-implicitly.
Semi-implicitness is sufficient to preserve stability, but its accuracy properties are limiting. As illustrated for
radiation diffusion, magnetohydrodynamics, and shallow-water models, implicit balancing permits second-order
schemes to attain true second-order temporal accuracy, as opposed to first-order accuracy with semi-implicitness
only.

Stability considerations for partitioned methods. Partitioned methods use multiple time integrators with well-
known stability properties when applied to the compound problem (2a–2b). When applied on partitions, however,
the stability properties of individual methods do not transfer directly to the stability of the compound problem.
Consider two integrators that are stable when applied separately on each partition but where the resulting compound
method may lead to unstable overall computations (Frank et al., 1997; Constantinescu and Sandu, 2010b; Ropp
et al., 2004; Ropp and Shadid, 2009). Such a situation is illustrated in Figure 16 for extrapolated IMEX schemes,
where the dependence between the implicit and explicit stability regions is clearly visible. Note that larger stability
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Figure 16: Stability regions of implicit-explicit pairs for extrapolated IMEX schemes. The implicit methods are
Apαq-stable for different values of α. The explicit stability regions indicate different orders of extrapolation. The
stability region of the IMEX scheme contains the cross product of the regions for these pairs. This figure is adapted
from (Constantinescu and Sandu, 2010a); c©2010 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved.

regions for the implicit method correspond to smaller stability regions for the extrapolated explicit methods. This
behavior must be taken into account when selecting an extrapolated IMEX scheme for multiphysics problems. If
the implicit term is used to integrate symmetric discretizations of hyperbolic operators that lead to pure imaginary
eigenvalues, an A-stable (see, e.g., (Lambert, 1991)) implicit method is needed, and one may expect a penalty
on the explicit step-size because the explicit stability region is smaller (Method A). Discretizations of parabolic
operators that lead to negative real eigenvalues can use an Apαq-stable implicit method for α ă 900, so the
larger stability region for the explicit operator allows larger stable explicit steps (Method B). These examples
tacitly assume that the implicit and explicit operators are simultaneously diagonalizable, which happens almost
exclusively only for scalar problems; however, in practice, this analysis typically holds for vector-valued problems,
especially when stiff components are present (Frank et al., 1997).

Stability properties of partitioned timestepping methods are also affected by treatment of interfaces. This can
be illustrated by a simple model of heat conduction through two adjacent materials in subdomains Ω1 and Ω2 that
are coupled across their shared and rigid interface Γ through a jump condition:

$

’

’

’

&

’

’

’

%

Bui

Bt ´ νi∆ui “ fi, x P Ωi,

´νi∇ui ¨ ni “ κpui ´ ujq, x P Γ,

uipx, 0q “ u0
i pxq, x P Ωi,

ui “ gi, x P BΩizΓ

(15)

for i, j “ 1, 2 , i ‰ j. Three time integration strategies can readily be described. The fully coupled approach
solves Equation (15) with u1 and u2 and all terms evaluated at the same time level. This method is unconditionally
stable, conserves energy, and converges optimally under standard smoothness assumptions. A second scheme is
to again keep u1 and u2 at the same time level but to lag in time the transmission conditions on Γ. This IMEX
scheme decouples the subdomain solves but is stable only when κ is small compared with ν1 and ν2, together with
a CFL-like stability restriction on the timestep. Here the tradeoff is between the need for smaller timesteps and
the reduced cost of solving easier problems in each subdomain. A third partitioned scheme uses interface data at
the previous timestep from the other subdomain. Since each subdomain requires data from the other subdomain,
this data-passing approach is less flexible but is stable when κ is large compared to ν1 and ν2. The data-passing
approach also does not have a stability constraint on the timestep; see (Connors et al., 2009) for details and analysis.

Partitioned time integration methods are often used in a sequential fashion as in Algorithm 2, first advancing a
single physics component in time, followed by updating information on an interface, advancing a second physics
component in time, and finally updating interface information from the second component. The strategy is often
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referred to as staggered computation; and the techniques used to update data on the interface play a crucial role
in the stability of this approach, irrespective of the time integration methods used for the component physics. In
particular, there can be a time lag in the interface data that leads to an imbalance in the interface transmission
conditions, even for strategies that are formally second-order accurate in time. For example, in fluid-structure
interaction, a small error in the structural displacements may result in large errors in the fluid pressure. The
stability and accuracy can be improved by using the combined interface boundary condition (CIBC) (Jaiman et al.,
2011b), which solves the transformed conditions for the interface quantities based on their space derivatives and
time derivatives. The CIBC technique allows the construction of a staggered coupling procedure with similar order
of accuracy and stability as tightly coupled computations for some classes of fluid-structure coupling problems.

Despite the issues associated with partitioned and mixed approaches to multiphysics time integration, these
elements can be combined to produce stable, accurate, and efficient simulations. Such an approach is illustrated
by hierarchical adaptive mesh refinement (AMR), which we discuss in the context of lean, premixed turbulent
combustion (Day and Bell, 2000). This is a demanding multiscale simulation involving fluid flow, chemical reac-
tions, and heat transfer to resolve spatial scales that span two orders of magnitude and timescales that span three
orders of magnitude. A finite-volume formulation is used to enforce crucial conservation properties. The AMR
strategy is tailored to the mathematical structure of the problem to exploit the relationship between the scales and
physical processes in the problem. The fluid equations are advanced in time by using a fractional-step projection
formulation, whose elements include explicit advection (via a Godunov scheme), implicit diffusion (via a Crank-
Nicolson predictor-corrector scheme), Strang splitting for the chemical reactions, and two discrete projection steps
to enforce a modified, divergence-free constraint.

AMR introduces two complexities. The first is the need to compute discrete differential operators where the
resolution changes; this computation is done through a simple direct interpolation of data at a coarse resolution to
a finer resolution. Local piecewise quadratic interpolation of coarse data is used to align the coarse data with fine
data and to calculate fine-scale fluxes at the interface (Almgren et al., 1998).3 In addition, a re-fluxing procedure
(Berger and Colella, 1989) is employed to enforce conservation and free-stream preservation at these changes in
resolution. The second complexity is local subcycling in time: a global time step on the entire locally refined grid
can be inefficient and will lead to a wide range of CFL numbers across the grid, compromising the accuracy of the
Godunov advection scheme. In order to handle this, timesteps are chosen in each refinement region to maintain
a CFL number close to 1. Practically speaking, this means that a grid with resolution h requires twice as many
timesteps as the next-coarser region with resolution 2h (assuming the refinement ratio is 2). Overall, this AMR
scheme is second-order accurate in time and space; see (Pember et al., 1998) and (Almgren et al., 1998) for details.

We note that it is difficult to devise partitioned time integration schemes that are better than second-order accu-
rate in time. Spectral deferred correction (SDC) (Frank and Ueberhuber, 1977; Dutt et al., 2000) is one potential
way to improve time accuracy. Starting with a provisional solution obtained with a simple, low-order method, SDC
generates a sequence of corrections that can lead to higher-order accuracy in the solution. Specifically, one writes
the solution to the problem in terms of a Picard integral equation and evaluates the integral using interpolated
values of the provisional solution. Spectral accuracy of the integral can be obtained by using Gaussian quadrature
nodes in the quadrature. In principle, the order of accuracy can be increased up to the order of accuracy of the
quadrature used to evaluate the Picard integral. Variations of SDC have also been developed for semi-implicit time
integration methods (Minion, 2003, 2004).

3.3 Continuum-Discrete Coupling
The development of methods to couple models across multiple physical scales is a fairly new area of investigation
that has grown rapidly in the past decade. Much of the initial multiscale methods development has focused on the
linking of distinctly different spatial scales, in which the coarse scale is represented by a PDE model and the fine
scale by either a discrete model (e.g., atomistic) or a fine-scale heterogeneous continuum model (e.g., composite
materials in which the microstructural constituents are modeled). A key feature of these problems is the existence
of a strong scale separation that greatly influences the method developed. The majority of the scale linking methods
fit into one of two classes: hierarchic (also called information passing) or concurrent methods (Fish, 2010).

3Local piecewise linear interpolation can also be used (Ewing et al., 1991). Failure to adequately address this issue can lead to nonphysical
artifacts in the solution (Choi et al., 2004).
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Figure 17: Two-scale model for soft, fibrous material. This diagram indicates the transition from the element level
of a macroscopic mesh to a representative volume element (RVE) and then to a microscopic model (Luo et al.,
2009).

In hierarchic methods information is “upscaled” from the fine-scale model to the coarse scale to provide model
information (e.g., constitutive relations) at a point in the coarse scale. Figure 17 graphically depicts this process for
the case where a finite-element mesh is used to discretize the macroscale continuum equations. As part of the con-
struction of the element stiffness matrix, the “force/deformation” relationship at the numerical integration points
in the elements needs to be evaluated. In this two-scale model, the “force/deformation” relationship is determined
through the analysis of a model defined on a representative volume element composed of one-dimensional fiber
elements (Luo et al., 2009). There is a long history of development of homogenization methods (Benssousan et al.,
1978; Sanchez-Palencia, 1980) to link continuum models between two scales. Recently these methods have been
generalized to link from atomistic to continuum (Li et al., 2008).

In concurrent methods the different models exist concurrently over different portions of the domain. Concurrent
methods are frequently used for problems where an atomistic representation is needed in some small fraction of
the domain, while the majority of the model can use a much coarser representation. Among the most mature of
these methods is the quasicontinuum method (Knap and Ortiz, 2001; Miller and Tadmor, 2002; Tadmor et al.,
1996) in which atomistic mechanics are applied in critical regions. In noncritical regions entire groups of atoms
are approximated in terms of a small number of representative atoms with specific assumptions applied on the
variation of fields over the group of atoms in much the same way as a field is approximated in terms of shape
functions over a mesh of elements. Other concurrent methods employ a continuum partial differential equation for
the coarsest scale (Belytschko and Xiao, 2003; Fish et al., 2007; Wagner and Liu, 2003; Xiao and Belystschko,
2004). The key component of these methods is the linkage of the atomistic to the continuum. Methods that attempt
to link through just the interface between the portions of the domain with different models have not produced good
results. Therefore, methods are needed that employ some form of overlap region in which both the continuum and
atomistic models exist and are blended from one model to the other. Figure 18 shows a simple graphic of this idea,
with a strictly atomistic region to the right; an overlap region in the middle where both atomistic and continuum
models interact; and a continuum region to the left that, in this example, includes some dummy atoms that follow
the continuum and support finalization of the transition from atomistic to continuum. A key function of the overlap
region is supporting the transition of atomistic quantities to continuum quantities, which must be done with care
in the zero temperature case and has proved difficult in the finite-temperature case since a method is needed to
determine what portion of the energy content goes into thermal loads and what goes into mechanical loads.

In many problems the areas in which the fine-scale models are needed are not known a priori. To deal with
such situations, adaptive multiscale methods are being developed (Bauman et al., 2008; Nuggehally et al., 2007;
Oden et al., 2006). Figure 19 shows the use of an adaptive concurrent atomistic/continuum method to study the
growth and interactions of dislocations around nanovoids (Fish et al., 2007; Nuggehally et al., 2007).

An alternative scale-linking approach is the heterogeneous multiscale method (E et al., 2007), which defines
compression operators to relate discrete to continuum scales and reconstruction operators to relate continuum to
discrete scales. In addition to dealing with the complexities of linking the 10 orders of magnitude of spatial scales
when linking atomistic to continuum, the timescales that must be bridged can be as high as 15 orders of magnitude.
The same methods used in multiphysics time coupling are considered in multiscale time coupling. Moreover, new
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Figure 18: Atomistic-to-continuum concurrent method with overlap region.

Figure 19: Four-void multiscale example. Left: Models adaptively selected at step 20. Center: Dislocation
structure around voids at step 20. Right: Evolved dislocation structure at step 28.

methods such as the equation-free multiscale method (Kevrekidis et al., 2003) have been developed that link
statistically averaged fine time- and space-scale realizations to the coarse time and space scales.

3.4 Error Estimation
Reliable error estimation for multiphysics problems is difficult. Because a priori bounds must account for the
largest possible error across a large class of solutions, they do not yield sharp estimates and are useful primarily
for characterizing the general behavior of the error, such as order of accuracy. In addition, most a priori estimates
are asymptotic and are useful primarily for relatively well-resolved problems having smooth solutions. In this
regime, a priori bounds can be useful for constructing error estimates based on extrapolation. For example, the
AMR algorithm described in Section 3.2.2 uses Richardson extrapolation to determine where additional spatial
resolution is needed. Multiphysics applications that use finite-difference or finite-volume discretization can use
similar extrapolation-based techniques to estimate error.

In contrast, a posteriori analysis focuses on the error in a particular computed solution. Methods for directly
estimating the error in a finite-element solution include residual-based estimators that construct estimates based
on element residuals, hierarchical estimators that project the residual onto some larger finite-element space, and
recovery-type estimators that focus on ways to reconstruct the solution gradient (Ainsworth and Oden, 1997).
Generally, these estimators are more reliable for smooth, well-resolved solutions. Extending these ideas to develop
robust and accurate error estimators for coarse meshes and nonsmooth solutions is an active area of research (Cai
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and Zhang, 2009, 2010a,b).
Alternatively, the error in some scalar model response quantity Q may be of interest. In this case, duality

and adjoint operators can be used to obtain very accurate estimates of the error in Q (Estep et al., 2000; Becker
and Rannacher, 2001; Oden and Prudhomme, 2002; Cao and Petzold, 2006). This approach requires solving a
related problem involving the adjoint operator together with a projection of the adjoint solution in the direction
of the residual. For time-dependent problems, solving a problem involving the adjoint operator entails integrating
backwards in time to the initial state at every timestep. When the problem is nonlinear, some application state
must be saved during the forward time integration in order to construct the adjoint operator during the backward
time integration. Storage and data management requirements can make duality-based a posteriori error estimation
impractical. Also, because of the way that multiphysics applications are constructed from components, global
adjoints and residuals are often not available. Consequently these duality-based a posteriori techniques are not
widely used.

Even if full adjoints and residuals were available, the divide-and-conquer approach commonly encountered in
multiphysics applications presents special difficulties for error estimation. Significant extensions and alterations
of the standard approaches are required that are well developed for single physics problems. The key features
required to obtain accurate error estimates for multiphysics problems include the following:
• Estimating the effects of errors passed between physical components
• Estimating the effects of processing transferred information, for example, upscaling, downscaling, and chang-

ing discretizations
• Quantifying the effects of multiphysics solution algorithms on stability by identifying perturbations to adjoint

operators
• Estimating the effects of using a finite number of iterations in the solution when an iterative solver is used
The following subsections illustrate some of these issues. In this discussion we collectively refer to these

strategies as multiscale, multiphysics, multidiscretization operator decomposition (M3OD), which encompasses
multiphysics methods already discussed to this point:
• Operator splitting, or partitioned methods
• Decoupling “loosely coupled” systems that are related through parameter passing
• Coupled systems in which upscaling and downscaling operators are introduced
• Incomplete iteration in block or nonlinear solvers
• Different discretizations for different components, or in different regions or at different times in the same

equation
While these methods or issues are very different, they all share the common feature that they involve some substan-
tial alteration of the system of differential operators representing the components of the underlying system. These
modifications may arise from formulation and/or discretization and must be accounted for in order to achieve
robust and reliable error estimation for multiphysics problems.

This common feature to all M3OD approaches results in a common issue:

M3OD discretizes the instantaneous interactions between the component physics in the multiphysics
model.

One potential consequence is the possibility of new forms of instability, some of which may be subtle. Another
consequence is that as information is exchanged between physical components, numerical error is also exchanged,
and the error in one component may well pollute the solution of another component. We illustrate the range of
methods and effects using four common examples.

3.4.1 Operator splitting for reaction-diffusion equations

A classic example of M3OD is operator splitting for a reaction-diffusion equation. Accuracy considerations dictate
the use of relatively small steps to integrate a fast reaction component. On the other hand, stability considerations
over moderate to long time intervals suggest the use of implicit, dissipative numerical methods for integrating
diffusion problems. Such methods are expensive to use per step, but relatively large steps can be used on a purely
dissipative problem. If the reaction and diffusion components are integrated together, then the small steps required
for accurate resolution of the reaction lead to an expensive computation.
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Figure 20: Left: On moderate to long time intervals, there is a critical timestep above which convergence fails.
Right: A typical unstable solution. See (Estep et al., 2008a) for details; c©2008 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.

In multirate operator splitting, the reaction and diffusion components are integrated independently inside each
time interval of a discretization of time and “synchronized” in some fashion only at the nodes of the interval.
The reaction component is often integrated by using significantly smaller substeps (e.g., 10´5 times smaller is not
uncommon) than those used to integrate the diffusion component, which can lead to a tremendous computational
savings.

We illustrate some possible effects for multirate operator splitting using the well-known Brusselator problem
$

’

&

’

%

Bu1

Bt ´ ν1 ∆u1 “ 0.6´ 2u1 ` u
2
1u2,

Bu2

Bt ´ ν2 ∆u2 “ 2u1 ´ u
2
1u2,

suitable initial and boundary conditions,

with ν1 “ ν2 “ 0.025, over the one-dimensional spatial domain r0, 1s. We discretize using:
• a second-order, piecewise linear finite-element method in space with 500 elements;
• a standard first-order multirate splitting scheme;
• the implicit second-order trapezoidal rule with a timestep of 0.2 for the diffusion; and
• first-order implicit Euler with a timestep of 0.004 for the reaction.

In particular, the resolution is sufficient to ensure that spatial discretization errors are negligible and that the reaction
and diffusion components are each solved with reasonable accuracy. Overall, the method is first-order accurate in
time. See (Estep et al., 2008a) for details.

We show the results in Figure 20. On the left, we plot the error versus timestep for different final times. We see
that on sufficiently long time intervals, there is a critical timestep above which convergence fails. On the right, we
plot a typical long time unstable solution. Note that the oscillations are not on the scale of the spatial discretization.

This example well illustrates the fundamental issue arising in solutions using M3OD. When divorced from the
stabilizing effect of diffusion, the solution of an unstable reaction component is free to grow too rapidly. In this
case, the reaction component is not constrained by boundary conditions imposed on the solution of the diffusion
component, and consequently its values near the boundaries grow far too rapidly. This coupling either needs to be
compensated for by applying an L-stable (see, e.g., (Ascher and Petzold, 1998; Lambert, 1991)) diffusion solver
in the diffusion solve (Ropp et al., 2004; Ropp and Shadid, 2009), or the coupling needs to be implicit for large
timesteps.
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3.4.2 Operator splitting for advection-diffusion equations

When splitting an advection operator from a diffusion operator, a subtle inconsistency may occur at boundaries.
The ensuing error will pollute both the advection and diffusion components of the solution. In some cases, the
inconsistency may occur only if advection is subcycled relative to diffusion.

Consider the advection-diffusion problem
$

’

’

’

&

’

’

’

%

Bu
Bt ` a

Bu
Bx “ ν B

2u
Bx2 , x P pxL, xRq ˆ p0, T s,

upxL, tq “ gLptq, t P p0, T s

upxR, tq “ gRptq, t P p0, T s

suitable initial conditions,

where a ą 0 and ν ą 0 are constants. An example of an operator-split calculation is to resolve advection by
using a step of Lax-Wendroff between time tn and tn ` ∆t “ tn`1, then use a centered scheme with a Crank-
Nicholson timestep for diffusion. We illustrate this using finite difference methods at grid points xi “ xL ` i∆x
for i “ 0, 1, . . . ,M ` 1 with xM`1 “ xR. At a grid point xi and time level tn, denote the advection degrees
of freedom as vni and the diffusion degrees of freedom as wn

i , with the operator-split solution degrees of freedom
being denoted by uni . The discrete algorithm is defined over a timestep by setting vni “ uni for i “ 0, . . . ,M ` 1,
then updating the advection degrees of freedom,

$

’

&

’

%

vn`1
i “ vni ´

a∆t
2∆x pv

n
i`1 ´ v

n
i´1q `

a2∆t2

2∆x2 pv
n
i`1 ´ 2vni ` v

n
i´1q i “ 1, . . . ,M,

vn`1
0 “ gLpt

n`1q,

vn`1
M`1 “ gRpt

n`1q.

Alternatively, the right boundary value could be extrapolated since a ą 0. The updated advection data is used
to initialize the diffusion step by setting wn

i “ vn`1
i for i “ 1, . . . ,M , with boundary values wn

0 “ gLpt
nq and

wn
M`1 “ gRpt

nq. The diffusion update is

$

’

&

’

%

wn`1
i “ wn

i ` ν
∆t

∆x2 pw
n`1{2
i`1 ´ 2w

n`1{2
i ` w

n`1{2
i´1 q, i “ 1, . . . ,M,

wn`1
0 “ gLpt

n`1q,

wn`1
M`1 “ gRpt

n`1q,

where wn`1{2
i “ pwn`1

i `wn
i q{2. The operator-split approximation is then un`1

i “ wn`1
i , for i “ 0, . . . ,M ` 1.

The truncation error for this method is found in the usual way by inserting upxi, tjq for uji and j “ n, n ` 1.
Away from boundaries (1 ă i ă M ), the method is consistent, with order ∆t2 ` ∆x2. Near the boundaries,
however, an inconsistency has been introduced because the boundary data used in the scheme does not generally
evolve in a way that is compatible with the split operators. Indeed, one may verify directly that the local truncation
error is on the order of ∆t

∆x2 at xi in case i “ 1. Special intermediate boundary values may be derived to amend
this issue. See (Connors et al., 2012) for examples, a posteriori error analysis, and other details.

3.4.3 Iterative solution of parabolic problems coupled through a common boundary

Operator splitting is an extreme form of M3OD because it is a blunt factorization of the diffusion-reaction or
advection-reaction differential operator whose effects cannot be repaired, for example, by iteration. We next
discuss a less-severe example of M3OD that nonetheless presents some difficulties and puzzling behavior.

We consider a system of parabolic problems, where each equation is posed on a different domain but the
domains share a common boundary Γ. In contrast to Equation (15), we impose continuity of state and normal flux
across Γ:
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%

Bu1

Bt ´∇ ¨ pν1∇u1q “ f1, x P Ω1,
Bu2

Bt ´∇ ¨ pν2∇u2q “ f2, x P Ω2,

u1 “ u2, x P Γ,

ν1∇u1 ¨ n1 “ ν2∇u2 ¨ n2, x P Γ,

suitable boundary conditions on the other boundaries,
suitable initial conditions,

where ni is the outward unit normal to Ωi along Γ for i “ 1, 2. This example arises in conjugate heat transfer,
representing the exchange of heat between two abutting solids with different temperatures. It is a subsystem in
the exchange of heat between a solid and an encompassing fluid. This system also arises in other contexts, for
example, the core-edge coupling in models of a fusion reactor.

Such a system may be posed as a large, fully implicit system of equations. However, it is common practice
to use some form of iterative timestep method. The different components often use different spatial and temporal
discretizations and may even be solved with different codes.

A common approach combines Algorithm 1 as an inner iteration in Algorithm 2 and is specified in Algorithm 4.
The solves that are performed on each subdomain may use subcycling in time; recall that we use u1ptnq and u2ptnq
to denote the nodal values of the numerical solutions at Nt time nodes t0 “ 0 ă t1 ă t2 ă ¨ ¨ ¨ ă tNt

. Of course,
we must discretize in space to create full discretizations. Many possible variations of this approach exist.

Algorithm 4
Given initial values uipt0q, i “ 1, 2:
for n “ 1, ¨ ¨ ¨ , Nt do

Set u0
i ptnq “ uiptn´1q, i “ 1, 2

for k “ 1, 2, . . . , (until convergence) do
Solve for uk1ptnq with uk1ptnq “ uk´1

2 ptnq on Γ
Solve for uk2ptnq with ν2∇uk2ptnq ¨ n2 “ ν1∇uk1ptnq ¨ n1 on Γ

end for
Set u1ptnq “ uk1ptnq and u2ptnq “ uk2ptnq

end for

The number of specified iterations in each step is an important factor. This approach can be interpreted as
a fixed-point iteration; and if the fixed point iteration converges, then by iterating sufficiently, this discretization
converges to the fully implicit discretization. On the other hand, this approach often is implemented with only one
iteration. Doing so may have significant effects on accuracy. More worrisome is that if the fixed-point iteration
actually fails to converge, using only one or a few iterations will fail to reveal this fact. The numerical results are
questionable in this circumstance.

To illustrate some of the behavior that can arise in this approach, we consider simple linear heat equations
with diffusion coefficients ν1 “ 1 and ν2 “ 1{2 on domains Ω1 “ r0, 1s and Ω2 “ r1, 2s, respectively, coupled
by imposing continuity of state and normal flux at Γ12 “ t1u. The solution should converge to a steady state.
We solve using Algorithm 4 with continuous second-order finite-element methods in space with ∆x “ 0.01 and
implicit Euler with ∆t “ 10´3 for each component. Each component is solved sufficiently accurately that the
component errors are negligible.

We plot the total error of the approximation in Figure 21. We see the expected increase during the initial
transient. But, the increase in error that occurs over longer time intervals is not expected, since the solution should
be converging to a steady state. We can estimate the error that arises from incomplete iteration at each step (we
use only one iteration) and the error in the numerical flux that is used in the solution of u2. Note that u1 produces
a numerical flux that is only first order. We see that the error from incomplete iteration is significant during the
initial rapid transient but becomes unimportant over long time intervals. However, the error due to transferring a
numerical flux increases as time passes, and becomes the dominant feature. In fact, the pollution from transferring
the numerical flux causes a loss of order in spatial accuracy. Analyses of the errors, as well as examples in two
dimensions with both matching and nonmatching grids along Γ, are given in (Estep et al., 2008b, 2009).
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Figure 21: Results of the Gauss-Seidel algorithm for coupled parabolic problems. The component discretization
errors are negligible. Left: the total error. Second to left: the contribution from incomplete iteration on each step.
Second to right: the contribution from the passing numerical fluxes. Right: approximation showing loss of an
order of accuracy in space as a result of the error in the numerical flux.

3.4.4 Solution of systems of elliptic equations with independent discretizations

In the next example, drawn from (Carey et al., 2009), we consider an even more nominally benign form of M3OD,
which nonetheless produces interesting behavior. We consider a two-component, “one-way” coupled system.

$

’

&

’

%

´∆u1 “ sinp4πxq sinpπyq, x P Ω

´∆u2 “ b ¨∇u1, x P Ω,

u1 “ u2 “ 0, x P BΩ,

b “
2

π

ˆ

25 sinp4πxq
sinpπxq

˙

.

Here Ω “ r0, 1sˆr0, 1s. The “lower triangular” form of this system means that we can solve it as a coupled system
or we can solve the first equation and then use the solution to generate the parameters for the second problem, as
in Algorithm 5. In either case, we use independent discretizations of the two problems.

Algorithm 5
Construct discretizations for the two equations
Compute the numerical solution u1 of the first equation
Project u1 onto the mesh for the second equation
Compute the numerical solution u2 of the second equation

Solutions obtained by using a standard piecewise linear, continuous finite-element method on uniform, highly
refined meshes and Algorithm 5 are shown in Figure 22.

Using uniform meshes, we evaluate the standard a posteriori error estimate for the second component problem
and the quantity of interest u2p0.25, 0.25q, ignoring any effect arising from error in the solution of the first compo-
nent. We estimate the solution error to be « 0.0042. However, the true error is « 0.0048, giving a discrepancy of
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Figure 22: Solutions of the component problems of the elliptic system computed on uniform meshes. See (Carey
et al., 2009) for details; c©2009 Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.
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Figure 23: Results obtained after refining the mesh for the second component so that the a posteriori error estimate
of the error only in the second component is less than 0.001. The mesh for the first component remains coarse;
consequently, the error in the first component becomes relatively much larger. See (Carey et al., 2009) for details;
c©2009 Society for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.

« 0.0006 p« 13%) in the estimate. This is significant for these kinds of accurate a posteriori error estimates since
the solutions are smooth.

If we adapt the mesh for the solution of the second component based on the a posteriori error estimate of the
error in that component while neglecting the effects of the decomposition (Figure 23), the discrepancy becomes
alarmingly worse. For example, we can refine the mesh until the estimate of the error in the second component is
« 0.0001. But, we find that the true error is « 0.2244.

3.5 Uncertainty Quantification
While uncertainty quantification (UQ) is a relatively young field with many foundational research problems re-
maining to be tackled, UQ for multiphysics models is in its infancy. UQ is a process for determining how random
variation in model inputs, such as initial/boundary conditions or parameters in material properties or constitutive
laws, affects the results of modeling and simulation. UQ is important for using multiphysics models in engineer-
ing and scientific practice because of the complicated systems they attempt to model. In particular, multiphysics
systems present severe difficulties for experimental observation. Consequently, mathematical models are heavily
used to supplement the meager availability of experimental data and observations. UQ can be used to characterize
and reduce uncertainties in multiphysics applications as part of a process of continuous quantifiable improvement
of simulation accuracy.

Random variation in model parameters can arise from a number of sources, including measurement error and
natural variability. When sufficient data is available, this randomness can be characterized in the form of probability
distributions, and the random parameter is treated stochastically. Such uncertainties are generally termed aleatory.
On the other hand, epistemic uncertainties generally reflect a lack of knowledge, and probabilistic treatment is
not always appropriate. In practice, the effects of epistemic uncertainty can be analyzed by assuming a uniform
distribution with suitable lower and upper bounds, or through non-probabilistic approaches such as interval analysis
or evidence theory. When both aleatory and epistemic uncertainties are present, hierarchical sampling techniques
such as second-order probability methods can be used to obtain an “envelope” of probability distributions for the
output response.

In either case, one of the principal concerns of UQ is to construct probability distributions of the model re-
sponses. Doing so requires multiple deterministic runs of the multiphysics model using samples drawn from the
input distribution. Current UQ practice is dominated by “black-box,” nonintrusive strategies that require no modi-
fication of the application. Monte Carlo sampling and more efficient variations, such as Latin hypercube sampling,
are most widely used. These approaches can require thousands of deterministic realizations to obtain the output
probability distribution, especially when a large number of uncertain parameters must be accounted for. This is the
so-called curse of dimensionality and is exacerbated in multiphysics simulations, where the number of parameters
involved increases significantly with each physics model incorporated into the system. One way to address the
expense of these runs is to construct either an emulator or a reduced-order model of the original simulator and
then use this faster model in the Monte Carlo runs (Oakley, 2004). With this method, one must account for the
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uncertainty in the emulator as well as that of the computer model. Methods for constructing emulators include
those based on interpolations or Gaussian Process approximations (Sacks et al., 1989), multivariant regressions
(Box and Draper, 2007), and neural networks (Hayken, 1998). In developing reduced-order models, the goal is to
identify a subspace of the state solution space in which the dominant physics reside, then project the original gov-
erning equations onto this subspace (Adams et al., 2012). While much work has been done on linear, steady-state
problems, the field of reduced-order modeling is very active for nonlinear and time-varying problems.

Another way the curse of dimensionality can be mitigated is by using spectral polynomial chaos expansions
(PCE) (Ghanem and Spanos, 1991). While PCE can dramatically lower the cost of calculating the output proba-
bility distribution, lack of smoothness in the random parameters can impede PCE convergence, and it can be very
difficult or impossible to derive the system of equations for the expansion coefficients. PCE also requires a com-
plete rewrite of the application. In order to avoid having to rewrite the code, this method is best brought in at the
start of code development; software solutions are available to generate the system of equations for the expansion
coefficients (Pawlowski et al., 2012a,b). Stochastic collocation (Xiu, 2010) is a nonintrusive alternative to PCE
that is still much less expensive than Monte Carlo sampling.

One approach to the multiphysics challenges for UQ is to address the multiphysics simulation as a hierarchy of
models, addressing single components, then pairs, and working up to the full simulation (Adams et al., 2012). This
approach allows leverage of knowledge from one stage to the next and can provide greater understanding of model
coverage and correctness. The complexity of a typical multiphysics model presents significant challenges. On the
one hand, the complex behavior makes it difficult to obtain informed, high-fidelity statistical models of the system
(when subject to random data and parameters), so that the black-box approach to UQ becomes problematic. On
the other hand, propagation of random uncertainty through a multiphysics model encounters all the difficulties that
have been outlined for the numerical solution. In addition, significant “stochastic feedback” often occurs between
components of a multiphysics model. A useful source for further information can be found in (Adams et al., 2012).
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4 Multiphysics Software
Software is the practical means through which collaboration on multiphysics algorithms and applications occurs;
collaboration is unavoidable because the full scope of required functionality is broader than any single person or
team can deeply understand. The following quote from Steve Jobs (1997) truly resonates for multiphysics:

“The way you get programmer productivity is by eliminating lines of code you have to write.”

We could expand to say that the only way the multiphysics research community can address increasing chal-
lenges in modeling and algorithms is by making it possible to combine and leverage diverse code for the various
phases of simulation. Software for multiphysics presents a host of difficulties beyond those faced in single physics
contexts because of the compounded complexities of code interactions. Section 2.2 introduced issues from the
perspective of scientific application teams, who face daunting challenges both in building application-specific in-
frastructure and in incorporating libraries, frameworks, and tools that are under development by many groups
at universities and research laboratories. Section 4.1 expands on these issues with a closer look at the current
status of multiphysics software, emphasizing capabilities needed for high-performance computing (HPC) environ-
ments. Section 4.2 discusses challenges in designing software for multiphysics algorithms as well as some possible
approaches to help manage complexity and change. Section 4.3 considers practical difficulties in collaborative re-
search software.

4.1 Status of Software for Multiphysics
We begin by surveying current multiphysics software practices. This information provides background for dis-
cussing common needs. We then present a few examples of HPC multiphysics software infrastructure.

4.1.1 Current practices

Current practices for multiphysics coupling in production codes, such those introduced in Section 2, must strike
a balance among performance, software reuse, numerical accuracy, and robustness, while also addressing ease of
use for developers at all levels of the multiphysics software stack. Exactly which practices and approaches are
favorable to these goals is a subject of controversy and continued research. However, some common choices exist.

The importance of software reuse has strongly favored operator-splitting coupling methodologies, possibly at
the expense of numerical accuracy. Typical workhorse codes in key physics areas such as computational fluid
dynamics, particle transport, atomistic methods, and structural mechanics can easily have hundreds of developer-
years behind them, including extensive test suites, comprehensive experience with the strengths and limitations of
the underlying numerical methods, active user communities, and highly optimized kernels. Since most projects
using these codes are driven by application goals (scientific or engineering discovery), any significant restructuring
of the codes, let alone a complete rewrite, is extremely risky for application scientists, and often completely
infeasible with current software technology. Moreover, many of these applications were not originally written with
extensibility in mind and depend on outdated constructs and practices in software design. Thus, their integration
into a more modern, modular, component-based software architecture is often more problematic than may initially
appear.

Therefore, it is fair to say that the lowest threshold to early multiphysics results involves treating the coupling
variables as input/output to these legacy codes. This approach allows some initial exploration into basic coupled
phenomena with very limited modification of the original codes. We also note that higher than first-order accuracy
may be achieved within this framework through various iterative techniques, as introduced in Section 3, albeit
possibly at a higher performance cost than other choices.

While this approach sounds relatively straightforward, nontrivial implementation issues remain, particularly on
HPC architectures, which beget another set of fundamental choices. These typically fall into two general classes.

The service-oriented architecture approach (e.g., the fusion IPS framework (Elwasif et al., 2010)), ensures the
maximum independence of each code component by basing coupling on I/O rather than variable/grid-based data
formats. The key idea is that interacting with each code at the I/O data level is more flexible and is independent
of the internals of the codes to be coupled. Currently file I/O is commonly used for data transfer, but it will
be necessary to move toward in-memory transfers for scalability. A standard for the meaning of the I/O format

51



4 MULTIPHYSICS SOFTWARE

(e.g., which variables are located where on which mesh type) is still required for the coupling to be numerically
consistent, but this approach avoids any direct “contact” with the internal data structures of each component. Note
that, while not required, this approach can be naturally carried out in a parallel environment when each component
runs as its own executable on a disjoint set of MPI processes. This approach can be implemented on top of a
higher-level I/O library.

In the remote procedure call approach, components share information by direct method calls based on a defined
abstraction of the information that the components must share. This approach does not imply that the internal data
representations of each code are directly modified to accommodate the coupling; rather, more typically, interface
routines are used to transmit information between the components for loading into the internal representations of
the communicating components. Clearly the more common the internal representations used by the components,
the more efficient, in terms of memory and translation, the information communication process. This approach is
more commonly followed with existing HPC codes and is more naturally implemented as a single MPI executable
with either disjoint or overlapping processor configurations. When linking independently developed components
with different internal data representations, this approach must employ a lingua franca perspective in which the
information passed in the calls can be easily extracted from, and placed into, the internal data structures of the
individual components. Such an approach was adopted by the ITAPS SciDAC center for dealing with unstructured
meshes and the field (solution) information defined over those meshes (Chand et al., 2008; Devine et al., 2009;
Ollivier-Gooch et al., 2010).

We note that there is no superior multiphysics software solution in general; the best approach for a partic-
ular circumstance depends on application-specific requirements. Usually, though, service-oriented architecture
approaches will require much less development work but offer less flexibility and opportunity for performance
optimization, in terms of both memory and execution time.

Increasingly, the commercial simulation community is endeavoring to provide “coupling toolkits” to ease the
programming burden of building multiphysics simulations. Some of these toolkits, such as MpCCI (2012), claim
broad penetration and adoption in the commercial modeling world. Their basic philosophy is to allow users to
specify their coupling problem at a high level of abstraction by providing the input/output variables and a de-
scription of the orchestration (time sequence of couplings). Such tools are focused on a loose coupling approach,
providing the adapter code that can interpolate variables between different simulation packages. For this approach
to work, the list of codes that can be coupled is hardwired into the toolkit—something that probably makes more
sense in the commercial world where a larger fraction of the community uses a smaller number of codes, and thus it
is feasible to support only the most popular ones. Limitations of this approach include little or no accommodation
of parallel computing resources, particularly at the very high end, and lack of flexibility in potential candidate code
components.

A number of projects have explored implicit coupling based on the Jacobian-free Newton-Krylov method,
introduced in Section 3. This approach requires each of Nc code components to return a solution residual
(Fipuq, i “ 1, . . . , Nc). The approach can be taken even one step further, with a broader goal of blending the
best of both worlds by building in the option to employ an operator-splitting algorithm in cases where a tightly
coupled approach is not needed and to employ an operator-splitting solution as a preconditioner when a fully
implicit solution is deemed necessary. Section 4.1.3 discusses software to facilitate this approach.

For all these techniques, it is important at the implementation level to categorize the range of coupling types
that one encounters across applications (see, e.g., (Larson, 2009a,b)). The frequency and volume of data movement
depend greatly on these categories and go a long way in determining the difficulty of implementation or the other
strategies described above.

4.1.2 Common needs

From this brief survey of current practices in production multiphysics codes, we identify common needs for HPC
multiphysics software to achieve reasonable performance, robustness, portability, and flexibility, as well as to
address the expectations of software developers and end users. These needs fall into several categories that are
introduced briefly below and discussed in more depth in Section 4.2. Many of these needs also exist for good-
quality HPC uniphysics software. However, while it may be possible to “get away with” some poor software
engineering practices in a uniphysics context, addressing these issues is imperative for effective code sharing for
multiphysics applications.
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• Interfaces with appropriate levels of encapsulation and granularity while permitting adequate performance.
In designing a multiphysics software package, it is critical to determine interfaces with appropriate levels of
encapsulation. If too much is encapsulated, the interface is inflexible, and users cannot access needed data.
If too little, objects can easily be used incorrectly, and functionality will not be great enough to encourage
adoption. See Section 4.2.1.

• Common infrastructure and ability to exploit commonality among different physics operators. Multiphysics
software for HPC should also facilitate access to a broad set of common infrastructure that may be used by
the physics codes being coupled to ease the coupling process. A clear example is mesh management (Glass
et al., 2011; Tautges et al., 2011b; Kirk et al., 2006b), where the use of a common mesh and field database
can allow multiple codes to access a mesh in a common way and to exchange data relating to that mesh.
Common verification support, including order of accuracy verification for multiphysics simulations, would
also be of great use. Other important types of infrastructure include coupling technology, such as parallel
communication schedulers, interpolation, and mortar methods to exchange data on different meshes; linear,
nonlinear, and timestepping solvers that support multiphysics algorithms; automatic differentiation technol-
ogy for derivative computations; error estimation and uncertainty quantification software; and tools for data
management, visualization, and I/O. A multiphysics software package might also help developers exploit
commonality among different physics operators such as those in different types of convection-dominated
systems. See Sections 4.2.2, through 4.2.4. A test-driven design that helps verify correct operation is im-
portant to manage the difficulties of incorporating such a broad range of tools that are developed by diverse
multi-institutional teams and constantly changing. See Section 4.3.1.

• Strong focus on meeting practical user expectations such as multilanguage support, ease of building, doc-
umentation, assurance of future support, and transparent open-source licensing. In addition to functional
requirements, multiphysics software must meet the practical needs of software developers and users if it is
to be widely adopted. Some multiphysics software supports only C++, but Fortran and C interfaces are also
necessary to accommodate the majority of physics codes, and Python is increasingly popular. Software must
be sensitive to global scope issues (including symbol names and file usage), must easily integrate with ap-
plications, and must support all relevant hardware. Because many approaches to multiphysics simulations
involve combining software from several different sources, clear interface specifications are needed. Related
needs are good practices for software maintenance and documentation, including tutorial material and clear
examples. See Section 4.3.

• Extensibility to the largest current and anticipated future problems and to future extreme-scale systems.
Multiphysics approaches and algorithms that can be extended to very large problems on future extreme-scale
architectures are required. We note that scalability by itself is not necessarily a useful measure of performance
and that some very inefficient codes may exhibit relatively good scaling. For exascale architectures, memory
use must be minimized. This circumstance may make it attractive to develop custom variants of implicit
methods, and to run one type of physics on some nodes and other physics on other nodes, requiring careful
attention to load-balancing issues. See Sections 4.2.5 and 5.1.

A longer-term and ambitious goal might be to allow domain experts who do not have extensive knowledge of
multiphysics coupling and possibly have little advanced HPC expertise to write robust, coupled, parallel simulation
codes that exhibit reasonably good performance.

4.1.3 Software successes

The development of multiphysics software is becoming increasingly widespread. Several commercial analysis
packages contain the word “multiphysics” in their description, and Section 2 mentions some application-specific
research software. Below we list a few frameworks, libraries, and other tools that incorporate general-purpose,
reusable algorithmic infrastructure in support of parallel PDE-based multiphysics applications and aim to address
the needs identified above. Of course, many additional projects address important aspects of multiphysics simu-
lations. Such projects include approaches that facilitate working at higher levels of abstraction (Ford et al., 2006;
Sahu et al., 1999; McInnes et al., 2006; Bulatewicz and Cuny, 2006; DeVito et al., 2011), as well as software
such as Cactus (Goodale et al., 2003), Coupler (Liu and Sosonkina, 2011), DDEMA (Michopoulos et al., 2003),
FLASH (Dubey et al., 2009), InterComm (Sussman, 2006), Jade (Hegewald et al., 2008), Karma (Mahadevan
et al., 2009), MCT (Larson et al., 2005), MUSE (Zwart et al., 2008), Overlink (Grandy, 2004), Overture (Hen-
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shaw, 2002), PreCICE (Gatzhammer et al., 2010), Sierra (Stewart and Edwards, 2004), and XpressSpace (Zhang
et al., 2011a).

BoxLib. BoxLib (Bell et al., 2012) is a software framework designed to facilitate the development of parallel,
block-structured adaptive mesh refinement (AMR) applications. The block-structured approach to AMR used in
BoxLib is based on a representing the solution on a sequence of nested grids with successively finer resolution.
The data at a given level of resolution is organized into a collection of logically rectangular grid patches, each
containing a large number of points. The aggregation of grid patches at a level, referred to as a MultiFab, is the
fundamental parallel abstraction used in BoxLib. Coarse-grained parallelism is expressed by distribution of the
grid patches in a MultiFab to nodes of the system. Operations at the node level are then specified in terms of iter-
ators with an owner-computes rule. BoxLib supports a hybrid parallelization model in which OpenMP directives
are used within a node to thread operations on a grid patch. A number of applications have been implemented
within the BoxLib framework. These include LMC for low Mach number combustion (Day and Bell, 2000), CAS-
TRO for radiation hydrodynamics (Almgren et al., 2010; Zhang et al., 2011b), MAESTRO for low Mach number
astrophysical convection (Almgren et al., 2006a,b, 2008; Zingale et al., 2009; Nonaka et al., 2010), PMAMR for
subsurface flow (Pau et al., 2009) and NYX for computational cosmology (Almgren et al., 2012).

Chombo. The Chombo library (Colella et al., 2000) provides a set of tools for implementing finite-volume meth-
ods for the solution of partial differential equations on block-structured, adaptively refined rectangular grids. Both
elliptic and time-dependent modules are included. Chombo supports calculations in complex geometries with both
embedded boundaries and mapped grids, as well as coupling with fast particle methods. Parallelization is cur-
rently achieved through a highly scalable domain decomposition strategy involving the distribution of rectangular
grid blocks across processors (Van Straalen et al., 2011). Chombo has been used in a variety of multiphysics
contexts, including biological flow, compressible gas dynamics, hydrology (Ateljevich et al., 2010), ice sheet mod-
eling (Cornford et al., 2012), and plasma physics (Dorr et al., 2010). Of particular use in these multiphysics
simulations is Chombo’s open source framework for temporal and spatial discretizations, which enables the scal-
able integration of multiple physical models, including external solvers, specialized physics codes, and custom
algorithms.

Escript/Finley. Escript (Gross et al., 2007; Escript/Finley, 2012) is a Python-based programming tool for math-
ematical modeling based on nonlinear, time-dependent PDEs. Escript has been designed to give modelers an
easy-to-use environment for developing and running complex and coupled models without accessing the underly-
ing data structures directly. Escript employs the Finley finite-element method solver library. The code has been
efficiently parallelized using MPI, OpenMP, and hybrid modes. Applications include modeling Earth mantel con-
vection, earthquakes, porous media flow, reactive transport, plate subduction, and tsunamis.

Illinois Rocstar. Illinois Rocstar (2012) is a general-purpose numerical solver for fully coupled, time-dependent
fluid, structure, and combustion problems that grew out of the work in the Center for Simulation of Advanced
Rockets (CSAR) (Heath et al., 2010). Rocstar was designed from the beginning to be fully parallel and is routinely
run on systems with over 1,000 processors. The Rocstar framework is built around Roccom, which manages the
communication among the components. These include modules for timestepping, mesh modification, I/O, and
performance profiling. While originally developed for solid propellant rocket motors, Rocstar has been applied to
a variety of different problems, including simulations of the noise from helicopter blades and the effect of wind on
tall buildings.

LIME. The Lightweight Integrating Multiphysics Environment (LIME) is a software package for coupling mul-
tiphysics simulation codes (Schmidt et al., 2010; Pawlowski et al., 2011). It is used when application codes for
solving different parts of a multiphysics problem need to be coupled together in either a loose or a tight sense.
LIME supports a number of coupling modes, ranging from simple, nonlinear block Gauss-Seidel and nonlinear
block Jacobi to fully coupled Newton-based methods. In addition to the solution drivers, LIME provides an ab-
stract interface to application physics codes based on the Thyra::ModelEvaluator in Trilinos. LIME has
been successfully used on the BRISC project (Schmidt et al., 2010), to integrate six separate codes to assemble
a virtual nuclear reactor model; the various couplings in the aggregate system include nonlinear block Gauss-
Seidel, nonlinear Schur (nonlinear elimination), and Jacobian-free Newton-Krylov. LIME is currently used in the
Consortium for Advanced Simulation of Light Water Reactors (CASL) Project (Kothe et al., 2012).
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MOAB. MOAB (Tautges et al., 2004, 2011b,a) is a library for query and modification of structured and unstructured
mesh and field data associated with the mesh. MOAB provides a solution transfer capability for multiphysics
approaches in which different physics are solved over the same volumetric domain, with each physics implemented
on its own mesh and no assumptions made about mesh nesting or the two physics using the same element type
or discretization. MOAB’s solution transfer tool (Tautges and Caceres, 2009) breaks the process into four stages:
initialization, point location, interpolation, and conservation/normalization. During the initialization stage, the two
meshes are instantiated in MOAB’s parallel representation, and spatial searching trees on the source mesh are
constructed. Point location requires finding the source element and parametric location in that element of each
target point (and the processor on which that element resides). Interpolation maps the source field to the target
points, and conservation/normalization imposes global integral constraints on the mapped field. This capability
is the basis for solution transfer being developed as part of the SHARP application discussed in Section 2.1.3
and also has been used to transfer radiation heat deposition results from the MCNP code (Brown, 2012) to a
tetrahedral mesh for heat transfer/fluid flow computations (Sawan et al., 2009). Additional MOAB applications
include Nek5000 (Fischer et al., 2012), the Denovo neutron transport code (Evans et al., 2010), and an ice sheet
modeling code (Biezuner et al., 2012; Brown, 2010).

MOOSE. The Multiphysics Object-Oriented Simulation Environment (MOOSE) (Gaston et al., 2009a,b) focuses
on tightly coupled multiphysics applications using Jacobian-free Newton-Krylov methods and is centered on use
of the residual abstraction, given by Equation (3). MOOSE uses a layered approach to provide core services in
support of multiphysics applications. The heart of MOOSE is the Kernel abstraction, which represents a physics
equation or term in an equation and provides core functionality for residual and Jacobian evaluation. One may
consider a Kernel to be a mathematical operator, such as a Laplacian or a convection term in a PDE; Kernels may
be swapped or coupled together to achieve different application goals. MOOSE employs the libMesh finite-element
framework (Kirk et al., 2006a), which provides utilities for parallel finite-element computation, including mesh I/O,
a finite-element library, and interfaces to nonlinear solvers in PETSc and Trilinos. Multiphysics applications using
MOOSE include BISON (Hansen et al., 2009a; Newman et al., 2009a,b) (models nuclear reactor fuel performance
computation across diverse scales that involve both the continuum and subcontinuum (Tonks et al., 2009, 2010));
PRONGHORN (an analysis code that models coupled coolant flow and neutronics for very high temperature gas
cooled reactors (Knoll et al., 2009, 2011; Park et al., 2009a, 2010)); and geoscience analysis applications (Guo
et al., 2010; Gaston et al., 2012).

OpenPALM. The main idea of the OpenPALM philosophy is to create applications by assembling independent
components in sequences and letting them exchange data (Buis et al., 2006; Piacentini et al., 2011). The PALM
framework performs the scheduling and synchronization of the components and the data exchanges. A PALM
application can be described as a set of computational units arranged in a coupling algorithm. The different units
are controlled by conditional and iterative constructs and belong to algorithmic sequences called computational
branches. Inside a branch, the coupled independent programs are invoked as if they were subroutines of the branch
program. The main features of PALM are the dynamic launching of the coupled components, the full indepen-
dence of the components from the application algorithm, the parallel data exchanges with redistribution, and the
separation of the physics from the algebraic manipulations performed by the PALM algebra toolbox. PALM mul-
tiphysics applications include oceanography, climate modeling, computational fluid dynamics, combustor cooling
system optimization, and hydrology (OpenPALM, 2012).

PETSc. The Portable Extensible Toolkit for Scientific computing (PETSc) (Balay et al., 1997, 2012) incorporates
generic parallel programming primitives, matrix and vector interfaces, and solvers for linear, nonlinear, and tran-
sient problems. PETSc emphasizes ease of experimentation so that every component has a plug-in architecture by
which the user can provide first-class implementations. The strong encapsulation in this design facilitates runtime
composition of hierarchical methods for coupled problems. Several relatively recent components have substantially
improved composability for multiphysics and multilevel methods (Smith et al., 2012; Brown et al., 2012; Brune
et al., 2012). DMComposite, a distribution manager for coupled problems, handles the algebraic aspects of “glu-
ing” together function spaces, decomposing them for residual evaluation, and setting up matrices to act on those
coupled function spaces. DMComposite contains support for the Nestmatrix format, which stores the submatrix
associated with each physics component independently. A common matrix assembly interface is available, such
that individual physics modules can assemble parts of global matrices without needing global knowledge or spe-
cializing on matrix format (Nest or monolithic). The FieldSplit preconditioner solves linear block systems

55



4 MULTIPHYSICS SOFTWARE

using either block relaxation or approximate block factorization (as in “physics-based” preconditioners for stiff
waves (Knoll et al., 2003) or block preconditioners for incompressible flow (Elman et al., 2008)); FieldSplit
can be nested inside other preconditioners, including geometric or algebraic multigrid, with construction of the
hierarchy and other algorithmic choices exposed as runtime options. Recent enhancements to the TS component
support IMEX schemes such as introduced in Section 3.2.2. Multiphysics applications using these capabilities in-
clude lithosphere dynamics (Aagaard et al., 2012), subduction and mantle convection (Katz et al., 2007; May and
Moresi, 2008; Katz et al., 2006), ice sheet dynamics (Katz and Worster, 2010; Tautges et al., 2011c), subsurface
reactive flow (Lichtner et al., 2010), tokamak fusion (McCourt et al., 2012; Cary et al., 2009; Hakim et al., 2012;
Cary et al., 2011), mesoscale materials modeling (Wang et al., 2011b), and power networks (Abhyankar, 2011).

SUNDIALS. SUNDIALS (Woodward et al., 2012) is a suite of advanced computational codes for solving large-
scale problems that can be modeled as a system of nonlinear algebraic equations, or as initial-value problems in
ordinary differential or differential-algebraic equations. The current packages are KINSOL, CVODES, and IDAS,
respectively. CVODE and IDA are based on linear multistep methods for time-dependent problems and include
forward and adjoint methods for carrying out first-order sensitivity analysis with respect to model parameters
or initial conditions. ARKODE (Reynolds, 2012) is a package in development for SUNDIALS that focuses on
the multiple-time-scale nature of multiphysics simulations. To this end, ARKODE provides high-order adaptive
time integration methods for fully implicit, fully explicit and mixed implicit-explicit problems, as introduced in
Section 3.2.2. Since multiple-time-scale problems may often be split into separate components corresponding to
fast and slow scales (e.g. variables, equations, or even individual terms within equations), mixed implicit-explicit
solvers may apply the appropriate integrator to each component. Based on the family of additive Runge Kutta
methods (Ascher et al., 1997; Kennedy and Carpenter, 2003), the integrators in ARKODE allow a highly accurate
and stable coupling between these split components, along with robust error estimation and time adaptivity control
(Gustafsson, 1991, 1994; Söderlind, 1998, 2003). For problems that include an implicit component, SUNDIALS,
including the new ARKODE package, employs a full or modified inexact Newton method along with interfaces
for dense, banded and Krylov iterative linear solvers. These iterative solvers may in turn employ a user-supplied
preconditioner (often provided by a separate solver) to accelerate convergence and scalability of the method. All
operations performed in SUNDIALS, except the dense and banded linear solvers, utilize a data-structure neutral
model for algorithm construction, allowing their use from within a wide array of software frameworks.

Trilinos. Trilinos (Heroux et al., 2005, 2012) incorporates algorithms and enabling technologies within an object-
oriented software framework for the solution of large-scale multiphysics problems. A unique design feature of
Trilinos is its focus on stand-alone, light-weight packages for scalable linear algebra, linear and eigen solvers,
nonlinear analysis tools (nonlinear solvers, optimization, stability, bifurcation, uncertainty quantification), I/O,
discretizations, meshing, geometry, and load balancing. A key multiphysics capability is Thyra, an abstract op-
erator/vector layer that can be used to build composite or blocked systems with contributions from different ap-
plication codes. These block operators can be passed to Trilinos solvers, such as the NOX nonlinear solver for
applications requiring Newton-based algorithms. Leveraging the blocked operator approach, the Teko package
can be used to construct block-based and physics-based preconditioners. This capability has been demonstrated
on CFD/MHD systems (Shadid et al., 2010). Additional multiphysics-related support includes Moertel (Gee and
Hansen, 2012), which supplies capabilities for nonconforming mesh tying and contact formulations in two and
three dimensions using mortar methods, and Phalanx (Pawlowski, 2012), which provides a local field evaluation
kernel that decomposes a complex problem into a number of simpler problems with managed dependencies (Notz
et al., 2012). Multiphysics applications using Trilinos include climate modeling, reactor fuel performance mod-
eling (Hansen, 2011), and Charon, which has been used to model magnetohydrodynamics (Shadid et al., 2010),
multiphase chemically reacting flows (Musson et al., 2009), and semiconductor drift diffusion modeling (Lin et al.,
2009).

Uintah. A good example of a production-strength multiphysics framework is Uintah (Parker, 2006; Parker et al.,
2006), a set of software components and libraries that facilitate the solution of partial differential equations on
structured adaptive mesh refinement grids using hundreds to thousands of processors (Luitjens et al., 2008). Uin-
tah employs an abstract task graph representation to describe computation and communication. It can integrate
multiple simulation components, analyze the dependencies and communication patterns between them, and effi-
ciently execute the resulting multiphysics simulation. The underlying methods inside Uintah are a combination
of standard fluid-flow methods and material point (particle) methods. Uintah was developed within the Center for
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Simulation of Accidental Fires and Explosions (Pershing et al., 2010) to solve reacting fluid-structure problems
involving large deformations and fragmentation.

waLBerla. The Widely Applicable Lattice-Boltzmann from Erlangen (waLBerla) (Feichtinger et al., 2011) is
a massively parallel framework for simulating multiphase flows based on the lattice-Boltzmann method. The
flow simulator can be coupled to a rigid body dynamics solver (PE, physics engine) (Iglberger and Rüde, 2011)
using an explicit fluid-structure interaction technique, with the goal of, for example, simulating particulate flows
or suspensions as they appear in many technical, environmental, or biophysical applications. A highlight of the
package is its careful performance-optimized design and good parallel scalability that has been demonstrated on
more than 250,000 processor cores (Götz et al., 2010). Additionally, the mesoscopic computational fluid dynamics
method can be coupled to finite-element-based PDE solvers in the waLBerla package.

4.2 Challenges in Multiphysics Software Design
While current multiphysics applications (see Section 2.1) and software (see Section 4.1) have already demonstrated
substantial advances, numerous software engineering challenges remain, providing opportunities for long-term re-
search focusing on stable, accurate, robust, efficient, and scalable multiphysics algorithms, with easy extensibility
for application-specific customization. In Sections 4.2.1 through 4.2.6 we discuss challenges in multiphysics soft-
ware design and suggest some best practices. Related issues are discussed by Post and Kendall (2004) and Miller
et al. (2004).

4.2.1 Enabling introduction of new models, algorithms, and data structures

It is particularly important for multiphysics software to attempt to balance the competing goals of interface stability
and software reuse with the ability to innovate algorithmically and develop new physical models. Interface stability
is important for several reasons:
• Decoupling the software development process, which a single person or single team cannot manage alone;
• Enabling reuse of model components for different kinds of analysis, for example, transient, steady-state,

sensitivity analysis, optimization, and uncertainty quantification;
• Enabling use of each “physics module” for stand-alone analysis and in various coupled configurations.

A related point is the need over time to re-examine interfaces in light of recent advances in mathematics and pro-
gramming models. For example, providing (possibly optional) access to additional information (e.g., derivatives,
not just fields, or other internal state) can inform library design for both couplers and solvers.

We discuss two important aspects of software design that promote interface stability and facilitate experimen-
tation with existing approaches as well as the introduction of new capabilities over the lifetimes of multiphysics
codes:

1. Library interfaces that are independent of physical processes and separate from choices of algorithms and
data structures, and

2. Abstractions for mathematical objects such as vectors and matrices, which enable dealing with composite
operators and changes in architecture.

Library interfaces. An important provision for extensibility is the separation of logically (or mathematically)
distinct concerns into modules with library interfaces. Because a library cannot make assumptions about program
startup or the use of state, it cannot seize control of “main” or assume MPI_COMM_WORLD; see Section 4.2.6 for
additional software engineering issues. When preparing an application for use in a multiphysics context, a clear
division should be made between the software components responsible for discretization of a physical model and
the analysis being performed with the discrete model. The single-physics “analysis” component will typically be
bypassed in a multiphysics context, so the interfaces between these components should be thought out carefully,
especially with respect to ownership and hidden state.

A key concept is that any state data must be explicitly exchanged through an interface to maintain consistency;
examples include common algebraic interfaces, such as vector and matrix classes available via PETSc and Trili-
nos. This approach may be used to specify inhomogeneous boundary conditions that would otherwise often be
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computed in a preprocessing stage. It is usually not critical which classes are used by a coupling interface, espe-
cially for vectors, because the memory backing a vector from one package can be rewrapped as a vector from a
different package without a copy (though dynamic adaptivity and interactions with fast processors such as graphics
processing units (GPUs) can cause complications).

Interfaces that are independent of physical process. Whenever possible, interfaces should be independent of the
physical process and discretization in use; otherwise, they will prevent reuse of analysis/solver components and be
brittle when different physical processes or discretizations are employed. It is still important, however, to provide
enough “hooks” to implement the desired algorithms for a specific problem and to avoid excessive overhead (in
terms of memory or time).

A representative example is the choice of whether to expose a semi-discrete or fully discrete interface for time
integration. In the former case, one assumes that a method-of-lines approach is used and writes Btu “ fpuq, as
given in coupled form by Equations (2a–2b), where the vector u contains all state variables. If implicit methods are
to be used, the semi-discrete form may also provide derivative information, such as approximations to Bf{Bu and
preconditioners. Responsibility for timestepping is relinquished by the physics module, enabling reuse of software
for time integration schemes, including steady-state solvers and sensitivity or stability analysis methods, without
modification or special support by the physics module. This approach is preferable from a software modularity
perspective, but it has limitations—namely, little or no support for dynamically adaptive meshes and smaller, stable
timesteps (for some transport discretizations). For multiphysics simulation where software reuse and algorithmic
flexibility in coupling and analysis algorithms are often necessary, the semi-discrete form is usually desirable.

Interfaces that are separate from choices of algorithms and data structures. Different data structures are
better suited to different solution strategies, especially when implicit solvers are used as part of a multiphysics
simulation. The best solution strategy is often not known a priori or depends on the problem and computer
architecture. For example, coupled problems can be solved by using monolithic methods involving a single sparse
matrix representing all components or by split methods in which each component manages its own linear algebra. A
common hybrid approach is to adopt a global Newton-Krylov method (see Section 3.1), with the preconditioners
involving splitting and perhaps approximate Schur complements. This case requires the action of operators on
the global system, but most of the work is done preconditioning single-physics and auxiliary (e.g., approximate
Schur complement) systems. When multigrid methods are used, the splitting can be performed at the top level
with independent single-physics multigrid, or multigrid can be applied directly to the global problem (often with
splitting used to define the smoother) (Gee et al., 2011; Barker and Cai, 2010; Hron and Turek, 2006; Adams,
2004; Elman et al., 2008).

In the mathematical (algebraic) description of the solver, the distinction between these approaches involves a
different order of operations for coarsening and extracting submatrices. Monolithic domain decomposition meth-
ods use different submatrices (e.g., corresponding to overlapping Dirichlet problems, non-overlapping Neumann
problems, or combinations (Smith et al., 1996; Toselli and Widlund, 2005; Mandel et al., 2005; Dohrmann and
Widlund, 2010)). When a suitable preconditioning algorithm is used, the data structures should exploit single-
physics structure such as a constant block size or symmetry for memory and floating-point performance. While
hierarchical or nested matrix formats generally require more messages to perform an operation with top-level se-
mantics, they can also be more latency tolerant and involve operations on smaller communicators, which may be
beneficial for performance.

High-level abstractions. As discussed above and in Section 4.1.3, mathematical abstractions from the fields
of linear and nonlinear solution methods are effective software design elements for multiphysics. Also proving
useful is template-based generic programming (Pawlowski et al., 2012a,b) and related work on even higher-level
abstractions, including variational forms available via FEniCS (Logg et al., 2012), Sundance (Long et al., 2010),
and COMSOL (2012). Such abstractions enable higher-level library components (such as linear, nonlinear, and
timestepping solvers) to be written as operations on mathematical objects (such as vectors and matrices), thereby
minimizing the cost of developing software for each new architecture (and its variations) and enabling composite
operators.

Dealing with changes in architecture. The end of frequency scaling for microprocessors is forcing significant
changes in computer hardware to meet ever-increasing needs for performance. Some applications are exploring the
use of fast processors (for example, GPUs); in the future, all HPC applications will need to adapt to a range of new
architectures. Mathematical objects such as vectors and matrices enable specific implementations to be employed
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for underlying use of GPUs, OpenMP, and so forth. Also useful in this context are guided code generators (see, e.g.,
(Baumgartner et al., 2005)), where a mathematical representation is combined with a tool designed for particular
operations.

Composite operators. Particular to multiphysics coupling is the ability to build block composite operators that
aggregate physics applications for fully coupled solution techniques. For example, one could build a composite
abstract vector from two physics applications that each supply their own residual vector. Generic tools for building
composite block operations take as input abstract operators and produce new abstract operators that can be handed
off to solvers.

Also useful is the approach of combining kernels of code to form terms and equations that contribute to the
overall multiphysics system residual. These kernels also can supply an approximate Jacobian contribution to be
assembled by the coordinating framework or library to be used for preconditioning operations. For example, in
MOOSE, these kernels are usually composed of volume and surface integral terms from a variational form of a
governing equation, written in residual form.

Another layer of abstraction is the interface to an application that a multiphysics driver requires to support
various coupling techniques. Such interfaces can be difficult to define because of the need for balancing design
requirements, including flexibility to support solution algorithm requirements, efficiency, and ease of integration.
To this end, LIME (Pawlowski et al., 2011) (see Section 4.1.3) provides a high-level domain model for multiphysics
coupling, which supports the CASL project (Kothe et al., 2012). This domain model describes the analysis in terms
of residuals,

Fip 9ui, ui, tpi,lu, tzi,ku, tq “ 0,

transfer operators,
zi,k “ ri,kptumu, tpm,nuq,

and responses,
gjpt 9uiu, tuiu, tzi,ku, tpm,nu, tq “ 0.

Here, Fi is the residual vector for physics i; ui is the vector of unknowns corresponding to physics i; 9ui “ Bu{Bt
is the vector of derivatives of unknowns corresponding to physics i with respect to time; tpi,lu is the set of all
independent parameters for physics i; tzi,ku is the set of coupling parameters for physics i; and ri,k is the trans-
fer function k for physics i, where physics i has k “ 1...nik transfer functions. A complete implementation of
the domain model above should support all multiphysics coupling algorithms, ranging from loose to tight cou-
pling. Based on the model, if less information is available from an application, the above interface is contracted,
thereby limiting the available application coupling algorithms. Five forms of reduced domain models are identi-
fied (Pawlowski et al., 2011): the coupling elimination model p Ñ gppq, state elimination model p Ñ uppq, fully
implicit timestep model fpu, pq “ 0, transient explicitly defined ODE model 9u “ fpu, p, tq, and transient fully
implicit DAE model fp 9u, u, p, tq “ 0.

4.2.2 Sharing methods and codes among application fields

One of the primary challenges with software development for multiphysics is sharing and integrating algorithms
across coupled applications. As codes are integrated into a multiphysics framework, each application may bring
in a number of required library dependencies. The reliance on such a large number of libraries can cause diffi-
culties, since software engineering standards and portability can vary dramatically from code to code. Unifying
or standardizing common software around libraries with exceptional software practices (domain-driven design,
object-oriented design, test-driven design, coverage testing, etc.) and portability will be critical from a mainte-
nance standpoint. Areas where sharing of tools and methods is important include meshing, solvers, data mapping,
visualization, I/O, interpolation/mortar methods, and coupling libraries.

The current practice is to develop common components that are released as a framework or library. Two
paths are typically followed. The first path is the monolithic Framework (Framework with a capital “F”), which
directs and controls all aspects of the problem, including memory management. This approach tends to allow
rapid development, since all code is written to concrete implementations and much of the needed utility code is
in place. However, the approach tends to lack flexibility because it forces applications to adopt the framework’s
data structures and algorithms. The current trend is to move away from monolithic frameworks, since multiphysics
coupling requires that applications “play well together”—they cannot insist on being in control of the overall
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coupled simulation. The second path is to develop frameworks that collaborate (framework with a lower case “f”).
These typically code to interfaces to allow for maximum flexibility. This approach allows users to provide their
own concrete implementations of data structures at the cost or being somewhat more complex. See the glossary
(page 78) for additional discussion.

Data layout. Developing data layout standards is a challenging problem. Optimal data structures can vary for
different applications and for different hardware architectures (especially in light of GPU and exascale efforts).
In addition, requirements for data structures for distributed computation can be vastly different from requirements
for structures for local computation. While supplying a common data structure or interface is convenient from the
standpoints of development and coupling, this approach can result in a compromise on performance—a tradeoff
among flexibility, portability, and efficiency. Moreover, the integration with legacy codes where little knowledge
or testing is in place may prohibit the adoption of new data structures.

Common infrastructure. From a software engineering standpoint, leveraging a common infrastructure for source
code management, build, and test environments is challenging for multiphysics integrated systems. Unifying all
application codes under a single build/test system can be difficult and time consuming. Further complexity is added
if the application must support stand-alone builds outside the coupling framework. This could lead to inefficient
resource allocation in maintaining multiple build systems. An example of a unifying build/test environment is the
CASL project (Kothe et al., 2012). The approach taken with CASL was that if an application was under active
development, then it was transitioned to natively use the build system and dependency tracking of the coupling
framework, thereby easing integration issues.

Commonality in physics operators. Another issue is how to exploit commonalities among different physics opera-
tors. For example, convection-dominated systems can appear in a number of fields. Sharing both the mathematical
methods and the software infrastructure for these types of problems can be difficult. An open research issue is how
to decompose the operators. Additionally, as the nature of one physics operator changes, how does this affect the
performance of the coupling and solution strategies? An example of leveraging similar operators is the Charon
code (Shadid et al., 2010) applied to both semiconductor device physics and magnetohydrodynamics. In this case,
both systems were used for convection dominated flows. Not only were the fully implicit solution strategies and
mesh database shared but also the stabilization algorithms.

4.2.3 Relating multiphysics spatial discretizations

Two general strategies are available for spatial integration within multiphysics applications, where the multiple
physics models each apply across the entire domain (Hansen and Owen, 2008; Dubcova et al., 2011). The first
strategy is based on the use of a single mesh that spans the entire domain. Each physics model is hosted in terms
of the basic operators supported on the mesh. The second strategy uses multiple meshes, in the extreme using
a unique mesh for each physical model present in the code. This strategy is common when multiple codes are
coupled; each code tends to use a mesh tailored to its requirements.

The use of a single mesh is straightforward in concept. However, this is almost always a compromise, since
each physical model rarely has similar refinement requirements at a given location in the domain. If a single mesh
is used, the mesh must be fine enough everywhere to support the most demanding physical model at that location.
Moreover, the developers of the composite application must agree on a meshing strategy that meets the quality
requirements and discretization assumptions of all concerned. On the other hand, if these issues can be overcome,
this approach has several advantages. First, a single mesh incurs no error in transferring (or interpolating) data be-
tween models, since they all are hosted on a single mesh. Second, a single mesh is easier to implement, decompose
for parallel execution, and load balance during a transient simulation.

The use of multiple meshes to host a multiphysics problem has nearly opposite considerations. Creating mul-
tiple meshes typically magnifies the cost, in person time, of running the application. In some cases, the problem
domain may be sufficiently complex that generation of a single mesh is so expensive that the use of multiple meshes
is not cost effective. In addition, as discussed in Section 3.2.1, care must be taken in communicating (transferring)
the data between meshes and models in order to avoid sacrificing the accuracy of the final result (Jiao and Heath,
2004a; Johnson et al., 2011).

One option aimed at maintaining the advantages for both approaches is a multimesh assembly strategy (Dub-
cova et al., 2011) to achieve the spatial diversity advantages of a multiple mesh approach without sacrificing the
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accuracy of the single mesh approach. For example, Hermes code (Solin et al., 2012) generates multiple hierar-
chically related meshes using a general version of the finite element method (FEM) known as hp-FEM, where
hp-FEM provides for general adaptation and high-order convergence across the composite multiphysics problem.
Each of these meshes hosts a physical model that is appropriately fine (in the hp sense) for desired accuracy of each
model. The composite multiphysics model is also refined to meet a global accuracy requirement. The hp-FEM
assembly process then integrates across the different models and meshes to provide a coupled solution without
using data transfer. Thus, neither data transfer error or multiphysics coupling error is present in this approach.

In those cases where the individual physics analysis components being linked have independent meshes and
internal data representations, a general remote procedure call approach must be taken. Keys to the success of this
approach are the abstractions used to define the mesh, solution parameters, and field information, defined over the
entities in the mesh. Since the mesh is a discrete representation of the domain of the simulation, it is also desirable
that the mesh entities maintain their relationship to the overall definition of the domain. Such relationships are
particularly important when adaptive mesh control methods are used and the overall definition of the domain is
a solid model as defined in a system for computer-aided design (CAD). The field information, which defines the
parameters in the mathematical equations being solved, is best defined in terms of tensor quantities defined over
the appropriate geometric entities. In cases where a high-level domain representation is used, the input parameters
(loads, material properties, and boundary conditions) can be defined as distributions over the geometric model
entities (O’Bara et al., 2002). As part of the discretization process, these fields are mapped onto the mesh. The
parameters that are solved for will be defined over the mesh and have known distributions as defined by the equation
discretization processes. Maintaining knowledge of the distribution information is key for being able to properly
map solution parameters between meshes in a multiphysics simulation.

The fundamental differences in representations used for structured and unstructured meshes indicate that the
abstractions best suited for interacting with them are different. In the case of structured meshes, the two key com-
ponents that must be addressed are the representation of the individual mesh blocks and the interactions between
those blocks. In all cases, a compact representation of the mesh blocks in terms of a limited number of spacing and
geometric mapping parameters is needed. The representation of the interactions between blocks varies strongly
among the various methods (matched mapped blocks, overlapping Cartesian blocks, cut cells, etc.); thus, a separate
abstraction tends to be used for each representation.

With unstructured meshes, topological entities from 0 to 3 dimensions, and the adjacencies of those entities
(Beall and Shephard, 1997; Remacle and Shephard, 2003), provide an ideal abstraction for defining the mesh as
well as maintaining the relationship of the mesh entities to the geometric domain that is typically defined as a
boundary representation. The various ITAPS iMesh implementations (Devine et al., 2009; Chand et al., 2008;
Ollivier-Gooch et al., 2010), and others, are based on such a topological abstraction of the mesh. Although it is
possible to base the representations used on only the specific mesh entities and adjacencies used in the linkage of
specific components, many implementations employ a complete representation in the sense that any of the desired
12 mesh adjacencies can be determined in O(1) time (i.e., are not a function of the number of mesh entities) (Beall
and Shephard, 1997; Remacle and Shephard, 2003; Seol and Shephard, 2006).

The parallel execution of multiphysics solution transfer requires the extension of the mesh representations
that maintain appropriate linkages between the entities in the mesh as they are distributed over the memories
of the parallel processors. With structured meshes, the mechanisms for doing this are a strong function of the
methods used to understand the interactions between the mesh blocks. For example, the parallel implementation of
overlapping mesh blocks will often have one or more individual mesh blocks on a process along with information
on the mesh blocks on other processes with which those blocks interact, whereas with a tree-based decomposition a
parallel tree representation might be used (e.g., a parallel octree). In the case of unstructured meshes, the common
method of parallel distribution employs mesh patches of neighboring elements defined such that the numbers of
mesh entities that share common boundaries with mesh entities on other processes areas small as possible. In this
case the key component of parallelization is the addition of copies of the common bounding mesh entities on all
neighboring processes with links between them (Seol and Shephard, 2006). A mechanism that can be employed
to potentially support efficient parallel solution transfer is to ghost mesh entities, and their field data, from one
process onto neighboring processes that happen to need that information to support solution transfer operations.
Since only one process is allowed to change the field data, specific care must be applied to ghosted information to
be sure it is up to date on any process that will be using it.
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4.2.4 Timestep control

Selection of an appropriate timestep for accuracy in a multiphysics calculation can be challenging. Software fea-
tures with utility for multiphysics calculations span the needs of uniphysics codes, such as robust capabilities for
checkpoint and restart and options for timestep control (e.g., manual, programmed, semi-automatic, and automatic
timestep selection). When one adds multiple physics models, perhaps in multiple loosely linked modules or sep-
arate codes, timestep control across the aggregate application can become very involved. For example, in fission
reactor fuel performance simulations, introduced in Section 2.1.2, the timescales of a macroscale structural me-
chanics model and a coupled mesoscale material model differ by over six orders of magnitude (Tonks et al., 2010).
The mesoscale timescale cannot be stepped over, since the evolution of the material properties definitely affects the
macroscale simulation. Taking picosecond-size timesteps is not practical for a fuel performance application. Thus
one may need to use high-order time integration to support larger mesoscale timesteps, along with subcycling the
mesoscale physics. In general, robust and accurate approaches to handle coupled problems with this level of time
disparity are still being sought.

In a composite application, one might consider that a timestep is composed of three phases: initializing each
package/module in preparation of taking the step, taking the timestep, and then finalizing the step. With multi-
ple modules, the second phase might entail appreciable subiteration between modules, data and results transfer,
internal model state updates, and so forth. The third phase includes checking result consistency across the mod-
ules, convergence behavior, error metrics, module intercommunication. The “failure” of a timestep might indicate
the inability of subiteration between closely linked modules to converge, or some other error condition. In this
case, logic would exist to reduce the timestep or otherwise recover from the error and retake the step. Related
algorithmic issues are discussed in Section 3.2.2.

Unfortunately, automatic timestep selection is not robust for general multiphysics simulations and requires
tuning for each problem class of interest. Analyst intuition and experience lead to a good understanding of the
dynamical timescale of the problem of interest and are valuable in formulating effective approaches and “tuning”
them for the application. This observation leads to one of the more effective timestep selection approaches. It
is often effective to provide a general interface to a multiphysics code for the manual specification of a timestep
history curve that the code should follow, in conjunction with providing residual information as postexecution
feedback to the analyst. The analysis can then tune the timestep strategy to provide the desired accuracy and
overall simulation behavior, given a few trial simulations.

4.2.5 Achieving performance

While performance is often a major issue in computational science codes, few applications have a quantitative
estimate of the achievable performance; hence, they do not know whether the code is using the computing system
efficiently. Gaining this understanding is important in judging the impact of different implementation choices and,
in particular, the performance tradeoffs with different approaches to connecting multiphysics components together.

Achieving this level of understanding requires constructing a performance model good enough to provide an
upper bound on performance. Such models are often a combination of instruction, memory reference, and floating-
point performance and can identify the critical performance limiting resource (e.g., (Anderson et al., 1999)). The
“roofline” model, which simply looks at the performance limits due to a number of constraints (each contributing
a line to the “roofline”), is a recent representation of this idea.

4.2.6 Software engineering issues for multiphysics integration

Previous sections have discussed some design issues for introducing new models and algorithms into multiphysics
applications. In preparing to incorporate an application into a multiphysics environment, a number of issues must
be addressed; the following simple suggestions can ease the integration process.
• Program startup: A general multiphysics library must not make assumptions about startup. It cannot declare

the main routine, as this will most likely be declared by the driver or coupling framework. Applications
expected to be used in multiphysics coupling should be written as a library; a stand-alone version of the
application can simply wrap a driver (containing main) around the library. In addition, applications should
not expect to be able to directly parse input from the command line; multiple codes might interpret the same
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command-line argument for different purposes. Each application code should define an interface for accept-
ing specific input parameters. The coordinating software (framework or library) can parse the command line
and hand off specific data to each application.

• MPI communicators: Each application should accept an MPI communicator during startup through an in-
terface. An application code should never directly code to MPI_COMM_WORLD. At startup a common
multiphysics parallel decomposition pattern is to hand off blocks of processes (i.e., a subcommunicator) to
each application. Creating a communicator on the fly by using MPI_COMM_WORLD inside an application
will not work and will hang the coupled program.

• Global scoping: The naming of macros, variables, and functions in a code must be protected either by
namespacing or by prefixing. In our experience, almost every code that did not take care to apply such
protections and polluted the global namespace required extensive refactoring because of collisions with other
applications.

• Third-party library dependencies: Source code for third-party libraries should not be included in an applica-
tion. If multiple coupled applications required the same third-party library and if the library were included
with each, multiple instantiations would be present. While some compilers can link in this circumstance,
others fail with an error if duplicates are present. Additional complexity arises if coupled application codes
require different versions of the same library.

• Output support: All output for an application code should be allowed to be redirected to its own os-
treams/files. If two coupled applications are running concurrently and both dump output to the screen, the
output from the applications will be mixed together, making the output unreadable.

• Separation of algorithms from application physics: When preparing an application for use in a multiphysics
context, a clear division should be made between the software components responsible for discretization of
a physical model and the analysis being performed with the discrete model; Section 4.2.1 discusses further
details.

• Level of granularity: The extent to which data is exposed to the coupling framework will affect the choice in
solution algorithms that can be applied to the coupled system; see Section 3.1.2. A code that cannot provide
a residual or even expose a solution vector will have to be run as a black box, limiting couplings to nonlinear
block Gauss-Seidel (see Algorithm 1) or nonlinear block Jacobi. If a residual can be supplied, then Jacobian-
free Newton-Krylov methods can be employed (see Algorithm 3). If sensitivity information can be supplied,
various preconditioning strategies become available. Viable coupling strategies can be severely restricted by
the design of application components.

• Memory management: Low-level memory management and the handling of pointers are critical to robust
multiphysics coupled codes. As data is transferred between applications, strong memory management tools
such as reference counted smart pointers (Alexandrescu, 2001) will reduce memory issues and debugging
efforts.

• Error handling: Safe error-handling policies are needed for a robust coupling capability. If components
are aborting on certain threads/processes, other threads/processes of the coupled application may hang.
Strong error-handling strategies and safe ways to shut down individual application components are needed.
Exception-safe code is critical.

4.3 Difficulties in Collaborative Multiphysics Software
Building on the previous discussion of challenges in multiphysics software design, we now address practical diffi-
culties in collaborative multiphysics software.

4.3.1 Maintenance of a stable and efficient development environment

Managing a multiphysics capability composed of individual application codes from multiple institutions places
a number of additional hurdles on coupling infrastructure and application developers. A central issue is how to
maintain a stable and efficient development environment in the face of distributed development teams, who may
be working under intellectual property, export control, and cybersecurity constraints.

Since individual application codes are under active development at various institutions, procedures must be in
place for synchronizing changes to the multiphysics infrastructure. A common procedure is to wait for official
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releases of each application and then incorporate the changes into the multiphysics infrastructure. Depending on
how frequently releases are made, updates based on application release cycles can allow for large windows over
which bugs can be introduced and compound. This circumstance makes updating applications difficult and time
consuming, since developers must track down when and how the codes have changed.

A more recent software engineering approach is to use continuous integration (CI), where an automated sys-
tem continuously checks for “commits” to individual application codes. When a new commit is found, the code is
automatically downloaded and tested against the coupling infrastructure. This approach allows an automatic doc-
umentation as to which commit breaks a code. Automated emails can be sent to the developer owning the commit.
Many bugs can be caught and corrected the day they are introduced, leading to a much more efficient and stable
development environment. Such a system requires a rigorous testing system as well as a disciplined development
team willing to maintain 100% passing tests so that new failures are not masked by earlier failures.

An advantage of using an automated server for CI is in handling complexities associated with intellectual prop-
erty and export control. For example, application developers may not be allowed to access the complete coupled
code base, yet changes by any application developer may impact the coupled code base. An automated testing
system is the first line of defense for notifying developers that their change broke a downstream dependency in
code that they cannot access. Cybersecurity concerns can be addressed by locating the CI server outside firewalls.

A recent success story for the CI model is the CASL Nuclear Energy Hub (Kothe et al., 2012). The consor-
tium is composed of 10 core institutions plus an additional 11 contributing partners, each developing their own
application codes that are unified under a virtual reactor environment. Because of intellectual property constraints,
application developers across the institutions are not allowed access to all application modules. Instead, a three-
tiered approach is taken to protect the code base. The first line of defense is a precommit testing script that runs a
fast set of unit tests on all codes to which a developer has access. Once this local testing is complete, the commits
are pushed to the appropriate institutional repositories. A CI server for the multiphysics infrastructure polls the
institutional application repositories every few minutes for changes and will launch a comprehensive test suite that
includes all CASL partner codes whenever changes are detected. Results are submitted to a dashboard, and devel-
opers are notified by email if their commit introduced a failure. The execution time for tests run for precommit and
CI testing is strictly limited so that users can obtain quick feedback that does not impede development efforts. The
final tier of defense is a more comprehensive nightly test suite consisting of all precommit/CI tests plus any tests
whose execution time is longer than appropriate for CI testing. This is run overnight and takes on the order of hours
to complete. This testing can include features such as memory leak testing (see, e.g., valgrind). The procedures
developed for CASL are an extension of the Trilinos build and test system.

4.3.2 Investment in software tools and techniques

A significant issue that is exacerbated by multiphysics coupling is the lack of investment in software engineering
tools and strong software quality practices across application development teams. The use of software engineer-
ing tools (integrated development environments, version control, compilers, build/test and reporting tools) varies
widely across institutions and research groups. Multiphysics additionally burdens the performance of the tools
because of scaling from a single application to multiple, linked applications. For example, dependency tracking
can cause unacceptable configure and build times if n2 complexities exist in the configure system. Such issues
might not be noticed in a single application where a smaller number of files and/or dependencies are present.

The lack of adoption of good software engineering tools impacts the development cycle of applications. One
issue is that the tool might not be portable to all platforms of interest. Another issue is that a tool may not be funded
or supported in the future, leaving users in a difficult position. Investments in open source software engineering
tools should be a priority to support HPC applications. An example of a successful project along these lines is the
CMake build system (Kitware, 2011). Tools like this are critical, not only for single applications, but especially
for multiphysics coupled applications.

Poor software engineering practices can make integration of application components difficult. Some appli-
cations may have been developed to run only on a specific system or with a specific compiler with nonstandard
conforming extensions. Porting to new platforms can be difficult. Memory management, error handling, and
global scoping (see Section 4.2.6) can all be controlled with proper software coding guidelines and toolsets (see,
e.g., (Bartlett, 2010)).

Multiphysics coupling invariably requires changes to each application code. The stronger the testing in place,
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the easier refactoring is. Fragile code bases with minimal testing often result in “code stagnation” as developers
are wary of making large changes necessary for integration. The adoption of test-driven development and agile
development strategies can address these issues.

4.3.3 Adoption of third-party software

Despite the many advantages of code reuse and success stories of the sort presented in Section 4.1.3, some appli-
cation developers resist the adoption of third-party software. As introduced in Section 2.2.2, there are technical,
programmatic, and personal reasons for this resistance. One is the risk, or perceived risk, of not being in control of
the software that is being leveraged, or its long-term availability. Concerns include the long-term maintenance of
the third-party software, the viability of the organization producing it, and the ability to influence the development
of the software to enhance or maintain its relevance to the application being developed. Concerns may also exist
about the “return on investment” of time in learning the software; it is not always clear that the time invested in
learning the third-party tools will be recouped by increased development efficiency and by reuse in the longer term.
Along these lines are concerns about the “opportunity cost,” or perceived cost, of using such tools. Deciding on a
particular third-party capability may be hampered by concerns about making a poor selection, particularly if mul-
tiple third-party tools appear to meet the user’s requirements. The difficulty in comparing and assessing complex,
high-consequence products can result in decision paralysis.

Another concern is the portability of third-party software. The software must span the hardware of interest to
the user and must be both supported and tested on these platforms as part of the long-term maintenance strategy.

Another practical consideration is the quality of the third-party software. What processes will be used by the
user and supplier to verify and validate the code base being leveraged? If the user makes changes to the third-party
software, how do these changes get propagated back to the main repository? How are intellectual property and
export control issues addressed?

Emotional considerations may also be a factor, such as the resistance to use software that is “not invented here.”
Members of the user’s development team might feel security in developing their internal code and insecurity in
using third-party capability. Indeed, a developer’s self-worth may become intertwined with the application over
time.

4.3.4 Licensing

Additional impediments to using common multiphysics software are (1) the cost of commercial software, espe-
cially on machines with large numbers of nodes, and (2) unclear or unacceptable licensing terms for some open
source software. Publicly available open source software is particularly attractive, and it is consistent with the long
tradition within the HPC community. Not only does open source software remove a cost and inconvenience barrier,
but it also allows users to determine exactly what the software does, promotes evolution according to user needs,
encourages porting to many platforms, and ensures long-term availability of widely used software. It is important
to use well-known licenses such as the Berkeley Software Distribution (BSD), which confer broad rights to users.
Licenses such as the GNU General Public License (GPL), which restrict what users can do with code they have
written, are unacceptable to many users, and unfamiliar licenses, regardless of terms, often require lengthy legal
consultations at commercial companies and government laboratories.
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5 Opportunities in Multiphysics Simulation Research
The preceding three sections have highlighted representative multiphysics applications, analyzed the structure of
typical multiphysics systems algebraically, and explored implications for their implementation in software. Here
we present a number of opportunities arising from these discussions that are ripe for research or development.
Some of these opportunities call primarily for leveraging known concepts in new contexts. Some await break-
throughs. The prospect of predicting the behavior of complex systems combining multiple physical phenomena
is one of the main motivations for extreme computing (Brown et al., 2010; Rosner et al., 2010), so adapting the
uniphysics components to architectural and scaling stresses is paramount. Since the number of such components
may often be just two and rarely exceeds three to five in practice, issues of scaling flops, bytes, or transfers due
to the multiphysics combination introduce only a modest factor beyond the orders of magnitude often called for
in scaling up the components. However, difficulties still lurk in the combination. We recall the admonition of
physicist A. S. Eddington (2012):

“We often think that when we have completed our study of one we know all about two, because
‘two’ is ‘one and one.’ We forget that we still have to make a study of ‘and.’ ”

After reviewing issues in forthcoming extreme computing environments in Section 5.1, we discuss in Sec-
tion 5.2 concepts that are ripe for leveraging in multiphysics contexts, followed in Section 5.3 by broader multi-
physics opportunities that require new breakthroughs in research and development.

5.1 Exascale Issues
For the most challenging multiphysics simulations, systems capable of sustaining an exaflop (1018 floating-point
operations per second) or more will be necessary. But exascale systems are unlikely to look like current systems,
even petascale systems. Very roughly, the power consumption of current peak petascale systems (meaning a system
with a peak performance of roughly a petaflop) is already around 7´10 megawatts. At an average cost of $1 million
per megawatt-year, just providing power for current leadership-scale systems is a major part of the operating cost.
For a sustained exascale system, computations must be about three orders of magnitude more efficient to keep
the power bill alone under $100 million per year. A more detailed analysis shows that data motion, whether it is
between processors and local memory or between different processors, is a major contributor to the power cost.
Consequently, successful programs on exascale machines may need to limit memory motion—current multiphysics
approaches that move data representations between different physics components may not be feasible on exascale
systems (Keyes, 2011; Dongarra et al., 2011).

Power consumption is also limiting the clock speeds of individual processor cores; in fact, since 2006, processor
clock speeds have been relatively stable and are not expected to increase much in the coming years. Consequently,
higher performance will require much greater degrees of parallelism. An exascale system may have 109 cores,
each of which runs at 1´ 2 GHz. Further, current dynamic random access memory (DRAM), or main memory, is
a major source of both cost and power consumption. Without a change in technology, an exascale system is likely
to have far less memory per core or per flop than is common today, where the rule of thumb is about 1 byte per
flop. A likely ratio for an exascale system is more likely 0.01 ´ 0.1 bytes per flop. Adapting to this will require
methods that are simultaneously more memory efficient (e.g., higher-order, compact schemes) and retain massive
amounts of concurrency (easiest in lower-order, noncompact schemes).

Furthermore, there is the issue of fault resilience. Some predictions about the likelihood of faults, based on
the increasing number of processors cores, significantly overpredicted the failure rate. The reason is that faults are
related more to the number of connections or parts than to the number of transistors. Thus, it has been possible to
keep the failure rate of systems designed as massively parallel computers low enough that simple checkpointing
strategies have been sufficient for applications. This may no longer be possible in an exascale system. While it
may be possible to keep the number of parts roughly the same, other issues, such as approaches to reduce power
consumption and increase memory size, may raise the probability of faults. Thus, applications may need to take a
more active role in being resilient to faults (a general solution is possible but would consume extra power and may
not be feasible).
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5.2 Concepts Ripe for Leveraging
We describe some concepts that seem ripe for leveraging from existing applications and frameworks in the cam-
paign to scale up uniphysics codes and to combine them.

5.2.1 Architecturally optimized, distributed, hierarchical data structures from solver packages

In coding for extreme architectures, there is much to learn from existing solver packages. Open source solvers
such as hypre (Falgout et al., 2011), PETSc (Balay et al., 2012), ScaLAPACK (Blackford et al., 1997), and Trili-
nos (Heroux et al., 2005) appear in inner loops in a vast variety of applications, have received attention from the
global community for years, and are among the earliest pieces of software to explore and be ported to new archi-
tectures. They have benefited from autotuning in their use of the memory hierarchy and multicore structure and
from sophisticated manipulation of tradeoffs in data transfers and in the use of local and global representations to
satisfy the demands of working at different points on the performance/programmability spectrum. Examples of
such issues include cache and register blocking, loop unrolling and jamming, coloring, message aggregation, and
communication-computation overlap. Some use the data structure implementations in such libraries directly for
customized ends; others call the solvers built upon them at a higher level. In high-end multiphysics applications
if each component controls a separate set of data structures, there may be little chance for strong performance at
extreme scale, because of the overwhelming electrical power and execution time costs of transfers in the inner
loops between different data structures. On the other hand, as discussed in Section 4.2, there is a benefit from
separation of concerns: if the solver is intermingled with the physics, it is difficult for innovations in either domain
to be introduced. A fairly commonly used interface between the physics and the solver is a call-back subroutine
such as PETSc’s FormFunction. Through this interface, PETSc provides state data, u, on a local data structure
(submesh or sublist) that includes data owned by the local process and data gathered from interacting processes
needed for the current step. The user locally evaluates the local piece of the residual or tendency function vector,
F puq, and returns it to the solver. The user code within FormFunction may be legacy or may be rewritten or
generated automatically from an abstract problem description language for optimal cache and register use.

5.2.2 High-accuracy interpolation

Multiphysics codes often require interpolation between continua represented on nonconforming meshes at inter-
faces or throughout bulk regions, or between different formulations, such as particles and fields. High-accuracy
multivariate interpolation is a well-studied problem, though high-performance implementations that make use of
existing data structures without creating extensive intermediate working sets may be too much to ask for in library
form. Nevertheless, multiphysics applications should not be limited by interpolation errors. In cases where the
discrete data structures are solution adaptive or track a dynamically evolving interface, it may be necessary to
preserve the underlying geometry of interface and query it directly to adapt the discretization.

5.2.3 Multiphysics as a form of adaptation

Multiple physical models often arise as a form of solution adaptivity, for instance, in atomistic-continuum models
of crack propagation as introduced in Section 2.1.4, in which a continuum description that would possess a mathe-
matical singularity at the crack tip is replaced with a more first-principles atomistic description. Such models may
fit the classic design paradigm of local nested h-type mesh refinement, as an abstraction. Instead of refining the
mesh in a subregion, one refines the model. Decades of experience with adaptive mesh refinement frameworks
such as BoxLib (Bell et al., 2012) may be useful in this context. They possess built-in features such as timestep
control, subcycling, and refluxing that may be leverageable in far more general contexts; see Section 3.2.2.

5.2.4 Applications of classical numerical analysis

Multiphysics coupling of components that are individually high-order in time are formally limited to first-order in
time for standard splittings into two sequential half-steps, though formal second-order temporal accuracy may be
achieved in a two-component problem by Strang splitting (Strang, 1968), which is equivalent to reading out the
states at the half-step of one of the component steps, or at a quarter-step overall. First- or second-order splitting
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can reduce the order of accuracy of the multiphysics integration below that of the components; and unless the
componentwise operators satisfy various commuting relationships, which would be rare apart from certain space
dimensional splittings in linear constant coefficient problems, this would be the end of the road. One solution is to
use Richardson extrapolation in time. Another approach is to use spectral deferred correction (see Section 3.2.2).
A third option is to go fully implicit with all of the components.

Often, slow convergence in a multiphysics iteration is due to the degree of coupling. In a loosely coupled
solution procedure, numerical effort to reduce the residual in one physics component may lead to an increase in
the residual of other components. Finding ways to improve convergence behavior, short of going fully implicit,
can reduce this inefficiency.

If going fully implicit, the coupled system may possess linear stiffness and/or “nonlinear stiffness” that is much
greater than any of the individual components. Ordinary, nonlinear globalization strategies, such as backtracking,
are designed to prevent stepwise increase in the residual; however, this strategy fails when increases in norm of the
nonlinear residual function need to rise in order to pass from one local minimum to another. Different globalization
criteria, such as pseudo-transient continuation (Kelley and Keyes, 1998), may be needed for cases where simple
globalizations fail.

5.2.5 Exploitation of additional concurrency

Hardware developed in the campaign for extreme computing has made flops relatively cheap and memory and
memory bandwidth more scarce than ever, while vastly expanding concurrency. This may have enormous im-
plications for multiphysics simulations. Time-parallel methods, e.g., parareal (Lions et al., 2001) are probably
contraindicated as a source of additional concurrency, since they store many additional copies of the state vector
a different time levels (essentially one new copy of global state per processor/thread engaged in the temporal di-
rection). Additional concurrently available flops may encourage physics and solver modules that store many fewer
intermediate common subexpressions and compute more on the fly.

Arithmetic intensity (roughly the ratio of flops to loads/stores required to execute an algorithm) is boosted for
formulations that increase the interaction between elements of a given state at each timestep. This is typically
the case for implicit methods, which may also be employed to reduce the number of timesteps relative to explicit
methods in many systems, where stability, and not accuracy, sets the timestep limits. Arithmetic intensity may also
be boosted for formulations that increase state (which has detrimental storage implications) but increase useful
flops faster—superlinearly in the size of the state. This may be true of many of the advanced formulations of
exascale simulations, in which the additional “state” is actually auxiliary to the physical state, such as sensitivities
in uncertain quantification problems or adjoints in optimization problems. Stochastic error analysis is perhaps
newly affordable.

5.2.6 Exploitation of “tricks” for implicit algorithms

Computations that are implicit often use a Jacobian-free Newton-Krylov algorithm (see Section 3.1.2), which
avoids formulation and storage of a Jacobian matrix (which can otherwise contribute to the dominant-sized and
least reusable object in the solver) and relies on evaluation of many residual functions, F puq for different states u
presented by the Krylov method, as given by Equation (9). Normally, a second evaluation at a perturbed argument
F pu ` iσvq is necessary to estimate by finite differences F 1puqv, in order to generate the next Krylov vector. It
is, however, possible for many functions F to evaluate F puq and F 1puqv simultaneously from real and imaginary
parts of an overloaded complex-valued residual evaluation. Implicit capability can also be employed to capture
stationary periodic behavior, for which we expect upt ` T q “ uptq, in any transient model with a black-box
propagator, upt ` τq “ P puptq, τq. One can apply Newton’s method directly to the fixed point F puq ” u ´
P pu, T q “ 0.

5.2.7 Provision of special hardware

The extra transistors on leading-edge chips may be dedicated to functions that are not used often but significantly
reduce the latency of other operations they replace in hardware. One example of such a “luxury” may be random
number hardware, which would be useful for multiphysics models that include stochastic physics components or
stochastic forms of uncertainty quantification.
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5.2.8 Software maintenance best practices

Multiphysics simulation codes can be tested and maintained with reference to the tests and maintenance practices
of the uniphysics component codes; however, as discussed in Section 4, there may be subtleties. Manufactured
solutions used to verify the components, which assume that BF1

Bu2
“ 0 and BF2

Bu1
“ 0, should be generalized to

take into account the variation of the cross-components. A regression test suite for the multiphysics problem
should hierarchically combine the uniphysics regression tests, again to take into account the new cross-component
dependencies in the flow from inputs to outputs.

5.3 Required Breakthroughs
In contrast to the opportunities above, which should be straightforward developments of existing techniques in new
contexts, we describe here some concepts that seem to require new breakthroughs in mathematical understanding,
algorithmic development, or software design and implementation.

5.3.1 Formulation of objective functions useful for optimizing simulations

Excluding the human cost of programming and operating supercomputers, general figures of merit in assessing the
impact and efficiency of simulations may often take the form of “scientific impact per unit energy” or “scientific
impact per unit time.” Scientific impact is obviously hard to measure in absolute terms but may be represented
by a proxy such as accuracy. If the goal of the extreme-scale simulation is beyond the domain of original insight
and is related to the quality of prediction, then “accuracy per joule” is a reasonable desideratum. Like the Drake
equation of astronomy, this estimate can be factored into a number of ratios coming from more basic assumptions,
in this case from numerical analysis and computer architecture, for instance: accuracy per stencil evaluation, stencil
evaluations per flop, and flops per joule, which can be subfactored, in turn, given problem- and machine-specific
details. Each of these factors depends on myriad assumptions about smoothness, convergence rate, resources of
the memory system, and so forth. As difficult and subjective as it may be to define a good objective function to
assess scientific impact and efficiency, we cannot hope to optimize it without quantifying it.

5.3.2 Characterization of uncertainty

Each component in a multiphysics application needs to have an uncertainty characterization of its own in quanti-
ties of ultimate interest. These may not be the primitive variables of the simulation but functionals of components
of the state vector, such as the integral over a surface of a normal derivative of a field representing its flux. Un-
certainties that depend on quantities coming from other components, in the form of boundary conditions, interior
forcing terms, constituent laws, and so forth, must also be characterized. This characterization may be particularly
interesting for quantities of different types such as particles and fields. The best ways of quantifying uncertainty
for simulations of multiphysics processes whose models have nondeterministic aspects (e.g., bubble formation in
foams, surface tension effects, cracks) remain to be seen. In general (see, e.g., Section 3.5), one cannot ignore
cross-component effects in quantifying uncertainty, since uncertainties propagate across couplings, and there may
be cyclical effects. Consequently, multiphysics applications will need to have the ability to sample from the output
of individual physics components, and uncertainty quantification will need to become more intrusive.

5.3.3 Equidistribution and control of error

Mature uniphysics component codes come with error control mechanisms, such as variable-order, variable-size
timestepping, h-, p-, and r-type spatial refinement, particle generation and removal, and model substitutions,
which respond to error estimators, typically of a posteriori type (see, e.g., Section 3.4). However, multiphysics ap-
plications must evaluate the cost and benefit of refinement strategies in a much broader context. It is possible to be
deceived into spending nearly all of the execution resources in a component whose accuracy is already much better
than the limiting accuracy in the system, which could be due to a different component, or at some interface be-
tween components. Context-appropriate premiums must be placed on gross checks like integral conservation, and
consistency of representation of fluxes at boundaries. Of course, error requirements may sometimes be exceeded
when parameters are chosen with respect to some other criterion, like stability, which may be more stringent for
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a coupled system than for any of its components. These thresholds of limiting parameters should be identified
because they could trigger dynamic adaptations of the algorithms.

5.3.4 Dynamic characterization of cross-physics interaction strength

Though cross-coupling enters into performance efficiency considerations in subtle ways like arithmetic intensity,
which may be better for a coupled system than for its components, making the coupling effectively “free,” effi-
cient multiphysics algorithms will preferably allocate the extra work of enforcing tight coupling only where the
interaction is strong and will default to loose coupling where the interaction is weak, or sequential where it is
unidirectional. Algorithmic selection, which may be dynamic over the duration of the computation, therefore
requires dimensionless or relative measures of cross-variable sensitivities. Just as error estimators are required
to inform adaptive discretizations, some measure of interaction strengths between the components is required to
inform adaptive coupling tightness.

5.3.5 Reduction of data transfers

Multiphysics simulation, as an extreme-scale simulation, will generally execute on hardware on which the energy
costs of data transfers, between processor-memory units or within the memory hierarchy of a single unit, is at
a premium. Many new programming paradigms are under consideration for such hardware, which represents
the end of a successful era of correctness-portable, relatively performance-portable, MPI-based SIMD (Single
Instruction Multiple Data) code design. There is discussion of paradigms such as “moving data to code, rather
than moving code to data,” even though this cannot be perfectly realized for applications—like nearly all physical
world models—with all-to-all or even one-to-all data dependencies. Whatever successful paradigms are developed
for uniphysics problems may be vulnerable to high energy cost of transfers if the uniphysics codes are combined
in a black-box manner, since this normally requires the repackaging and redistribution of data. We expect that
significant efforts in codesign will be required in order to keep data transfer costs manageable in the multiphysics
applications for which extreme computing environments are built.

5.3.6 Relaxation of synchrony

Tomorrow’s extreme-scale computing systems will have less performance reliability than do their contemporary
counterparts for a number of reasons well documented in the International Exascale Software Roadmap (Dongarra
et al., 2011). Energy-efficient, low-voltage differentials between logical “0” and “1”, for instance, may mean
that some arithmetic operations may be corrupted by noise and need to be redone. Because of the decreasing
performance reliability, it will not be possible to load balance with sufficiently high precision for today’s SIMD
bulk-synchronous algorithms to run efficiently. Less-synchronous algorithms with work stealing will need to be de-
veloped within components and across components. Today we synchronize artifactually with too heavy a reliance
on nested loop structures, and far more frequently than is required for physically causally correct computations.
In many places, it should not be difficult to beat back to causal limits. However, asynchronous algorithms typ-
ically compromise robustness relative to strongly synchronous counterparts. Both programming paradigms and
mathematics will need to be revisited. For instance, global MPI_COMM_WORLD will be replaced with local com-
municators with the smallest required scope to allow greater independence of threads, allowing different physics
components to complement each other in cycle and resource scavenging without interference. Algorithmically,
data that is causally required but unavailable may often be predicted and the computations dependent on such data
rolled back if, when the data becomes available, it is determined that the output would be too sensitive a function
of the discrepancy between the actual and the predicted data. In practice, low-frequency components of the pre-
dicted data may be accurate, and high-frequency discrepancies may be demonstrably irrelevant because they are
rapidly decaying. There are numerous such opportunities for relaxation of artifactual synchronization or too strict
an observance of bona fide synchronization, both within and between components.

5.3.7 User-specified checkpointing

At a level of unreliability beyond individual operations, executing long-running multiphysics codes on extreme-
scale computing systems with many points of potential hardware and software failure will need user-specified

70



5 OPPORTUNITIES IN MULTIPHYSICS SIMULATION RESEARCH

checkpointing. Operating system checkpointing must be conservative and save complete program state, without
appreciation for the fact that much of the bulk of the computational state can be reproduced from a much smaller
physical state. For example, a Jacobian matrix does not need to be saved for restart since it can be computed from a
(typically much smaller) current state vector. Data related to multiphysics coupling may be reproducible from the
union of the uniphysics states. There is opportunity to specify minimum-size checkpoints for reproducible restarts
as a union of checkpoints from individual physics packages so that the overall simulation is robust. This may also
be good software discipline for debugging complex multiphysics codes on contemporary machines.

5.3.8 Combining continuum-based and discrete phenomena

Many multiphysics problems span scales from atomistic (or other discrete) phenomena to the continuum. The
coupling of discrete and continuous formulations transcends all scales of computation and remains a theoretical
challenge; see Section 3.3. To perform judiciously truncated computations in either the discrete or continuum-
based world requires quantification of their associated errors and the errors of coupling so that errors can be
“equidistributed” and no one phase, including the coupling, is driven too hard. There are several opportunities
to be investigated here, including how best to transfer state, fluxes, and forces between the formulations, how to
estimate and control errors incurred in the transfers, and how to develop a unified formulation, perhaps involving
penalties or discrete conservation principles.

5.3.9 Multiphysics software design

The time is ripe for the multiphysics community to extend the successful software approaches introduced in Sec-
tion 4, as well as to leverage the features of emerging computer architectures, so that new algorithms and ap-
proaches can be explored. Innovative next-generation multiphysics software has the power to transform computa-
tional science, with a goal of enabling fully predictive simulations.

5.3.10 Multiphysics performance models

The performance of many computational science applications has been dominated for many years by the cost of
moving data rather than raw floating-point rates. For a large multiphysics applications, data typically needs to be
moved between components; it may also need to be reorganized if the data structure details are different. These
factors raise numerous questions:
• What is the cost of moving data between components? If the cost is high, are there approaches that can

mitigate the overhead, such as multistep communications or other communication minimizing or avoiding
techniques?

• What is the overhead of translating between representations? Is it more efficient to translate or to select
a common representation (which may not be optimal for any individual component but is optimal for the
overall simulation)?

• In a parallel program, what is the impact on process placement? For example, should the different compo-
nents be laid out in compact sections on the parallel system or intermingled to reduce communication costs?
Is dynamic load balancing practical?

• What is the overhead of using library routines (particularly a sequence of routines) over using custom code?
Relatively simple performance models can be developed to address these questions. For example, models that

determine the number of compulsory cache misses can be used to determine an upper bound on performance and
are still sensitive to the parameters of the system’s hardware. Similarly, these performance models can be used to
help design and optimize the use of hybrid programming models, such as MPI with OpenMP.
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6 Insertion Paths for Algorithms and Software into Multiphysics Appli-
cations

As many of the challenges presented in the previous section are tackled, new algorithms and software designs
will be available for use in existing multiphysics applications. The next set of challenges will lie in how to incor-
porate these new technologies into simulations in ways that will minimize the implementation time and maximize
their effectiveness. The issues that arise involve both technical and nontechnical areas, and we examine consider-
ations from both of these viewpoints. We also present ideas for successfully incorporating new technologies into
multiphysics application areas.

6.1 Mechanisms
Before looking at factors that affect insertion of new technologies, we outline three common mechanisms for such
insertions.

6.1.1 Leveraging of interfaces

One successful insertion path is that of engineering current software to leverage interfaces. Software infrastructure
that encapsulates functionality in terms of well-defined interfaces is able to easily adopt new technologies by
swapping capabilities behind those interfaces; see Section 4.2. This design allows a new technology to “look” like
the old from the point of view of the application. In this framework, direct comparisons between the old and new
technologies can easily be made. In addition, well-defined interfaces often allow the adoption of external libraries,
in turn providing the ability to investigate the performance of many methods before choosing a final one for use.
Encapsulation of functionality behind good interfaces provides an effective way to transition between technologies
that adhere to those interfaces. As a result, more options are available to a given application.

We note that well-defined interfaces can sometimes prohibit extreme performance tuning. For mature technolo-
gies, where one technology shows a clear benefit, the code framework may be more closely tied to the technology
implementation in order to benefit more from efficiency gains. However, the tradeoff often means that interfacing
with any further new technologies is much more difficult.

6.1.2 Small, side effort

In many cases, a transition to a new technology starts with a small, side effort. Often this activity is a splinter from
a main, funded effort and is conducted by a student or junior staff member who can devote significant time to the
project. Within this effort new technologies can be tried in a specific branch or simplified code. If this proof-of-
principle effort proves successful, the technology can then be moved into the main code. The principal risk with
this mechanism is that since junior staff (typically, temporary or shorter term) are often the ones conducting most
of the work, the people who are most knowledgeable about the new technology may not be present after the initial
testing and use.

6.1.3 Full rewrites

An effective way to port new technologies into multiphysics applications is to fully redesign the software consid-
ering the demands of the existing multiphysics setting; unfortunately, this is also the most expensive in terms of
time required to begin conducting simulations. Additionally, there is no guarantee that for the present project a full
rewrite will produce significantly better results than will reusing the existing code. Also, with a full rewrite, it will
likely take longer to begin initial simulations.

Even so, fully rewriting software is the best approach if (1) the existing software is out of date by today’s
software engineering standards, (2) the mechanism for coupling this software to the multiphysics application is
fragile, and (3) someone is willing to pay for a full rewrite. By totally redesigning the technology with a mul-
tiphysics mindset, coupling and scalability issues related to data traffic can be addressed effectively. Also, the
software can be designed extensibly to take advantage of the most modern algorithms and libraries, as well as to
prepare for future evolutions; this approach will help delay any future rewrites and encourage incorporation of new
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technologies across the community by demonstrating a successful implementation. The value of this approach is
in the long-term viability of the multiphysics application achieved by designing it to adapt to existing and coming
software practices while still leveraging the knowledge present in the original code. Having the original designer
of the technology available is helpful in understanding the underlying mentality of the original design and ensuring
that the most effective aspects still appear in the rewrite. We further note that one cannot assume that the new code
is as correct as the original; therefore, a full verification is often required when a rewrite takes place.

6.2 Factors Affecting Successful Insertion Paths
Successful integration of new technologies into existing multiphysics (and often multidisciplinary) applications
depends on adequate funding, a solid collaboration among participants that is well supported by the home institu-
tions, new technologies meeting well-motivated needs, and software engineering that allows for flexibility. These
conditions are rarely all present simultaneously. Below we list some key considerations that have given rise to suc-
cessful integrations of new technology into simulation areas. Our intention is that when all the above conditions
are not present, participants can look at these areas as ways to make good progress.

6.2.1 Clear motivation

The most successful integrations of new technologies into existing simulation codes occur when the new technol-
ogy or enhancement is clearly needed. However, understanding the goals and hence needs of applications research
codes can sometimes be difficult. In addition, assessing the current and potential performance of the code and any
new technologies is not straightforward.

A typical research code is often used to analyze or simulate multiple and very different physical phenomena
over its lifetime. As a result, the goals of such codes are fluid, and identifying specific requirements can be
challenging.

When specific goals and needs are identified, however, a new factor comes into play: the determination of
whether a new technology can help the simulation code meet a goal. In order to address this question, performance
analyses are required. Multiphysics applications are often large and sometimes difficult to manage, making perfor-
mance analysis on multiphysics software complex. This complexity, in turn, can make it challenging to quantify
the computational goals of multiphysics applications (e.g., memory demands, data traffic, computational speed,
order of accuracy). One approach to conducting this analysis is to produce “skeleton codes” that allow for simpler
identification and classification of contributing costs. These skeleton codes have the same semantic structure as
the complete multiphysics codes but without the full complexity, both computationally and physically.

In order to use this approach, simplified models of the relevant component physics are developed and then
included in the skeleton simulation. These skeleton simulations are then profiled, with the goal of identifying the
issues that will be present in the full multiphysics simulation and produce clear targets for further progress. These
activities invariably help focus the needs and expose the motivations for use of potential new technologies.

6.2.2 Collaboration

One of the most significant impediments to multiphysics applications also produces the most potential for great
progress: collaboration between interdisciplinary groups. While the initial implementation of the technology may
have been designed only by an application developer, moving to the multiphysics setting—and hence more complex
simulations—will likely require the input of software developers to optimize efficiency and mathematicians to
study stability and accuracy.

The value of communication goes both ways, though. Math and computer science experts must understand the
problems that are involved in the simulation and the assumptions that went into the underlying models. Without
this input there is likely no way that full analysis or optimization can be done, and time will be lost while necessary
physical assumptions or conditions may be violated during the development. All members of the interdisciplinary
development team must understand both their role and the role of the other participants. The most successful col-
laborations will produce multiphysics simulations that allow for new physical insight obtained with computational
efficiency and mathematical accuracy.
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Multidisciplinary collaborations also tend to be most successful when each member takes the time to under-
stand the reward structure of other members’ institutions and fields. Authorship order, choice of journals, choice
of conferences to present the work, and software releases can all be important factors, but of different weight in
different disciplines. It behooves team members to understand these and, to the extent possible, help the members
meet their institutional requirements.

6.2.3 Discretization and meshes

The development of new multiphysics capabilities for which solution parameters must be related between physics
components requires understanding and interacting with the meshes, as well as distribution of the field parameters
over the mesh, as indicated by the equation discretization process. The complexity of developing the needed cou-
pling strongly depends on the degree to which the types of meshes, physics discretizations, and data structures used
are, or are not, matched. The insertion options associated with various approaches are outlined in Section 4.2.3.

6.2.4 Software packages

The approaches for addressing multiphysics software challenges given in Section 4 apply to both application-
specific projects and to software packages. The burden on package developers is greater, however, because the
success of a package depends on its integration into other applications.

Good software engineering alone does not address the reasons given in Section 4.3.3 for resistance to adopting
external packages. The developers of software packages need to minimize the real and perceived costs of using
their work. Documentation has always been a necessity; and as projects become more complex, that documentation
needs to be not just thorough but well structured. Equally important are examples of the intended use of the
package. Examples, particularly multiphysics examples, can demonstrate relevance, give application developers
an idea of how to match their codes to the new technology, and drive home the advantages that new technology has
over what it is intended to replace.

The chances of an external package being successfully integrated into an application increase if its developers
are able to provide support during its use. The developers of multiphysics software often have experience with
more varied high-performance computing resources than do their users; hence, their help with migrating to new
platforms, troubleshooting, and profiling can be extremely valuable. Support should also include a willingness to
adapt software packages to the needs of applications. Just as applications should adopt software packages with
new technologies to stay competitive, software packages should incorporate the feature requests of applications to
stay relevant.

6.2.5 Funding

Funding is a key element of successful integration of new technologies. Often, funding in scientific applications
areas is provided for use of the simulation to discover new science or conduct an analysis of a given phenomenon.
Funding agencies tend to be reluctant to fund new code development without new science. On the algorithms side,
funding is usually available only for development of novel methods or software libraries containing algorithm
implementations done in a general way so as to benefit multiple application areas.

Clear motivation for new technologies often leads to greater chances of success for their integration. It also
leads to greater success in funding that integration, because justifications are more readily made.

One reason science applications and their funding agencies give less priority to adopting new mathematical
and computer science technologies is that new technologies can be less robust and hence less reliable. While a new
technology may present an opportunity for greater speed or accuracy, the adopting code will need to go through
a new verification study. In addition, input files and models may need to be adjusted in order to produce accurate
simulations with the new technologies. Even when funding is available for the initial insertion, it is often not
available farther down the road for new input files and verifications. Regularly run, detailed verification suites (not
solely unit tests) with documented results significantly help in this endeavor. With these suites, new technologies
can be verified more quickly, since the full machinery for doing verification with the code is already developed and
functioning.

74



6 INSERTION PATHS FOR ALGORITHMS AND SOFTWARE INTO MULTIPHYSICS APPLICATIONS

6.2.6 Personnel

Another important consideration for insertion of new technologies is personnel. Often, integration of new tech-
nologies requires some software engineering expertise. However, a small to moderate-sized application effort may
not have a dedicated software engineer. Hiring such expertise can be difficult for a short-term position. As a result,
scientists often perform large software engineering tasks themselves. However, reward systems at many institu-
tions do not take such work into account. In addition, the work is often not in the scientists’ main line of interest.
As a result, software engineering performed in such an environment may not take advantage of some best practices,
causing possible delays downstream. Furthermore, a scientist may be less able to tune an algorithm or, when an
algorithm fails, determine whether there is a bug in the implementation or an algorithm failure for a problem.

On the mathematics and computer science side, a similar trend is often seen. Again, because institutional
reward systems value publishing in disciplinary fields, staff are most interested in implementing and developing
new methods, not in placing known methods into a scientific code. This interest is in direct conflict with the
scientists’ need for proven and reliable methods to move the science simulation forward. In addition, while some
funding exists to package software for use across applications, often package writers are not funded for longer-term
support.

A further hindrance to effective cross-disciplinary work from the software developer side is the issue of recog-
nition. Often, software development is seen as a necessary requirement to move a simulation’s capability forward.
However, since the main new science is done in modeling and interpreting code results, the software work is not
given credit in publications nor in most criteria used for promotions at most institutions. As a result, recruiting for
these tasks is difficult, and only rarely have packages and software been supported for long terms.

For many of these reasons, implementations often become the task of junior researchers, since they often are
the only ones with large enough blocks of time to do complex implementations. These junior staff tend to be less
familiar with effective software practices. In addition, junior staff have a high turnover rate and thus cannot be
relied on to provide long-term knowledge and support of the software implementations.

6.3 Observations
Based on participant experiences and discussions during the workshop, we present the following observations on
ways that are most likely to ensure success in integrating new technologies into existing multiphysics simulation
areas.

1. Ongoing verification and software support activities require adequate scoping, budgeting, and funding from
funding agencies and principal investigators.

2. Software development activities aimed at increased simulation speed and accuracy (and not just new capa-
bilities) are important aspects of software development and merit consideration in proposal and publication
reviews.

3. New technologies often bring in new models and new numerics. The most successful projects engage experts
in validation and verification as well as in uncertainty quantification.

4. Successful long-term projects engage a software architect who ensures use of best practices and enforces
standards.

5. Good meshing technologies enable complex simulations and allow the necessary discretization schemes to
facilitate flexibility in algorithms.

6. Compartmentalization of code functionalities leads to extensibility for future technologies. Mesh, visualiza-
tion, interpolation, solvers, and uncertainty quantification are areas where high-quality external code can be
incorporated to facilitate software coupling.
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7 Conclusions
The preceding sections demonstrate a vast variety of approaches to high-performance multiphysics coupling of
PDE-based models contributed from the applications, mathematics, and computer science communities in devel-
oping the science, the methods, and the computational infrastructure necessary for bringing together complex
simulations of multiple physics processes in parallel computing environments. As introduced in Section 1 and
further detailed for various applications in Section 2, numerical coupling strategies range from loosely coupled
Gauss-Seidel and operator splitting approaches to tightly coupled Newton-based techniques. Researchers have
made substantial progress in understanding coupling issues for multiphysics components in space and time, in-
cluding aspects of problem formulation, discretization, meshing, multidomain interfaces, interpolation, partitioned
timestepping, operator-specific preconditioning, as well as difficulties that can arise in multiscale, multiphysics,
multidiscretization operator decomposition (see Section 3). Building on the experience of teams that have devel-
oped application-specific multiphysics software and more general infrastructure in support of parallel PDE-based
multiphysics problems, Section 4 identifies software features that facilitate robustness, extensibility, and easy of
use—essential to support research on multiphysics algorithmic issues, architecture-specific enhancements, and
changes over time.

While the computational science community has made significant progress in advancing scientific knowledge
and engineering practice through these methods, we have outlined in Sections 5 and 6 numerous challenges that
await the focused attention and critical thought necessary for further advancements. Many of these issues have
received attention in venues of note. In particular, the 2008 report by Brown et al. (2008), integrates input from a
broad spectrum of scientific and engineering applications to highlight key challenges from an applied mathematics
perspective in the predictive modeling and simulation of complex systems. Included are the following two research
objectives:
• Advance the fidelity, predictability, and sophistication of modeling and simulation methodologies by devel-

oping the mathematical tools needed for the analysis and simulation of complex systems characterized by
combinations of multiple length and timescales, multiple processes or components.
• Develop analytical and computational approaches needed to understand and model the behavior of complex,

multiphysics and multiscale phenomena.
These two points underscore the significant and still remaining key need for conducting the mathematical analysis
necessary to ensure that coupling schemes are accurate, stable, robust, consistent, and are implemented correctly,
as prerequisites for developing predictive multiphysics simulations. Moreover, emerging extreme-scale compu-
tational environments require fundamentally rethinking approaches to multiphysics modeling, algorithms, and
solvers (Brown et al., 2010; Rosner et al., 2010; Dongarra et al., 2011; Ang et al., 2012), with attention to issues
of data motion, data structure conversions, and overall software design.

Clearly, much work remains before we can fully realize the potential of multiphysics simulations on emerging
high-performance architectures for high-impact policy and decision support. We expect that over the next decade,
such investigations will unify practitioners of multiphysics simulations and advance many areas from the common
current practice of “two scientists meet at a conference and decide to combine their codes” to fully integrated,
numerically accurate, efficient simulations. It is our hope that by documenting the current state from the comple-
mentary perspectives of multiple applications areas, applied mathematics, and computer science, we will enable
significant further progress through cross-fertilization of ideas that will lead to a next generation of integrated and
accurate multiphysics simulations that enable scientific discovery.
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Glossary
A continuing issue on the frontier dividing science and applied mathematics is the cultural barrier of language.
The growth of multiphysics exacerbates this problem because it engages scientists and mathematicians from in-
creasingly diverse areas. For multiphysics collaborations to thrive, a common language is needed. This glossary
defines terms as used in this report.

• coupling

– strong (versus weak) coupling of physical models: We use strong (versus weak) coupling to refer to strong
(versus weak) interactions between different physics models that are intrinsic between the different physics
in a natural process. A strong coupling could be due to large overlap of geometric domains or due to a strong
influence of one model on another. For example, in climate modeling, the coupling between the ocean and
sea-ice models is strong, while the coupling between ocean and land models is weak. Mathematically, the
off-diagonal block of the Jacobian matrix of a strongly coupled multiphysics model may be nearly full or
may be sparse but contain relatively larger entries. In contrast, a weakly coupled multiphysics model may
contain relatively few or relatively small off-diagonal entries. See Section 2 (page 7) for further discussion.

– tight (versus loose) coupling of numerical models: We use tight (versus loose) coupling to refer to the
algorithmic aspect of multiphysics coupling schemes (or numerical models) in terms of whether the state
variables across different models are well synchronized. A tightly coupled scheme (sometimes referred to
as a strongly coupled scheme) would keep all the state variables as synchronized as possible across different
models at all times, whereas a loosely coupled scheme may allow the state variables to be shifted by one
timestep or be staggered by a fraction of timesteps (see Figure 1). For example, a monolithic fluid-structure
approach (e.g., (Blom, 1998)) and a full iterative scheme (e.g., (Matthies and Steindorf, 2002)) are tightly
coupled, whereas a sequential staggered scheme (e.g., (Farhat et al., 2006)) is loosely coupled. Note that
there is not a direct one-to-one correspondence between strong (versus weak) physical coupling and tight
(versus loose) numerical coupling, since a tight or a loose numerical coupling scheme may be used for
strongly or weakly coupled physical models. See Section 2 (page 7) for further discussion.

• error and residual: Error and residual are related concepts that are sometimes not sufficiently carefully dis-
tinguished. Operationally and mathematically their distinctions should be preserved. Given a putative solution,
the error is a measure of the distance of that putative solution from the true solution. The residual is a measure
of how well the putative solution solves the intended equation. The residual is always computable, whereas the
error usually is not. In systems that possess multiple roots or are ill-conditioned, a small or even zero residual
does not necessarily imply a small error. Most iterative methods for the solution of linear or nonlinear systems
employ, in an inner loop, a map from a residual to an estimated error. In a system of equations, F puq “ 0 satis-
fied by u˚, the residual is F puqwhile the error is e ” u´u˚. When the system is linear, that is, F puq “ Au´b,
the relationship between residual and error is r ” F puq “ Au ´ b “ Au ´ Au˚ “ Ae. Solving exactly for
the error in this case is as difficult as the original problem. Solving approximately may be easy, in which case
a convergent iteration is often possible. When the system is nonlinear, a Newton iteration accompanied by an
approximate linear solution with the Jacobian matrix maps the nonlinear residual to an estimated error.

• explicit methods: In an explicit method, future states are given by a formula involving known computed quan-
tities that can be evaluated directly. The simplest example is forward Euler: yn`1 “ yn `∆tF pynq. Explicit
methods are inexpensive per iteration because they require a fixed number of function evaluations to complete
the step; however, they typically have severe stability restrictions and, therefore, are suited only for nonstiff
problems. See Section 3.2.2.

• Frameworks and frameworks: In the context of software, a framework provides a generic functionality (such
as solving a system of linear equations) that can be customized by the user to provide an application-specific
solution (such as a specific matrix and preconditioner). Frameworks typically handle the flow of control, which
distinguishes them from the use of library routines. Some frameworks take complete control of the application;
we called these Frameworks with a capital F. Other frameworks assert control only over the task they perform
and can be combined in an application with other code or even other frameworks; we called these frameworks
with a lower case f. See Section 4 and also http://en.wikipedia.org/wiki/Software_framework.
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• implicit methods: A fully implicit method advances the solution in time by using current information and an
inversion process with no explicit steps. The simplest example is backward Euler: yn`1 “ yn `∆tF pyn`1q.
Fully implicit methods are relatively expensive because of the need to solve (non)linear systems at each step;
however, they have favorable stability properties (Shampine and Gear, 1979; Higham and Trefethen, 1993). See
Section 3.2.2.

• implicit-explicit (IMEX) methods: An IMEX method is a partitioned method that uses an implicit integrator
on one partition and an explicit integrator on the other. See Section 3.2.2.

• multiphysics: Semantically, a multiphysics system consists of more than one component governed by its own
principle(s) for evolution or equilibrium, typically conservation or constitutive laws. A major classification in
such systems is whether the coupling occurs in the bulk (e.g., through source terms or constitutive relations that
are active in the overlapping domains of the individual components) or whether it occurs over an idealized inter-
face that is lower dimensional or a narrow buffer zone (e.g., through boundary conditions that transmit fluxes,
pressures, or displacements). Section 1 discusses further details, including similarities between multiphysics
and multiscale, multirate, multilevel, and multimodel problems.

• multiscale model: A multiscale model of a physical system finds use when important features and processes
occur at multiple and widely varying physical scales within a problem. (These scales are frequently expressed
as spatial and/or temporal scales.) In multiscale models, a solution to the behavior of the system as a whole
is aided by computing the solution to a series of subproblems within a hierarchy of scales. At each level in
the hierarchy, a subproblem concerns itself with a range of the physical domain appropriate to the scale at
which it operates. An example of a multiscale model is described in Section 2.1.4, where the development of
cracks in solid materials is computed through a successive hierarchy of models: fast-acting, close-range atomic-
force calculations on the smallest microscopic scale through to macroscopic continuum models on the largest
macroscopic scale.

– macroscale: The largest physical scale within a physical system or field of interest. Where the microscale
and mesoscale frequently concern themselves with constituent quanta, such as individual atoms, molecules,
or groups of such, the macroscale frequently deals with the continuum and bulk properties of a system. For
example, in atmospheric science, the macroscale is at the scale of the largest features within weather or
climate modeling, which are „1000 km; in engineering fields, the macroscale is often given by scale of the
entire device of interest, which, depending on the device, can range from nanometers to kilometers.

– mesoscale: A physical scale intermediate to the largest and smallest scales existing within a physical system
of interest. Like all physical systems with multiple scales, models at the mesoscale may represent one or
more levels of a multiscale model or may represent the scale of a standalone model in its own right. The
term mesoscale modeling first found use in meteorology for the modeling of severe storm systems on a local
scale. Reliable storm forecasts cannot be achieved with standard continental-scale weather models, where
grid sizes are typically of a scale larger than the size of the storm being modeled.

– microscale: The smallest physical scale within a physical system or field of interest. Calculations at the
microscale frequently treat fundamental system constituents and interactions. Models at the microscale may
exist as standalone or as a level within a multiscale model. Examples of the microscale in chemistry and
materials science usually refer to quantum-mechanical, atomic-scale interactions („10 nm). In meteorology,
the microscale range is on the order of 1–105 cm and treats phenomena such as tornados, thunderstorms, and
cloud-scale processes.

• operator splitting: Multiphysics operator splitting is a loose coupling scheme that evolves one timestep for
each physics component in sequence, as shown by Algorithm 2.

• Schur complement: The Schur complement of a square diagonal subblock of a square matrix is, itself, a
square matrix that represents the original linear system after unknowns corresponding to the complementary
nonsingular diagonal subblock have been eliminated. Static condensation of a finite-element stiffness matrix is
an instance; here, typically, interior degrees of freedom of an element are eliminated. The concept generalizes
algebraically. If a matrixA is partitioned as in Equation (5), andAII is invertible, the Schur complement for the
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Γ block is S ” AΓ,Γ´AΓ,IA
´1
I,IAI,Γ. Though smaller and in important classes of problems better conditioned,

the Schur complement is generally dense, so its solution may be approached iteratively, where each iteration
requires in principle a high-precision solution of the block AI,I .

• semi-implicit methods: Inclusion of both implicit and explicit elements gives rise to semi-implicit methods.
See Section 3.2.2.

• subcycling: Given two time-dependent variables w1 and w2, assume their time evolution is coupled between
time levels tn´1 and tn. Let ui « wi for i “ 1, 2 be decoupled approximations satisfying

Btu1 ` f1pu1, u2ptn´1qq “ 0

and Btu2 ` f2pu1ptn´1q, u2q “ 0.

(Note that Algorithm 2 may be written in this form by redefining f2.) It is said that u2 is subcycled M times
relative to u1 if u2ptnq is approximated by any timestepping method requiringM timesteps to evolve from tn´1

to tn.
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