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Executive Summary 

Providing a software environment that can overcome the complexities of changes in how future 
supercomputers will be designed plays a key role in improving the nation’s rate of scientific discovery 
and innovation. In the past three decades, advances in computer technology have allowed the performance 
and functionality of processors to double every 2 years. This trend, known as Moore’s Law, has enabled 
both computational and experimental science to leverage the so far unending growth of the broad 
computing industry with very little change to the supporting software environment. But as computer chip 
manufacturing techniques reach the limits of the atomic scale, this era of predictable improvements is 
ending. This shift will have a significant impact on the design of high-performance computers, as well as 
the established software infrastructure required to effectively utilize the nation’s Leadership Computing 
Facilities. 

Computer vendors are pursuing systems built from combinations of different types of processors to 
improve capabilities, boost performance, and meet energy efficiency goals. Some of the most current 
supercomputers do not rely on a single type of processor but instead have added computational 
accelerators to meet the growing demands of increasingly complex computational workloads. According 
to studies from the US Department of Energy (DOE) Office of Science Advanced Scientific Computing 
Research program, several types of special-purpose accelerated processing units are currently under 
development and will play a huge role in the future of computer architectures. It is also likely that these 
processors will be augmented with diverse types of memory and data storage capabilities. These 
significant changes are driven by extreme growth in the data-centric machine learning and artificial 
intelligence marketplaces that far exceed the revenues represented by high-performance computing for 
computational and experimental science. In the 2025–2030 time frame, external economic drivers and 
design diversity will result in systems built from a custom aggregation of components; and the difficulty 
and complexity of developing scientific software will increase. This fundamental change in computer 
architecture design has been deemed the era of “extreme heterogeneity.” 

The 2018 Basic Research Needs Workshop on Extreme Heterogeneity identified five Priority Research 
Directions for realizing the capabilities needed to address the challenges posed in this era of rapid 
technological change. They are 

1. Maintaining and Improving Programmer Productivity 

• Flexible, expressive, programming models and languages 
• Intelligent, domain-aware compilers and software development tools 
• Composition of disparate software component content 

2. Managing System Resources Intelligently 

• Automated methods using introspection and machine learning 
• Optimize for performance, energy efficiency, and availability 

3. Modeling and Predicting Performance 

• Evaluate impact of potential system designs and application mappings 
• Model-automated optimization of applications 
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4. Enabling Reproducible Science Despite Diverse Processors and Non-Determinism 

• Methods for validation on non-deterministic architectures 
• Detection and mitigation of pervasive faults and errors 

5. Facilitating Data Management, Analytics, and Workflows 

• Mapping a science workflow to heterogeneous hardware and software services 
• Adapting workflows and services through machine learning approaches 

This report captures and expands the outcomes of this workshop. In the context of extreme heterogeneity, 
it defines basic research needs and opportunities in computer science research to develop smart and 
trainable operating and runtime systems, programming environments, and predictive tools that will make 
future systems easier to adapt to scientists’ computing needs and easier for facilities to deploy securely. 
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1. Introduction 

Fundamental trends in computer architecture predict that nearly all aspects of future high-performance 
computing (HPC) architectures will have many more diverse components than past systems, leading 
toward a period of extreme heterogeneity (EH). The HPC community has already seen evidence of this 
trend [1, 2, 7, 9, 12, 15, 70]. In 2009, the drive to deploy more energy-efficient computers led the Oak 
Ridge Leadership Computing Facility (OLCF) to propose a system upgrade, composed of CPUs (central 

processing units) coupled with GPUs (graphics processing units), that 
firmly established an era of heterogeneous HPC across the Department 
of Energy (DOE). Continuing this trend, both recently deployed 
CORAL systems, Summit and Sierra—selected by OLCF and 
Lawrence Livermore National Laboratory, respectively—are composed 
of CPUs coupled with multiple GPUs and three types of memory. This 
trend is also manifested in the most recent TOP500 list: heterogeneous 
accelerators are used in 110 TOP500 systems and the majority of the 
TOP10 systems. Furthermore, a recent analysis of vendors’ current 
architectural roadmaps is consistent with the extreme heterogeneity that 
the Advanced Scientific Computing Research (ASCR) program is 
seeing in its computing upgrades. It indicates that future computers will 
be more complex and will be composed of a variety of processing units 
and specialized accelerators supported by open interconnects and deep 
memory hierarchies. Looking forward, we expect even more diverse 
accelerators for paradigms like machine learning, neuromorphic 
computing, and quantum computing. 

Several characteristics define what we have termed extreme heterogeneity, each foreshadowed by 
technological trends (see Section 2) that represent significant challenges and have negative impacts on 
achieving productive computational science. In January 2018, ASCR convened a Basic Research Needs 
Workshop on Extreme Heterogeneity in HPC. The purpose of this workshop was to identify Priority 
Research Directions (PRDs) for ASCR in providing a smart software stack that includes techniques such 
as deep learning to make sure that future computers composed of a variety of complex processors, new 
interconnects, and deep memory hierarchies can be used productively by a broad community of scientists. 
Achieving this productivity is critical to both maintaining and growing DOE’s leadership in scientific 
applications and improving the nation’s overall rate of scientific discovery and innovation. 

In this regard, significant computer science 
challenges remain as barriers to developing this 
smart software stack. The primary aim of the 
workshop was to identify the new algorithms and 
software tools needed from basic research in 
computer science to enable ASCR’s supercomputing 
facilities to support future scientific and 
technological advances in addressing the DOE 
Office of Science’s grand challenge problems. The 
resulting research directions were identified by 
spanning existing and next-generation system 
architectures, considering novel technologies that are likely in the post–Moore’s Law era, and the 
promising tools and techniques that will be essential to the efficient and productive utilization of such 
architectures. 

This report captures the outcomes of this 
workshop. In the context of extreme 
heterogeneity, it defines basic research 
needs and opportunities in computer science 
research to develop smart and trainable 
operating and runtime systems, programming 
environments, and predictive tools that 
enable future systems easier to adapt to 
scientists’ computing needs and easier for 
facilities to deploy. 

https://www.top500.org/lists/2018/06/highlights/
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1.1 Workshop Organization 

The workshop structure and content emanated from the initial topics outlined in the charge letter (see 
Appendix A) and the Summary Report from a June 2017 Summit on Extreme Heterogeneity. The 
organizing committee prepared a Factual Status Document (FSD) to provide participants with a shared 
understanding of the current state of affairs in several areas: 

1. Programming Environments 
2. Operating System and Resource Management 
3. Tools for Systems Management and Administration 
4. Productivity and Performance Metrics and Tools 
5. Software Development Methodologies 
6. Data Management and I/O 
7. Data Analytics and In Situ Workflow Management 
8. Modeling and Simulation 

In parallel with developing the FSD, a call for position papers was issued that received more than 100 
responses. These papers provided additional input for the FSD and broader insight into the thinking of the 
computer science and HPC communities about the topics to be addressed during the workshop. This call 
also provided a basis for broadening the list of potential workshop invitees. The final participants were 
selected by the Organizing Committee by direct invitation and through a call for position papers (see 
Appendix E), which was widely circulated throughout the community. The final list of registered 
workshop participants is contained in Appendix D. 

Logistically, the workshop was organized into a series of plenary speakers, breakout groups, and de-
briefings (see Appendix C). The breakout topic areas (see Figure 1) were organized according to the 
expected interest and attendance. For each breakout group, a moderator and at least one scribe were 
selected to create a document of shared notes during each session. Section 3 captures the distilled findings 
from these breakout group discussions. 

1.1.1 Forced Transformation to a Virtual Workshop 

Originally, the workshop was planned as a face-to-face workshop in Washington, DC. However, because 
of a last-minute shutdown of the federal government three days before the workshop, the organizing 
committee transformed the face-to-face workshop into an online, virtual workshop. The agenda therefore 
was adjusted to allow participation across time zones. In less than 24 hours, the organizers arranged 
mailing lists, video conferencing facilities, and Google Docs for the plenaries and all breakout groups. 
The virtual meeting format was very effective and increased participation, but it did not provide an 
opportunity to build a new community with spontaneous discussions to foster connections among new 
researchers. 
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BOG 
ID 

Breakout Group Topic Tues PM Wed PM-1 Wed PM-2 Thurs AM Thurs PM Relevant 
OC Member 

1 Programming Environments: 
Abstractions, Models, and Languages Aiken; McCormick   McCormick  McCormick 

2 Data Management and I/O Ross; Byna    Ross Ross 
3 Data Analytics and Workflows Tom P.; Yoo  Christine S.; Bethel   Yoo 
4 OS/RM: Global, Composition, Workflow  Brightwell    Brightwell 
5 Software Development Methodologies  Li; Bernholdt    Li 
6 Crosscut: Modeling and Simulation  Chien; Donofrio; Leidel  Wilke; Lan; Gokhale  Gokhale 

7 Programming Environments: Compilers, 
Libraries, and Runtimes 

  Strout; Chapman   McCormick 

8 System Management, Admin, Job 
Scheduling 

  Peltz; Hartman-Baker   Antypass 

9 Crosscut: Productivity, Composition, 
Interoperability 

  Lucas   Humble 

10 OS/RM: Local, Prog Env, Support    Lang  Brightwell 

11 Crosscut: Portability, Code Reuse, 
Performance Portability 

   Dubey; Li  Humble 

12 
Programming Environments: Debugging 
and Correctness, Autotuning, 
Specialization 

    Hall; Mellor-Crummey McCormick 

13 Crosscut: Resilience, Power     Cappello; Cameron Shalf 
 

Figure 1. Breakout Group grid.
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1.2 Priority Research Directions 

In a closing session of the workshop and during the following months, the organizing committee and 
breakout session representatives merged, collated, and prioritized the findings of the workshop, 
culminating in five PRDs: 

1. Maintaining and Improving Programmer Productivity 

• Flexible, expressive, programming models and languages 
• Intelligent, domain-aware compilers and software development tools 
• Composition of disparate software component content 

2. Managing System Resources Intelligently 

• Automated methods using introspection and machine learning 
• Optimize for performance, energy efficiency, and availability 

3. Modeling and Predicting Performance 

• Evaluate impact of potential system designs and application mappings 
• Model-automated optimization of applications 

4. Enabling Reproducible Science Despite Diverse Processors and Non-Determinism 

• Methods for validation on non-deterministic architectures 
• Detection and mitigation of pervasive faults and errors 

5. Facilitating Data Management, Analytics, and Workflows 

• Mapping a science workflow to heterogeneous hardware and software services 
• Adapting workflows and services through machine learning approaches 

1.3 Report Outline 

The remainder of this report is organized as follows. First, Section 2 outlines the motivating technical 
trends and respective consequences that lead to extreme heterogeneity in computing and HPC. Next, 
Section 3 captures the prioritized findings and discussions of the workshop breakout groups. Then, 
Section 4 presents the distilled PRDs. Finally, Section 5 concludes. Additionally, six appendices capture 
the (a) charge letter, (b) organization committee, (c) agenda, (d) participants, (e) call for position papers, 
and (f) related activities. 
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2. Background and Motivating Trends 

Society has come to depend on the rapid, predictable, and affordable scaling of computing performance 
for consumer electronics; the rise of “big data” and data centers (e.g., Google, Facebook, Amazon, 
Microsoft); leadership computing for scientific discovery; and national security. This scaling is due to 
Moore’s Law and Dennard scaling. Moore’s law is a techno-economic model that has predicted that the 
information technology (IT) industry would nearly double the performance and functionality of digital 
electronics roughly every 2 years within a fixed cost, power, and area [46]. This expectation has led to a 
relatively stable ecosystem (e.g., electronic design automation tools, compilers, simulators, emulators) 
built around general-purpose processor technologies such as the x86, ARM, and Power instruction set 
architectures. However, within a decade, the technological underpinnings for the process Gordon Moore 
described will come to an end as lithography drills down to atomic scale [23, 36, 38, 40, 68]. At that 
point, it will be feasible to create lithographically produced devices with characteristic dimensions in the 
3–5 nm range. This range corresponds to a dozen or fewer silicon atoms across critical device features 
and will therefore be a practical limit for controlling charge in a classical sense. The classical 
technological driver that has underpinned Moore’s law for the past 50 years is already failing and is 
anticipated to flatten by 2025. Absent a new transistor technology to replace CMOS (complementary 
metal-oxide semiconductor), the primary opportunity for continued performance improvement for digital 
electronics and HPC is to make more effective use of transistors through more efficient architectures, 
architecture specialization manifested in the form of heterogeneous computing, and programming systems 
that better control data movement than those available today. 

In anticipation of this challenge to traditional technology scaling, DOE produced a preliminary evaluation 
and report on technology options for computing beyond Moore’s Law [60] that identifies more than a 
dozen emerging novel technologies that might become components of future supercomputers. In addition, 
a wide variety of potential computer architectures are under consideration, including the likelihood that 
vendors will use multiple novel technologies in a single heterogeneous system. We already see signs of 
this in the planned system architectures for the DOE CORAL and CORAL2 acquisitions. Recent 
communications with vendors through the 2017 Exascale Computing Project (ECP) request-for-
information responses suggest that exascale platforms and beyond will become increasingly 
heterogeneous environments. These long-term trends in the underlying hardware technology (driven by 
the physics) are creating daunting challenges to maintaining the productivity and continued performance 
scaling of HPC codes on future systems. Furthermore, the entire computing community have recognized 
these trends and have reacted with various initiatives (see Appendix E:). 

We begin with a discussion of motivating trends and consequences to understand how computer architects 
are reacting to those trends. These trends are 

• The end of exponential clock frequency scaling (which leads to exponentially increasing parallelism) 

• The end of lithographic scaling as the primary driver for technology improvements (which leads to 
the emergence of increasingly heterogeneous hardware accelerators to continue performance 
improvements) 

• Moving data operands that cost more than the compute operation performed on them (which causes 
our programming models to no longer reflect the actual costs for critical resources) 

• The increasing diversity of emerging memory and storage technologies (which upends common 
storage and memory paradigms after many decades of relative stability) 
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• Aggressive power management and resource contention resulting in heterogeneous execution rates 
(which results in performance heterogeneity that is antithetical to current programming models) 

• Increasingly diverse user requirements (which result in a rapid move toward complex 
multidisciplinary workflows) 

2.1 Exponentially Increasing Parallelism 

Trend: End of exponential clock frequency scaling. This trend has been covered in detail by the 
DOE ECP, but we recount it here for clarity so that it is clearly differentiated from the tapering of 
Moore’s law (which captures a different phenomenon). The year 2004 marked the proximal end of 
Dennard scaling (which had enabled decades of exponential improvements in clock frequencies) because 
chip manufacturers could no longer reduce voltages at historical rates [39]. Other gains in energy 
efficiency were still possible; for example, smaller transistors with lower capacitance consume less 
energy, but those gains would be dwarfed by leakage currents. The inability to further reduce voltages 
meant, however, that clock rates could no longer be increased within the same power budget. With the 
end of voltage scaling, single-processing core performance no longer improved with each generation, but 
performance could be improved by exponentially increasing parallelism. This result upends many 
assumptions that underpin the software environment. 

Consequence: Exponentially increasing parallelism. This trend is an important development in 
that programmers outside the small cadre of those with experience in parallel computing must now 
contend with the challenge of making codes run effectively in parallel. Parallelism has become 
everyone’s problem and will require deep rethinking of the commercial software and algorithm 
infrastructure. This increase in parallelism is one of the central pillars of the ECP, but there are other 
emerging changes relevant to increased parallelism that are well beyond the scope of ECP. 

2.2 Heterogeneous Hardware Acceleration 

Trend: End of lithography scaling. As if the 
end of Dennard scaling were not difficult enough, 
we are witnessing a tapering of the classical source 
of technology scaling improvements commonly 
known as Moore’s law, which is expected to flatten 
within the next decade (soon after delivery of the 
first generation of exascale systems). Moore’s law is 
not really a law but more of an “observation” that 
grew from a techno-economic model first postulated 
in 1965 by Gordon Moore (cofounder and chairman 
emeritus of Intel Corporation). The observation was 
deceptively simple: the nascent semiconductor 
industry was finding a way to double the number of 
transistors on an integrated circuit every 2 years, 
thereby doubling the processing power, efficiency, and functionality of computers and other digital 
devices every 2 years. Based on improvements in the pace of adding transistors, Moore subsequently 
updated his law to “every 18 months.” 

Within a decade, however, the technological underpinnings for the process Gordon Moore described will 
come to an end as several laws of nature come into play. Basically, the spacing of circuits on an 
integrated circuit is reaching the scale of individual atoms, which constitutes a fundamental limit to 
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further improvements. By 2025 it will be feasible to create devices with characteristic dimensions of  
3–5 nm. This range corresponds to a dozen or fewer silicon atoms across critical device features and will 
therefore be a practical limit for controlling electric charge in a classical sense. Thus, the classical 
technological driver that has underpinned Moore’s law for the past 50 years is already failing and is 
anticipated to flatten by 2025, as shown in Figure 2. 

Consequence: Many forms of heterogeneous accelerators (no longer just GPU 
accelerators). The tapering of Moore’s law improvements in transistor density and performance will 
have a more profound effect on the programming environment. Absent any miraculous new transistor or 
other device to enable continued technology scaling, the only tool left to a computer architect for 
extracting continued performance improvements is to use transistors more efficiently by specializing the 
architecture to the target scientific problem(s), as projected in Figure 4. Overall, There is strong consensus 
that the tapering of Moore’s law will lead to a broader range of accelerators or specialization technologies 
than we have seen in the past three decades. 

Industry is already moving forward with diverse acceleration in the artificial intelligence (AI) and 
machine learning markets (e.g., Google TPU [31], Nervana’s AI architecture [35], Facebook’s “Big Sur” 
[24]) and other forms of compute-in-network acceleration for mega-data centers (e.g., Microsoft’s field-
programmable gate array [FPGA] Configurable Cloud [8], Project Catapult for FPGA-accelerated search 
[54]). There have also been demonstrated successes in creating science-targeted accelerators—such as 
D.E. Shaw’s Anton, which accelerates molecular dynamics (MD) simulations nearly 180× over 
contemporary HPC systems [62], and the GRAPE series of specialized accelerators for cosmology and 
MD [48]. Even more radical architectures are being conceived for the next 5 years. These options include 
coarse grain reconfigurable architectures, such as Xilinx Project Everest, and analog computing, such as 
Mythic’s deep learning chip that uses flash transistors to capture weights of a neural net. A recent 
International Symposium on Computer Architecture workshop on the future of computing research 
beyond 2030 (http://arch2030.cs.washington.edu/) concluded that heterogeneity and diversity of 
architecture are nearly inevitable given current architecture trends. This trend toward extreme 
heterogeneity (EH) in compute resources is already well under way. 

 
Year 

Figure 2. As we approach atomic scale, the benefits of lithography improvements to the performance and 
energy efficiency of silicon digital electronics are expected to taper. Original figure courtesy of Kunle 
Olukotun, Lance Hammond, Herb Sutter, and Burton Smith. Figure extrapolations extended in 2016 by 

J. Shalf 
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https://www.xilinx.com/news/press/2018/xilinx-unveils-its-vision-for-the-future-of-computing-details-new-programmable-engine-fabric-and-multiple-ai-technologies.html
https://www.nextplatform.com/2018/08/23/a-mythic-approach-to-deep-learning-inference/
http://arch2030.cs.washington.edu/)
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Apart from the adoption of GPGPU (general purpose graphics processing unit) technology, scientific 
computing has largely been absent from this revolution and runs the risk of being left behind if it does not 
accelerate its assimilation of these technologies. Furthermore, adoption of GPGPUs has already created 
enormous challenges for programmer productivity in the scientific community, and we have made only 
incremental progress toward performance-portable programming environments. If our programming 
paradigm is already challenged by a single kind of accelerator (the GPGPU), then we are especially ill 
prepared for a future with many kinds of heterogeneous accelerators. This will require a comprehensive 
rethinking of the software stack to develop more productive programming environments for the future. 

 

Figure 3. The consequence of Moore’s law tapering is an increased reliance on heterogeneous hardware 
acceleration to continue performance improvements. Original figure (a) courtesy of Dilip Vasudevan. 

 

Figure 4. Example of contemporary cell phone heterogeneous processor. During the workshop, Bob Colwell 
(former Intel architect and Defense Advanced Research Projects Agency Microsystem Technology Office 
director) presented the diagram of accelerators on a typical cell phone system on chip on the bottom to 

make the point that this heterogeneity trend is already under way. 
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2.3 Programming Models No Longer Reflect Actual Costs for Critical Resources 

Trend: Moving data operands costs more than the compute operation performed on 
them. Since the loss of Dennard scaling, a new technology scaling regime has emerged. According to 
the laws of electrical resistance and capacitance, the intrinsic energy efficiency of a fixed-length wire 
does not improve appreciably as it shrinks in size with Moore’s law improvements in lithography [42, 
43], as shown in Figure 5. In contrast, the power consumption of transistors continues to decrease as their 
gate size (and hence capacitance) decreases. Since the energy efficiency of transistors is improving as 
sizes shrink, and the energy efficiency of wires is not improving, we have come to a point where the 
energy needed to move data exceeds the energy used to perform the operation on those data, as shown in 
Figure 5. This leads to EH in the cost of accessing data because the costs to move data are strongly 
distance dependent. Furthermore, although computational performance has continued to increase, the 
number of pins per chip has not tended to improve at similar rates [21]. This leads to bandwidth 
contention, which leads to additional performance heterogeneity. 

 
Figure 5. The energy efficiency of compute operations continues to improve at a slow pace, but the energy 

needed in terms of picojoules per bit per millimeter of data movement is not improving with each 
technology generation. The result is that data movement now consumes more on-chip energy than the 
compute operations performed on the data after it is moved. Original figure courtesy of Shekhar Borkar 

(formerly at Intel, now at Qualcomm). 

Consequence: More heterogeneity in data movement and nonuniform memory access 
(NUMA) effects. Data locality and bandwidth constraints have long been concerns for application 
development on supercomputers, but recent architecture trends have exacerbated these challenges to the 
point that they can no longer be accommodated with existing methods such as loop blocking or compiler 
techniques. Future performance and energy efficiency improvements will require more-fundamental 
changes to hardware architectures. The most significant consequence of this assertion is the impact on 
scientific applications that run on current HPC systems, many of which codify years of scientific domain 
knowledge and refinements for contemporary computer systems. To adapt to computing architectures 
beyond 2025, developers must be able to reason about new hardware and determine what programming 
models and algorithms will provide the best blend of performance and energy efficiency into the future. 
Even our theory of complexity for numerical methods is based on counting the number of floating point 
operations, which fails to account for the order of complexity of compulsory data movement required by 
the algorithm. 
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Ultimately, our theories about algorithmic complexity are 
out of step with the underlying physics and cost model for 
modern computation. Future systems will express more 
levels of hierarchy than we are accustomed to in our 
existing programming models. Not only are there more 
levels of hierarchy, but it is also likely that the topology of 
communication will become important to optimize. 
Programmers are already facing NUMA performance 
challenges within the node, but future systems will see 
increasing NUMA effects between cores within an 
individual chip die in the future [11, 22, 47, 58, 63, 72, 74]. 
It will become important to optimize for the topology of 
communication; but current programming models do not 
express information needed for such optimizations, and 
current scheduling systems and runtimes are not well 
equipped to exploit such information were it available. 
Overall, our current programming methodologies are ill-
equipped to accommodate changes to the underlying 
abstract machine model, which would break our current 
programming systems. This document outlines the current 
state of the art in data locality management in modern 
programming systems [13,19] and identifies numerous 
opportunities to greatly improve automation in these areas 
[65,66]. 

2.4 Storage and Memory Paradigms Are Being Upended after Decades of 
Relative Stability 

Trend: Emerging memory technologies and a stall in disk performance improvements 
lead to disruptive changes in the storage environment. Tightly coupled with the issues 
discussed in Section 2.3 is the issue that new memory technologies are making their debuts in 
manufactured chips [67]. Prime examples are resistive RAM (RRAM), improved flash, and magnetic 
RAM (MRAM). These memories not only offer lower energy for some accesses but also are nonvolatile. 
This capability promises to enable architectural solutions to problems such as dark silicon, which might 
necessitate powering down sections of the chip. In addition, RRAM and MRAM, combined with other 
mature memory technologies such as STT-RAM, challenge the traditional view of memory hierarchy 
wherein DRAM is the last level of main memory. Emerging memory packaging methods enable 
processing-in-memory, which can mitigate the cost of data movement but brings many challenges in 
terms of complex and heterogeneous memory hierarchies. 

A challenge is that these memories have diverse energy and latency costs to read and write, as well as 
manufacturing cost per bit and wear-out issues, making it increasingly important to select the right type of 
memory for the proper level of the memory hierarchy and application workload. 

Consequence: Disruptive changes to memory and storage paradigms that cannot be 
hidden by current programming interfaces. Disruptive advances in these byte-addressable 
storage class memories (SCMs) blur the familiar dichotomy of low-latency, low-capacity volatile main 
memory and extremely high-latency, block-oriented storage. As the density of SCM devices has increased 
and wear characteristics (the number of times a location can be rewritten before it wears out) have  
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 improved, it becomes feasible to include SCM in 
the memory hierarchy as either extended memory, 
persistent object store, or intermediate cache for 
traditional storage tiers. The unique characteristics 
of SCMs offer new opportunities but fully 
exploiting their capabilities will likely require 
disruptive innovation in the entire stack [45]—
including hardware (e.g., enhancements to the 
instruction set to flush processor state to persistent 
memory or region-based coherency schemes for 
scalable management of tens of terabytes of 
memory), system software (operating system [OS] 
file system redesign to streamline low-latency 
storage), runtime libraries, and even application level. 

We need to study how each of these technologies affects architecture and programming models, and thus 
at which level of the memory hierarchy each technology is best suited. This analysis should include a 
study of how unique capabilities of new memories (such as nonvolatility) can be used to seamlessly 
power down portions of future large-scale chips or to avoid frequent access to external storage to facilitate 
big-data applications, as well as our traditional simulation/modeling workloads. 

2.5 Performance Heterogeneity 

Trend: Heterogeneous execution rates from contention and aggressive power 
management. Emerging adaptive algorithms, low-voltage operation, and clock-speed throttling 
challenge current assumptions of uniformity [49, 59]. Because the most energy-efficient operation is the 
one you do not perform, there is increased interest in using sparse, adaptive, and irregular algorithms to 
apply computation only where it is required and to reduce memory requirements. Even for systems with 
homogeneous computation on homogeneous cores, new fine-grained power management makes 
homogeneous cores look heterogeneous. For example, thermal throttling on leading-edge server chips 
such as the Knights Landing and Haswell processors enables the core to opportunistically sprint to a 
higher clock frequency until it becomes too hot; but the implementation cannot guarantee a deterministic 
clock rate because chips heat at different rates. In the future, nonuniformities in process technology and 
for ultralow-power logic will create nonuniform operating characteristics for cores on a chip 
multiprocessor [32]. Fault resilience will also introduce inhomogeneity in execution rates, as even 
hardware error correction is not instantaneous; and software-based resilience will introduce even larger 
performance heterogeneity. Finally, adaptive routing in system-scale interconnects—which enables the 
popular dragonfly interconnect topology capable of rapidly shifting bandwidth from bisection to point-to-
point bandwidth—also has a consequence of creating much variability in message arrival times as the 
routing dynamically adapts to ephemeral contention events [73]. Essentially, even homogeneous 
hardware will look increasingly heterogeneous in future technology generations. 

Consequence: Extreme variability and heterogeneity in execution rates. We have evolved 
a parallel computing infrastructure that is optimized for bulk-synchronous execution models that 
implicitly assume that every processing element is identical and operates at the same performance. The 
chip’s thermal condition is a function of all the running cores. Whatever is running on the other cores may 
directly impact the performance of a given core. In principle, you can manage those other cores so as to 
reserve the thermal margin needed to let a given core run at top speed, but then those other cores are 
slower than advertised. The core message is that (1) increasingly in the future, one must manage power in 
real time in conjunction with the performance requirements to hit the desired throughput; and (2) our 
tools, techniques, and methods for executing this combined power/performance real-time control task are 
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rudimentary and nowhere close to what will be needed. We can no longer depend on performance 
homogeneity, which presents an existential challenge to bulk-synchronous execution models. This 
limitation has renewed interest in alternative execution models that are better able to accommodate 
extreme performance heterogeneity [5,6,14,26,49,50]. 

2.6 Complex and heterogeneous workflows 

Trend: User Requirements Are Moving Rapidly toward Complex Multidisciplinary 
Workflows. From 2015 to 2017, ASCR facilities commissioned a series of exascale requirements 
workshops for each of the six DOE Office of Science offices [28]. The goal of the workshops was to 
gather user requirements for the broad exascale ecosystem, which included not only compute and storage 
requirements but also software; programming model; workflow; algorithmic; and data transfer, 
movement, analysis, curation, and sharing requirements. A cross-cut report was generated that highlighted 
the common requirements across all offices. The report describes the increasingly complex and 
heterogeneous nature of workflows as scientists’ computational tasks vary widely in computational 
complexity and have a growing range of workflow needs. The requirements reviews highlighted a need to 
support heterogeneous workflows and manage heterogeneous systems. 

Workflows in both simulation and analysis are becoming more complex, and they need to be 
accommodated on HPC systems. Workflow requirements have evolved to include scalable data 
processing, data analysis, machine learning, and discrete algorithms. Multiscale and multiphysics 
simulations have become increasingly crucial for reducing and understanding the large-scale data that will 
be produced by leading-edge supercomputing systems. This complexity is often related to needs for data 
movement, including over wide-area networks. 

Consequence: Next-generation systems with heterogeneous elements will need to 
accommodate complex workflows. These user requirements serve as both a challenge and an 
opportunity. Heterogeneous architectures unlock the possibility of mapping different parts of a workflow 
onto elements most appropriate for that application component. However, complexity will need to be 
managed for this possibility to be achieved. Scheduling and allocation policies are needed to support 
workflow needs, especially data analysis requirements at experimental facilities: real-time, pseudo-real 
time, co-scheduling, variable job requirements, and allocations based on other resources such as disk and 
memory. In general, the requirements reviews highlighted the need for improved developer productivity 
and the ability to package the artifacts of DOE research for broad reuse. There is a recognized need for 
community planning, policies, processes to improve software quality, interoperability, testing, and 
deployment within the DOE HPC ecosystem. 

2.7 Bottom Line 

If we, as a community, ignore these important trends and do nothing, DOE’s mission applications, which 
serve as an important leg of scientific discovery (along with theory, experimentation, and data analytics), 
will be consigned to a future with no further improvements in computing performance or to unsustainable 
software maintenance costs where each application begins afresh on each new architecture. 
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3. Workshop Findings 

This section summarizes the findings of the workshop discussions, collated around the various breakout 
topics given in Figure 1. 

3.1 Programming Environments 

Programming environments play a critical role in successfully enabling the effective and efficient 
utilization of any computing resource for the design, implementation, evaluation, and optimization of 
mission-critical applications and the supporting layers of the software stack (e.g., data analytics, machine 
learning, math libraries, tools, runtime systems and workflow systems). In HPC, where performance and 
scalability are critical, the programming environment must provide a delicate balance of abstraction and 
efficiency. 

In considering the impact of EH, these capabilities all serve to bridge the gap between the nuances of the 
underlying hardware and support for lower-level software infrastructure to provide application developers 

with abstractions that allow for the expression of 
algorithms, data structures, and the mapping of both 
data and computations to the set of available 
resources on a given platform. Importantly, the 
design and implementation choices for these 
portions of the environment have a direct and 
lasting impact on flexibility and overall, long-term, 
developer productivity. 

The overall environment consists of several 
components that cover many different topic areas 

that have a broad impact on flexibility, expressiveness, and productivity. This scope impacts not only 
application developers but also the entire breadth of the software stack. Although it is common practice 
for the individual components of the programming environment to be independent research topics, the 
complexity and diversity of the challenges introduced by EH require that they be considered from the 
perspective of forming an integrated capability. This goal becomes increasingly challenging in 
considering aspects ranging across achieving cross-platform performance portability, the composition of 
diverse software components (e.g., workflows, machine learning, data-centric computing, and numerical 
and scientific libraries), support for dynamic application and system behaviors, the reasoning of program 
execution, and validation and reproducibility of results. 

In addition to the diversity of hardware components introduced by EH, it is crucial to recognize the 
impact a growing diversity of developers and application domains has in shaping the capabilities of the 
programming environment. In addition to traditional workloads, data-centric applications from 
experimental and observational science activities—as well as hybrid applications that include traditional 
applications augmented with aspects of machine learning and artificial intelligence—present further 
diversification, complexity, and new challenges for the programming environment. 

The remainder of this section discusses key challenges in meeting application requirements by (1) 
providing better programmability, (2) separating the implementation of applications from their mapping 
onto system resources (e.g., memory and processors), (3) dealing with the specific impacts introduced by 
data movement in an EH environment, and (4) understanding the impact EH has on the correctness of 
scientific results. Each of these topics plays a pivotal role in allowing the programming environment to 
assist scientists in reducing the amount of time needed to make a verifiable discovery in the face of the 
diverse system infrastructure introduced by EH. 
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3.1.1 Finding 1—Programmability 

Definition. Programming systems provide abstractions for expressing algorithms, computations, and the 
mechanisms for mapping such computations to architectures. This research direction encapsulates the 
need to simplify programming and enable performance portability (write once, and high performance 
everywhere). Compared with today’s approaches, this implies much more sophisticated implementations: 

• Higher-level, orthogonal, and layered programming abstractions (descriptive and prescriptive) 

• New compiler technology, domain-specific languages (DSLs), autotuning hardware, and software 
mapping mechanisms (see Section 3.1.2) 

• Standardization of interfaces (both hardware and software) to support the hierarchical abstractions 

Rationale. Our programming mechanisms must change to 
maintain, let alone improve, the current time-to-discovery. In EH 
systems, the number of different technologies exceeds the ability of 
individuals to master them. Thus, the need for programming 
environments that simplify the expression of algorithms while still 
being able to generate high-performance code for diverse execution 
engines is paramount. Various scientific domains need cooperating 
descriptive and prescriptive abstractions that work for a wide variety 
of algorithms, computations, and disciplines needed to support 
scientific discovery and that can effectively utilize the diverse range 
of EH hardware. Programming abstractions and mechanisms are 
required for accommodating significant scientific and hardware 
diversity, as well as enabling interdisciplinary development, the 
coupling of algorithms that cross scales and domains 
(e.g., ocean-to-atmosphere), and the full range of EH 
architectures. Ideally, all this needs to be 
accomplished while performance portability is 
provided. 

Additional Discussion. Some related themes emerged 
during the workshop. 

• Across a broad number of domains, an increasing number of scientists are using high-productivity 
programming languages such as Python, R, and Matlab. At the same time, their computational needs 
are rapidly growing, and HPC resources are becoming critical to evolving their algorithms and 
producing and evaluating larger and larger data sets. 

• Descriptive abstractions provide a potential mechanism for the programmer to express concepts about 
the algorithm and data structures such as symmetry, data access patterns, and convergence properties. 
Such approaches could have a significant benefit over prescriptive approaches that hamper platform 
and performance portability. 

• Programmers would prefer to have the system automatically map the computation and data to the 
execution environment; however, programming abstractions need to be available when automation 
fails and human intervention is necessary. 
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• Prescriptive, orthogonal programming abstractions for scheduling and memory and storage mapping 
should utilize the tools and mechanisms discussed below. A shared infrastructure is particularly 
critical for considering the complexities that arise in composing applications, or complete workflows, 
from multiple, independent software packages. 

3.1.2 Finding 2—Mapping 

Definition. Because of the diversity and complexity of EH architectures, achieving reasonable 
programmer productivity demands that the mapping of software to high-performance, architecture-
specific implementations be automated as much as is feasible. Assume we start with a programming 
interface that separates program specification from details of how it is scheduled on the target architecture 
(see Section 3.1.1). Then, this research area defines the various approaches for deriving and realizing the 
mapping across a range of architectures:  

• Performance introspection to evaluate performance during execution 

• Autotuning, performance models, and machine learning to analyze the results of performance 
introspection and automatically derive or determine how to improve the mapping  

• Both hardware and software mechanisms that dynamically improve executing software using results 
of this analysis in the execution context in which the application is executing  

• Collecting and sharing performance data across applications to improve this mapping process over 
time. 

Rationale. Today, achieving high performance across a variety of supercomputer architectures requires 
fairly low-level software that must be tailored to individual architectures. Even when using portable node-
level programming models such as OpenMP, it is extremely unlikely that code will be performance-
portable across fundamentally different platforms such as CPUs and GPUs. For this reason, it is common 
for application developers to write distinct code for different architectures. As architectural diversity 
grows for EH architectures, and complexity grows, this approach will become infeasible. At the same 
time, recent research in machine learning and related disciplines has developed scalable algorithms that 
analyze patterns in data to draw conclusions and guide actions. If such techniques can be applied to 
performance data, we can automate performance analysis and optimization decision processes to 
automate this architecture-specific mapping. Underlying mechanisms to support these techniques 
efficiently are needed to make such an approach practical. 

Additional Discussion. The workshop discussions highlighted additional technical details in support of 
architecture-specific mapping: 

• For efficiency, hardware support will be required for measuring and attributing resource utilization, 
critical paths, inefficiencies, and power states and for reducing performance data. 

• A question arises as to how far automation can go. How much does the programmer need to express, 
and how much of the mapping can be derived automatically? Perhaps automated mapping is a critical 
step toward software synthesis. 

• Beyond the technical challenges, this research area will make fundamental changes to the way 
applications are developed, built, executed, and deployed; so widespread adoption by the 
communities and facilities is required to realize their potential. 
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• To successfully address the challenges surrounding mapping will require a cross-cutting focus within 
the software stack that ranges from the OS to low- and high-level runtime systems and languages and 
programming model design and implementation. In addition, the pros and cons of particular 
approaches can be modeled in advance of hardware availability via modeling and simulation 
techniques. There are numerous open research questions about how these layers should interact and 
what level of the software stack is responsible for both making and controlling mapping suggestions 
and final decisions. 

3.1.3 Finding 3—Data Centricity 

Definition. Application developers need a set of higher-level programming abstractions to describe data 
locality on the emerging computing ecosystems. These programming model abstractions can expose 
crucial information about data locality to the optimizing software stack to enable performance-portable 
code. This requires research to explore new concepts that enable data locality to be managed more 
efficiently and productively, and to enable us to combine the best of these concepts to develop a 
comprehensive approach to expressing and managing data locality for future HPC systems. 

Rationale. The conventional wisdom of the last two decades is built on the premise that computing is 
the most expensive component of computing systems, so all programming systems are built around the 
notion that computing is of primary importance. And yet the cost of data movement has become a 
dominant factor for the energy efficiency and performance of HPC systems, as discussed in Section 2.3, 
as computing is now cheap and ubiquitous. Nevertheless, contemporary programming environments offer 
few abstractions for managing data locality. Programming models remain steadfastly compute-centric, 
requiring that data move to where the computation has been placed, as opposed to a data-centric model in 
which compute is executed in situ where the data is located (thereby minimizing data movement). Even 
more fundamentally, numerical algorithm designers continue to evaluate algorithmic complexity based on 
computational complexity while entirely ignoring the data-movement cost or complexity scaling factors. 

Absent data-centric programming facilities, application programmers and algorithm developers must 
continue to explicitly manage data locality using labor-intensive methods such as manually rewriting 
loop-nests and manually reorganizing data layouts to indirectly manipulate the memory hierarchy to do 
the right thing. Such optimizations can be implemented through intricate compiler transformations, but 
compilers often lack the necessary information to efficiently perform those transformations because of 
limited language semantics and weak internal performance models to guide optimization choices (this 
issue is a PRD that is covered in more detail in Section 3.4.2). These changes overturn fundamental 
assumptions that underpin current programming systems and portend a move from a computation-centric 
paradigm to a more data-centric paradigm for expressing algorithms. 

Additional Discussion. The group captured a few additional points during the discussion. 

• The strong relationship between EH systems with accelerators (see Section 2.2) and data-centricity 
was also discussed. When GPU accelerators first arrived, the kernels computed on the GPUs showed 
superior performance, but the performance advantage could be quickly degraded by the cost of 
moving data from the host to the accelerator over a PCI bus. If we extend that lesson to anticipated 
EH systems, almost all operations may well be performed by multiple accelerators, which will 
compound the data movement and scheduling challenges identified in the early days of GPU 
accelerators. 
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• Data movement to and from accelerators is far more expensive than  computing, and accelerators will 
generally have very limited memory that must be treated as a scarce resource. Hardware accelerator 
efficiency is undercut by data movement costs and suboptimal placement. Better integrated 
performance models (see Section 3.4.2) are needed to enable proper resource allocation choices to be 
automated as described in Section 3.1.2. EH programs should not hide the overall structure of how a 
program uses its data; this needs to be made more explicit for the underlying implementation to 
exploit. This issue cuts across the entire software stack, from 
programming abstractions (this section), mapping (Section 3.1.2), 
and compiler optimizations, down to runtime systems (Section 3.3) 
and memory protection/security mechanisms in the OS/R section 
(Section 3.3). 

• A common theme across most of the programming concepts 
discussed in the workshop was the need to specify locality 
information as part of a program’s data declarations (as an integrated 
part of the type-system) so that all loops in the code can be modified 
appropriately by the runtime system without user intervention, rather 
than the current approach in which the organization of the program’s 
computations or loop structures is needed to manage data locality 
(e.g., loop blocking and #pragma’s). In current compilers, such information is not expressible or is 
destroyed by the early phases of compilation so that the runtime system is unable to exploit that 
information in any meaningful way. For example, an array could be described as distributed to a set 
of memories as part of its declaration rather than annotating each individual loop nest or array 
operation with such information (making loop transformations automatable by the runtime system), 
whereas current models require programmers to manually change the loop iteration space to achieve 
this same result. This approach permits a programmer to switch between distinct locality options in a 
data-centric way, allowing the compiler and/or runtime to propagate those choices down to the 
computations. A data-centric approach to programming models could minimize the amount of code 
that must be modified as architectures and program requirements change. 

3.1.4 Finding 4—Correctness 

Definition. “Correctness,” broadly speaking, refers to our ability to predict the behavior of the 
software/hardware systems that we construct. In the HPC context, correctness encompasses not only 
functionality (how do we know that the system will produce the correct answer) but also performance 
(how do we know that the system will run in an acceptable period with the resources available). 

Rationale. The correctness of the systems we build is central to DOE’s science mission—if we cannot 
trust that the results we compute are correct, then the value of the solution is degraded. More complex 
systems are more difficult to verify, and that presents real challenges as we transition to tomorrow’s EH 
systems. At the same time, there are significant opportunities to take advantage of technology to formally 
establish correctness in future EH systems. 

Additional Discussion. The group captured a few additional points during the discussion. 

As DOE contemplates the costs of software development for EH systems, it is clear that tools based on 
formal reasoning (such as full formal verification, automated analysis of programs to reason about more 
targeted properties, and program synthesis) could have a tremendous impact not only on the quality of the 
software produced but also eventually on reducing the cost of both writing and maintaining that software. 
However, some aspects of correctness are very important in the DOE context and have not been well 
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addressed in the verification and program analysis communities. Chief among these is reasoning about 
floating point. Although, very recently, a small community of researchers has emerged who are rigorously 
studying the verification of practical floating-point codes, there is still much work to be done to fully 
understand how we can effectively reason about floating point computations. Robust techniques for 
formally reasoning about floating point would also open the door to new ways of programming much 
higher-performance systems. Very few programmers understand how to write custom and robust floating-
point code, and so the accepted method of floating-point programming today is to rely on expert-written 
libraries that produce incredibly accurate results using the full precision of the underlying hardware, 
which is typically 64 bits. However, in most applications, this is overkill, as the results are not needed to 
64 bits of precision; and typically, the input data is also not known to nearly that many significant digits. 
Thus, if it were possible to reliably reason about the required accuracy of intermediate computations, 
many of those computations could be replaced by much less precise and much faster versions that still 
produce final answers with no overall loss of accuracy. Our lack of understanding of how to support 
automated reasoning about floating point in realistic programs means that we cannot do this currently and 
must rely on simply over-computing every intermediate result to maximum precision to assure ourselves 
that the result is correct. Accelerators such as FPGAs, which are becoming widely available in 
heterogeneous platforms, heighten even more the potential benefit of being able to harness reduced 
precision computations. 

Floating point is but one example where improved formal reasoning could have a significant impact on 
DOE software development practices. Another area that has not received focused attention for verification 
is reasoning about distributed, parallel systems, which is at the heart of all scalable simulation and data 
analysis codes and is often the source of the correctness issues that are difficult to debug at scale. Other 
examples include understanding and exploiting weak memory models and specialized accelerators. 
Finally, formal reasoning about performance and resource usage has yet to receive sustained research 
attention, and any progress in this topic could clearly have a significant impact. 

On the side of challenges, by far the dominant method today of “verifying” software is testing; but one 
need only consider the number of bugs discovered in well-tested code to realize that testing, at least as 
currently practiced, is mostly good at finding problems that occur relatively often but is quite inefficient 
at finding fewer common problems. A second observation is that testing is good at identifying that there 
is a problem (e.g., the program crashes or returns the wrong answer) but is often not particularly helpful 
for finding the actual root cause that must be fixed. Specifically, the technology we have today for 
debugging remains heavily oriented toward single-thread, single-core debuggers that were developed 
decades ago. While progress has been made, the productivity of debugging at scale on parallel machines 
is much, much lower than it is for sequential programs; indeed, a large portion of the development effort 
of codes intended to run at extreme scales is spent in debugging both performance and functionality 
issues. The complexity of locating the root cause for performance issues usually scales with the 
complexity of the underlying hardware, as the nature of performance debugging is such that the structure 
of the hardware cannot be abstracted away. 

There is an opportunity to use formal methods to improve this situation. Formal methods (i.e., formally 
proving properties of programs using rigorous formal logic) has made steady progress for decades. In 
recent years, the technology has reached the point that increasingly complex databases, compilers, and 
OSs have been formally verified to have important correctness properties (e.g., that a compiler faithfully 
translates a source program into assembly code). These guarantees are extremely strong: for every 
possible input, the program is guaranteed to produce an output satisfying the formally proven property. 
From the HPC point of view, the case for using formal methods is even stronger, as testing and debugging 
is extremely expensive at scale and will only become more so in the future. At some point, formal 
methods may well become not just the highest assurance but the least expensive method for building 
reliable systems. 
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Correctness in the style of fully verified systems is one goal, and there are related research technologies 
and other ways of using verification that are less all-encompassing. Tremendous progress has been made 
on fully automated approaches that target specific well-known correctness properties (e.g., absence of 
data races). There is also great potential in program synthesis, which turns the verification problem on its 
head: instead of writing code and asking a system to prove that it satisfies a property, programmers write 
down the properties they want a program to have and a synthesis tool finds a program that has those 
properties. Program synthesis has already proven effective in automatically generating tricky bits of code 
in several important domains. More systematic approaches to testing, perhaps integrated with verification 
techniques, are also a potentially promising research direction. 

We also discussed correctness for more exotic future accelerators such as quantum and neuromorphic 
computing devices. Here, only the outlines of what the hardware may provide can be discerned, so it is 
difficult to speak with precision about what the distinct verification/correctness issues will be. But even 
the notion of what it means to be correct will need some changes for systems that work on such different 
basic principles. As more and more diverse kinds of accelerators appear in future machines, it was 
observed that it will be necessary to have the ability to construct reasoning systems compositionally, so 
that the reasoning module for a new accelerator can be combined with other independently written 
modules that model other parts of the system to give an overall formal model. 

3.2 Software Development, Sustainability, and Productivity 

Future heterogeneous architectures will undoubtedly cause disruptive changes in the entire software stack 
for supporting applications that require high performance. The software landscape has very broad scope, 
ranging from general-purpose libraries to application-specific and hardware-specific tools. The 
developers and the end users of the software stack often come from diverse science and engineering 
domains and have substantially different training and knowledge. Additionally, a software life cycle can 
be an order of magnitude longer than that of hardware. Several codes have been in existence for decades, 
whereas the typical lifetime of a platform is 3 to 4 years. For all of these reasons, it is imperative to 
organize community efforts to establish a set of well-defined and implementable software methodologies 
and policies. 

Along with emerging EH architectures, there is simultaneous growth in the complexity and heterogeneity 
of methods and solvers used in applications as scientific understanding grows and fidelity of models rises. 
This combination makes building a robust, sustainable software ecosystem to support multiphysics and 
multiscale simulations and couplings a daunting task [33]. Separation of concerns and layering of 
complexity become critically important and require designs of hierarchical encapsulation and abstraction. 
Additionally, for productivity, it is necessary to support interfaces that are independent of choices of 
algorithms and data structures so that application developers need not know the nuances of the underlying 
architectures. Furthermore, attention must be given to developing methodologies for evolving existing 
software to new programming models, which, given the longevity and complexity of such software, is 
contradictory. 

Productivity can be considered an overall measure of the quality of the process of achieving desired 
results. In the context of science on HPC systems, productivity includes software productivity, along with 
execution-time productivity (efficiency, time, and cost for running scientific workloads), workflow and 
analysis productivity (effort, time, and cost for the overall cycle of simulation and analysis), and the value 
of computational output in terms of scientific exploration and discovery. During the past several years, 
there has been growing work on methodologies and tools to increase developer productivity and software 
sustainability for computational science and engineering [17, 30]. In particular, the IDEAS project [18] in 
the United States, and the Software Sustainability Institute [25] in the UK, have focused on the 
productivity and sustainability of research software. 
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The computational reproducibility of scientific experiments performed in heterogeneous computational 
environments is both critical for the credibility of scientific results and difficult to achieve, as numerous 
factors impact the goals of reproducibility. Against the backdrop of complicated architectures with large 
heterogeneity of devices, complex memory hierarchies, and communication patterns, teams face an 
increasing need to establish credibility by producing reproducible science. Definitions of reproducibility 
vary largely and depend on context, with several, sometimes complementary, often orthogonal, axes: (1) 
numerical reproducibility to validate code correctness, (2) scientific replicability of results to validate 
discoveries, and (3) performance reproducibility during time or resource constraint executions. All of 
these are relevant to scientific computing. Reproducibility goals and methods to attain these goals will 
vary depending on scientific applications and the communities around them. In some cases, 
reproducibility goals are implicit, with little formally expressed consensus as to what is considered 
reproducibility and what methods are used to achieve these goals. 

3.2.1 Finding 5—Novel Design and Development Methodologies 

Definition. As has been true for the past six decades, those who design and develop scientific software 
use tools and methodologies to facilitate their work and to maximize their productivity. Programming 
languages, higher-level abstractions, libraries, and run-time tools for debugging and performance analysis 
are all part of these infrastructures. Increasingly, they are brought together in integrated development 
environments. Historically, each new generation of 
HCP systems has tended to be more complicated than 
its predecessor, and this trend is further exacerbated by 
the increasing sophistication of the scientific software 
under development. The EH systems expected to be 
deployed in the next decade will further aggravate this 
problem, threatening to undermine the productivity of 
scientific software developers, and hence the pace of 
scientific discovery. Research into new tools for the 
design and development of scientific software is needed 
to enable effective use of these future systems. 

Rationale. Software development environments 
reflect the underlying architecture of the computers they 
are used with; and for the last two decades what has 
been relatively stable—a communicating sequential 
processes execution model—has been applied to an 
exponentially growing number of virtual memory-based 
microprocessors. This relatively stable model has 
allowed the scientific computing community to 
accumulate a large body of software whose value 
greatly exceeds that of any of the ephemeral machines 
on which it runs. 

The EH expected to appear beyond exascale threatens 
the scientific community in two ways. First, today’s 
existing codes may have trouble porting to or effectively using future systems that are fundamentally 
different from current architectures. Second, new software, be it an entirely new application or an 
augmentation of an existing one, will be increasingly difficult to write. Current familiar programming 
languages and libraries were themselves designed and created for the existing model and may either not 
be available or not effectively exploit future, more heterogeneous systems (e.g., the necessity to extend C 
to program GPUs with CUDA or OpenCL). 
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Additional Discussion. The scientific computing community has faced such transitions in the past and 
has largely overcome them. Sometimes, they are adaptations to changes in architecture as the community 
moves to exploit new technology, such as the adoption of scalable systems based on commodity 
components. Sometimes, the transition is exploitation of new software technology, such as object-
oriented programming. Such changes often take many years to effect. In both the cases mentioned, there 
was roughly a decade of research and experimentation before the community embraced the transition. 
Once that decision was made, it took many more years to transform existing codes or replace them. In the 
post-exascale timeframe, that pace of adaptation will no longer suffice without significant negative impact 
on the pace of scientific discovery. If a decade of research is again required to develop the technology 
necessary to create agile scientific software that can thrive on EH systems, then we need to begin 
immediately. 

Many potential research directions could be explored to make EH machines approachable by a broad 
range of computational scientists. One approach is a separation of concerns, whereby the programmers 
are provided with abstractions that reflect their scientific domains, and the mapping of those constructs to 
specific systems is handled separately. DSLs are an example of this, but much common technology will 
need to be invented to enable the cost-effective creation of many such environments. Another approach is 
to try to automate many of the tedious, labor-intensive tasks involved in the porting of existing code from 
one machine to another, such as the automatic performance tuning work ASCR has supported. Recent 
advances in machine learning might provide a foundation for such research. 

An even more ambitious project would be to try to exploit advances in machine learning technology to 
enable the automation of software development itself. One can imagine a future in which scientists 
formulate algorithms and then leave their realization to an automated system. Perhaps there would be 
interaction, in cases when the automaton encounters a construct it had never seen before and human 
creativity is required to resolve the mapping to a novel feature in a new machine. 

3.2.2 Finding 6—Composability and Interoperability 

Definition. In EH computing environments, we anticipate that composition will play a central role in 
software development. In the “vertical” sense, it will include the layering of application programming 
interfaces (APIs) and functionalities from application codes, libraries, and runtimes that translate the 
programmer’s intent to execution in the various environments offered by the system. Likewise, in the 
“horizontal” sense, it will involve assembling various software “components” to form applications that 
must compose correctly and efficiently. Different parts of applications may be particularly well- or ill-
suited to different execution environments offered by the EH system, which may motivate 
componentization strategies. Components may require very different implementations to work well in 
different execution environments (in ways that cannot be managed more transparently to the 
programmer), but they must be completely interoperable or interchangeable from the viewpoint of the 
programmer assembling components into the application. Likewise, components that interact with one 
another across the different execution environments must interoperate seamlessly, even with very 
different data representations and other factors. 

Issues of composability and interoperability are understood today, for relatively homogeneous systems, at 
only a modest level; and available tools are very limited, especially in the HPC context. There are rich 
opportunities for research in this area, in both concepts and tools, with the goal of being able to 
systematically reason about models (in terms of performance and other characteristics) and execute 
composite applications, as well as facilitate the design and development of software with the desired 
characteristics of composability and interoperability. 
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Rationale. Modularity is a well-recognized best practice in software development and is already widely 
used, in varying degrees, within the HPC community and elsewhere. We cast our software as a collection 
of modules and compose them into an application. The emergence of EH systems will motivate even 
higher levels of modularity. For example, the same operation in an application might be feasible on a 
variety of different execution environments available in EH systems but require significantly different 
implementation strategies to obtain the desired performance. Similarly, different parts of an application 
may perform better in different execution environments; so, applications will likely involve the 
composition of multiple expressions of the same functionality targeting different execution environments, 
as well as the movement of data between execution environments with dramatically different data 
representations or constraints. Even if high-level programming environments provide common ways of 
coding these components at the user level, as the code is mapped onto an EH system, dealing with the 
issues of composition and interoperability is merely pushed down to lower levels of the software stack—
perhaps not visible to users but certainly visible to the developers of those layers. Moreover, from one EH 
system to the next, different types of execution environments may be available, making the portability 
(much less the performance portability) of applications even more complex and placing even more 
demands on the ability to compose interoperable software components effectively. 

The expected complexity of EH environments will make it very challenging to analyze and reason about 
the complex composite applications. Thus, beyond the basic need to be able to understand and deal with 
composite systems in a “manual” way, we believe that significant levels of automation will be required to 
make practical the development and use of large-scale high-performance software applications on such 
systems. 

Additional Discussion. Discussions during the workshop produced a few examples of research issues 
related to composition and interoperability that we felt would be relevant to this PRD, although this list 
should in no way be considered limiting. 

• Extracting and analyzing information about performance and resource utilization from composite 
applications, perhaps with help from AI or machine learning technologies to build models from the 
data 

• Rich expression of constraints and capabilities of components, and effective orchestration of runtime 
behavior of composites (on both the software and hardware sides) 

• Automatic reasoning in support of effective compositions, including issues of execution unit 
capabilities and performance characteristics, software requirements (including performance and 
resource needs), data movement, conversion of representations, and other issues 

• The mathematics and computer science of mapping data between the diverse data representations 
offered by EH systems 

• Understanding the behavior of the various execution units and interconnections, perhaps with the 
assistance of AI and machine learning techniques, and using the information to better inform and 
guide developers as to both “local” and composite performance and other characteristics, perhaps 
through abstract machine models and other approaches 

• The opportunity to co-design memory and interconnect systems to facilitate composite applications 
and their development 
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• Capture and exploitation of provenance and other meta-information about data and execution patterns 
to allow adaptation in compilers, runtimes, and other parts of the system in the face of both changing 
applications requirements and changing execution environments 

• Design and development of low-level APIs that enhance interoperability across diverse hardware 

3.2.3 Finding 7—Evolving Existing Software to New Programming Models 

Definition. Orthogonal to composability in software is the expression of program semantics within the 
components. In many scientific codes, these are the “kernels” that express the mathematics and logic of 
the solvers. To deploy new programming models, most of the kernels will need to evolve to those models. 
Research opportunities exist in devising tools than can automate the transition of code sections to new 
programming models, and tools that can verify semantic equivalence between original and transitioned 
codes. Note that these transformation tools would have a different purpose from those that are used for 
optimization. They would in effect be eliminating the need to manually rewrite software in a different 
high-level language. 

Rationale. A lack of methodology and tools to affect the transition to new programming models has 
traditionally played a significant role in preventing their adoption by scientific software. The time needed 
to prepare a large code for a new platform paradigm using a new programming model is prohibitive if 
done manually. The code transformation tools that exist still require annotations or non-trivial rewriting 
of code chunks. This applies to DSLs as well as tools such as Kokkos. Adoption of new programming 
models will remain limited unless tools are developed to automate significant portions of the necessary 
code rewriting. Similarly, a lack of tools that can verify the semantic equivalence of rewritten code has 
largely been responsible for the persistence of “legacy” code sections even in otherwise well-designed 
and well-maintained codes. Together, the transformation and equivalence verification tools can in turn 
transform how scientific software is developed and maintained in future. 

Additional Discussion. One of the topics that came up during the workshop was the expressibility of 
general purpose programming languages. The following points were raised. 

• Does the full range of expressibility of general-purpose programming languages make portability 
harder with EH? It is possible that the same computation could be expressed differently to make 
targeted code generation easier. 

• Can one express the constraining semantics through DSLs? 

• There is a need for a broader collaboration between language and compiler teams and application 
teams to devise ways of optimizing expressibility so that portability is not compromised. 

3.2.4 Finding 8—Reproducibility 

Definition. Traditionally, reproducibility means getting the bitwise identical answer when the same 
program is run more than once but with possibly different hardware resources or scheduling of operations. 
We consider this “complete reproducibility.” Numerical reproducibility, predicated on enforcing IEEE 
754-2008 arithmetic for floating point instructions, presents multiple challenges in a parallel environment, 
because the roundoff errors make floating point arithmetic non-associative. Thus, bitwise reproducibility 
would require putting severe constraints on the order of execution for instructions and operations with 
distributed data structures, which is usually too costly to be practical at scale. Therefore, some scientific 
applications achieve scientific replicability when key (but not all) scientific quantities are reproduced 
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within error bounds. We consider this “partial reproducibility,” which often suffices to ensure correctness 
of scientific simulations and discovery. For debugging purposes, some parallel codes implement a mode 
to enforce bitwise reproducibility at a much lower speed (e.g., with the same order of operations) but use 
the fastest mode in production runs. In addition, performance reproducibility is desirable in many 
situations. It can be guaranteed only when the program is compiled with the same compiler and compiler 
flags and run in the same execution environment. 

Rationale. Although bitwise reproducibility is the best way to provide a guarantee of program 
correctness, many applications can be satisfied with different levels of relaxed requirements without 
compromising the scientific results. For example, complete reproducibility is important for climate 
modeling applications in which a scientific code is developed by multiple, distributed teams, such as the 
Energy Exascale Earth System Model (E3SM, previously known as ACME). Versions of the codes must 
provide bitwise-identical results when observational input data is used to ensure code stabilization during 
a code development phase. When the code is considered stable, this constraint can be relaxed. 

Partial reproducibility is often sufficient for classical MD codes, molecular ab initio calculations, and 
materials codes. Although scientific replicability is considered achieved if the results of multiple runs fall 
within some error bounds, these tests are not currently performed in codes such as Gromacs or other 
common classical MD kernels. In thermodynamic integration, the length of a simulation is a factor 
hampering replicability, with a proposed solution of running many short simulations instead [3]. In 
quantum chemistry (NWChem) and, more recently, materials, exercises in comparing code to achieve 
replicable results are considered satisfactory if the same results are obtained at 10 decimal places. 
Numerical reproducibility can apply to the density functional theory of atomic calculation, but numerical 
integration into molecules does not produce reproducible results. While some target precision levels are 
desired, the costs to performance and scalability are high enough that ensuring these levels of precision 
would completely negate the benefits of parallelism. 

If simulations are fundamentally stochastic and have an additional contribution to the random variations 
in their runtimes, complete reproducibility will be difficult to achieve and is best viewed as a multiple-
level capability characterized by different trade-offs and costs. Performance fluctuations will exist for the 
same codes on different machines. Resource utilization on shared systems will also impact performance. 

Additional Discussion. Ensuring the correctness and reproducibility of numerical programs in an 
environment where different accelerators behave very differently is extremely challenging. Several 
research directions need to be pursued. 

• We shall develop new mathematical algorithms that deliver reproducible numerical results in the 
IEEE floating point semantics, regardless of the execution order of the operations. For example, the 
new algorithms on reproducible summation in ReproBLAS [10] make it possible for all the linear 
algebra libraries to be completely reproducible when run on the same machine (even with varying 
numbers of processors), same compiler, and same flags. Much more algorithm research is needed to 
expand this capability beyond linear algebra or under different execution environments with different 
compilers, and so on. 

• We shall define different levels of reproducibility that are appropriate for specific applications and 
study the trade-offs between accuracy and performance. The goal is to achieve correct scientific 
results even in the heterogeneous environments that incur significant non-determinism in program 
execution. To this end, we need better mathematical foundations for what constitutes correctness. 
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• We shall develop new AI and machine learning methods to help derive reliable error bars and bounds 
for different algorithms and applications, especially for those that have historically relied on bitwise 
reproducibility. Thus, we need only to provide less demanding partial reproducibility. 

• We shall develop new performance analysis tools that capture performance- and reproducibility-
related information, including provenance, metadata about the runtime environment, and runtime 
characteristics of workflows with many components. The tools must integrate the data obtained from 
each device on the heterogeneous systems, such as low-level provenance details (e.g., clock speeds) 
for each device used during runtime. 

• We need to understand the impact of higher levels of abstraction and many possible back-end targets 
on a testing regime. How can we be confident we are thoroughly testing a piece of code across the 
many different final instantiations it might experience as it is translated onto different platforms? 

3.3 Operating and Runtime Systems 

The OS provides the fundamental mechanisms to allocate and 
manage hardware resources provided to applications. For a 
large parallel computing system, the OS can be thought of as a 
single, persistent, privileged, distributed application that owns 
all of the hardware resources. Individual components of the OS 
may exist as system software on the individual computing 
elements, as well as the software that coordinates these 
components to provide system-wide resource allocation and 
management services. The OS is responsible for several 
fundamental capabilities, including isolating applications, 
resource sharing, protection, and access control. 

Several factors influence the design and capabilities of the OS, 
including the underlying hardware; the functionality that must 
be provided to support applications, libraries, run-time systems, 
and tools; and the system usage model. Many of the challenges 
of EH either directly or indirectly impact the individual node-
level OS as well as the overall system-level OS. As components 
become more diverse and specialized, it becomes increasingly 
complex for a traditional general-purpose, monolithic OS to 
manage hardware efficiently. Many of the existing approaches 
to scheduling computing elements and managing memory resources will need to be enhanced to manage 
this complexity efficiently. Similarly, as applications become more complex, and more sophisticated 
workflows are developed, the services provided by the system-level OS will also need to evolve to enable 
new approaches to coordinating resources and making the most effective use of the system. 

The field of computer architecture is about to experience a shift very similar to the one that took place in 
the 1960s when architectures first began incorporating virtual memory. Move-in, move-out semantics to 
shift data from one memory space to the next were common in the 1950s. Manual move semantics were 
neither scalable nor portable; virtual memory was adopted despite a slight performance disadvantage. For 
the past 30 years, accelerators have been treated as separate memory spaces, quietly reintroducing the 
move-in, move-out semantics that so many others had fought to remove many years earlier. Industry 
trends are clear: the memory fabric is changing toward one that incorporates accelerators into the virtual 
memory system. What is not clear, however, is the role of the OS in managing this multi-architecture and 
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multi-device address space. The additional complexities of managing multiple memory devices, along 
with optimizing data placement for multiple classes of execution units, are beyond the scope of most 
current OSs. 

Current systems typically have a single accelerator class, often a GPGPU or FPGA. The ratio of 
performance gain to portability cost for single-accelerator-class systems has been (for the most part) 
favorable; however, this ratio is rapidly changing, in ways much like the changes from the 1950s that 
pushed the industry toward adopting a virtual memory abstraction. We expect architectural advancements 
that will allow accelerator devices to be virtualized and more easily shared between users and processes. 
From an integration perspective, it is expected that advancements will soon allow (and performance 
trends will favor) tighter integration of multiple heterogeneous components on high-performance data 
paths, such as a memory bus, and enable them to share an address space with all the other devices on a 
node (and potentially off the node through more integrated system-level interconnects). These trends, 
along with the technology trends mentioned in Section 1.1.2, will likely shape the technology path toward 
one in which heterogeneous accelerators are at multiple locations within a system-on-chip and at multiple 
places within the memory and storage hierarchy. This integration, combined with heterogeneity, will 
strain the relationship of the OS and the runtime with the 
hardware. Co-design of new interfaces between hardware and 
software to determine the best boundary between accelerator 
and OS should be a research focus. 

The convergence of commodity server and HPC processor 
cores over the past two decades has led to many compromises. 
Context swapping and scheduling from the operating system is 
one such compromise. The introduction of heterogeneous 
memory hierarchies with access times 10 times faster than 
standard storage media (but still far slower than DRAM-based 
memory) is driving computer architecture in two directions: 
(1) high-thread-count simultaneous multithreading (SMT) and (2) fast coarse-grain context swapping 
(FCGCS). The most likely direction for future architectures is toward a mix of both SMT and FCGCS, 
with FCGCS being the dominant factor in hiding nonvolatile access latencies. Given that current OS 
context swapping and scheduling methodologies take on the order of thousands of cycles, hardware 
acceleration is the clear path to enabling faster scheduling, swapping, and dispatch. This is another area in 
which co-design is clearly needed to find the right balance. A unique opportunity for HPC, which would 
enable unbridled performance portability for next-generation systems, is unifying the notion of thread 
context in a way that would allow portable transference of execution to accelerator devices. Enabling 
architectures to take on some of the notions that are currently ensconced deep within the OS would enable 
a world in which multi-vendor systems and even multi-IP systems-on-chip could exist to power future 
systems. The dominant usage model of today’s HPC systems is characterized by a queue of requests for 
fixed-size allocations of nodes dedicated to a specific job. This batch-scheduled, space-shared usage 
model has many limitations, including the inability to dynamically expand or contract the number of 
nodes allocated to a job in response to application performance or overall system utilization. The burden 
is on the application developer to determine a priori the exact size of the allocation needed for each input 
data set based on an increasingly complex set of factors. As individual nodes become more 
heterogeneous, system architectures become more complex, and applications evolve into a set of 
integrated workflow components, the system-level OS will require new capabilities to support the 
demands of more sophisticated usage models. 

The remainder of this section details important challenges in (1) the design of the OS and the associated 
runtime system to better support emerging EH hardware components, (2) decentralized resource 
management strategies that enable more efficient and effective coordination of potentially dedicated 
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and/or more intelligent devices, and (3) approaches to autonomous resource optimization that can be used 
to reduce complexity through introspection and dynamic adaptation. These challenges are naturally 
hierarchical, but we expect that the research required to address the first one will support and inform the 
needs identified by the second, and vice-versa. 

3.3.1 Finding 9—Design of Operating and Runtime Systems 

Definition. Current OSs are designed to integrate accelerators and special-purpose devices as isolated 
single-user devices attached over a relatively slow data path. We expect architectural advancements that 
will allow these devices to be virtualized and more easily shared between users and processes. We also 
anticipate advancements that will allow these components to be more tightly integrated on a high-
performance data path, such as the memory bus, and be able to share a uniform view of the virtual address 
space with all the other devices on a node. 

Rationale. Trends in architecture toward more tightly integrated systems blur the traditional control 
plane boundaries normally associated with an OS and 
runtime. Future systems will likely need to shift the 
balance of implementation responsibility for resource 
allocation, protection, and task dispatch between the OS, 
runtime, and hardware to better support EH systems and 
integrate accelerators as first-class compute devices versus 
just accelerators. The OS likely will become less involved 
in direct implementation and more of an administrative 
control plane that interacts with a robust hardware 
abstraction of underlying implementations for task 
dispatch, memory allocation, data migration, and 
scheduling. The runtime probably needs to evolve to pass 
the right kind of information to the hardware and runtime 
to enable lower-level interfaces to make appropriate 
dynamic decisions. The role of hardware likely must be 
increased, but tempered with appropriate open interfaces, 
to achieve the required efficiencies for making maximum 
use of an accelerator-rich architecture. Co-design of the 
architecture, runtime, OS, and application software should 
be pursued to maximize the efficiency, performance, and 
program portability of future systems. 

Additional Discussion. The workshop discussion produced several possible research directions. While 
the narrative of Section 2.3.1 covers them with broad strokes, the specific issues below were expressed 
with high frequency and therefore were pulled out and ordered with respect to perceived importance. 

• Rethinking virtual memory and translation for something that is more flexible for future accelerator 
classes as well as multiple memory and storage types is likely necessary. Industry trends toward 
heterogeneous memory systems and heterogeneous accelerator classes, as well as emergence of and 
awareness of so-called dark bandwidth, make this a critical focus of future architecture, OS, and 
runtime research and co-design. 

• Co-design for accelerator offload methodologies is needed; at what level do the instruction set 
architecture, accelerator, compiler, runtime, and OS interact, and where are the control plane 
boundaries? 
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• Virtualization and compartmentalization of accelerators to optimize for goals such as security, 
efficiency, and overall performance is a critical requirement of accelerator-rich systems composed of 
multiple memory environments. How the OS interacts with future hardware interfaces for these 
environments will constrain and inform future OS design; what are the potential future hardware 
interfaces to accelerators and memory systems? 

• What levels of system virtualization (software stack, runtime, OS, architecture, micro-architecture) 
are needed for future systems to maximize their ability to maintain flexibility in heterogeneous 
accelerator composition, maximize portability, and minimize single accelerator lock-in? 

•  Currently, accelerators interact with the host to handle exceptions and errors through software driver 
layers and exception handlers. Given future systems with many potential accelerators integrated with 
multiple memory/storage devices, standardizing the exception model is critical to ensuring software 
portability. 

• To simplify offload to accelerators for runtime environments and management of offload from the 
OS’s control plane, co-design of future OSs and runtime environments along with the hardware 
abstraction will be necessary to achieve the same level of software portability achieved by current 
systems. 

3.3.2 Finding 10—Decentralized Resource Management 

Definition. Resource management decisions are typically handled in a centralized fashion, under the 
assumption that costs and capabilities are homogeneous and constant. We expect hardware to continue to 
become more dynamic and adaptive in response to factors such as power/energy, so resource management 
policies and strategies must be enhanced to embrace and exploit these changes. 

Rationale. Hardware resources are becoming inherently adaptive, making it increasingly complex to 
understand and evaluate optimal execution and utilization. New scalable methods of coordinating 
resources must be developed that allow policy decisions and mechanisms to co-exist throughout the 
system. 

In addition to a global scheduler—common on contemporary HPC systems—a hierarchy of nested 
schedulers should be provided at the job allocation level and the node level. These schedulers would 
coordinate resource allocation and utilization in a top-down fashion, where the upper levels set the policy 
targets while the lower levels determine the mechanisms to implement those targets. Such schedulers 
should be aware of the disparate hardware present in the system, considering the inherent trade-offs of 
using various devices (e.g., allowing a job to use GPUs could provide a considerable speedup, but at a 
significant increase of the power envelope). 

Resource management needs to be continuously adaptive to match the dynamically changing resource 
requirements of a job, as well as the changing performance and availability of the resources themselves. 
Programming system abstractions should be integrated with resource management, providing information 
such as the overall application progress, the critical path, and preferred resource management approaches 
(e.g., whether in power-constrained scenarios the workload prefers to under-utilize resources on the nodes 
or run on fewer but fully utilized nodes). A suitably adaptive runtime system could dynamically shrink a 
job, vacating some of the resources if so requested. Performance monitoring needs to be integrated into 
such a system as well, providing information on actual utilization of resources to verify that the allocated 
resources are used effectively, thus enabling performance introspection within the system. 
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Additional Discussion. Several prior research projects have advocated for such a dynamic and 
integrated resource management approach. They managed to demonstrate working prototypes, but in 
limited testing scenarios. Future projects should strive for an overall approach that can gain mainstream 
acceptance in production environments. Continuing research and development is needed to achieve a 
critical mass of integrated programming models, runtime systems, performance monitoring systems, and 
system management components. 

Resource management also needs to consider the increasing complexity of application work-loads, which 
may consist of multiple loosely coupled components that could be of different provenance, coded in 
different programming languages and using different programming models, with widely different and 
potentially conflicting resource requirements. A resource arbitration interface is needed, wherein 
application components and the resource manager could negotiate and coordinate on turning the disparate 
individual requirements into a cohesive set that can be satisfied on a node-wide or even job- or system-
wide basis. 

3.3.3 Finding 11—Autonomous Resource Optimization 

Definition. Autonomous resource optimization (ARO) refers to managing system resources without 
explicit direction from the application: while ARO may use provided information in the form of hints, 
such information is optional. The motivation behind such systems is usually to reduce the burden placed 
upon applications to efficiently use an increasingly complex architecture landscape. Instead of a 
prescriptive approach that relies on the developer’s efforts, AROs automatically and dynamically manage 
resources via runtime system and OS assistance. Moving the arduous bookkeeping task of managing the 
resources needed by millions of threads of execution to the system software shifts responsibilities from 
humans to computers, which are much more adapt at performing enormous quantities of simple 
calculations quickly. 

Rationale. Expecting the user or programmer to explicitly map an application onto an ever-expanding 
range of architectural resources is becoming untenable (see the mapping issue in Section 3.1.2). To 
optimize performance and scalability today, users must explicitly place threads and processes on cores 
and must explicitly divide up memory resources and manage locality. Problems result when developers 
encounter new hardware components or capabilities; instead of concentrating on the motivating science 
question, the developer must spend time dealing with sufficiently realizing the present machine’s 
potential without confining the application’s portability to other dissimilar systems. It is our belief that the 
responsibility for efficient use of resources must shift from the user to the system software. All levels of 
resource management should benefit from sophisticated and intelligent approaches to optimize the 
selection of resources to application needs. Moreover, the dynamic capabilities of ARO systems suggest 
important unrealized advantages for resiliency and desirable functionality like resource discovery and 
rolling software updates. 

Additional Discussion. While ARO systems have very promising HPC potential, currently such 
systems are in their infancy. This immaturity may be due to several factors, including the pervasiveness 
and familiarity of existing systems that have few or insufficient ARO capabilities, such as the Linux OS 
and common HPC language runtime systems (e.g., C, C++, and FORTRAN). As a result, vital 
capabilities such as data placement and data movement within complex memory architectures are not well 
understood, much less efficiently managed throughout the lifetime of the data item. Hardware diversity 
makes performance portability in existing system software extremely challenging. Workshop discussions 
for ARO included identifying desirable goals as well as categorizing known issues. Among those points 
are the following: 
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• How should we address the abstract interface to the hardware and memory subsystem? Is it possible 
to handle complex architectures without placing additional requirements on software developers? 
What requirements will dynamic and autonomous system software place on application development 
and languages? 

• How should we address a dynamically changing environment? We need more automated methods 
using machine learning to optimize the performance, energy efficiency, and availability of resources 
for integrated application workflows. 

• How should we address complications that arise at the global OS–local OS boundary? We need more 
sophisticated usage models beyond batch-scheduled, spaced-shared nodes, which add significant 
complexity to the management of system resources. How and when does a cross-boundary interaction 
occur? 

• How should we address performance portability? How can we allow the developer to specify policies 
to be applied without also specifying the portability-reducing mechanisms to be applied? 

• How do we ensure that innovative ARO technologies developed for HPC are adopted by the widest 
supporting community possible? content 

3.4 Modeling and Simulation 

Modeling and simulation (ModSim) of existing and proposed computer architectures and systems have 
been longstanding pillars of the ASCR portfolio [20]. In supporting these research directions, ASCR 
recognized the need to meet performance, energy-efficiency, and resilience requirements of systems and 
applications at all scales—from embedded to exascale—recognizing their broad impacts to the larger 
computational science community in a range of research areas, including those affecting national security 
and domain sciences. 

As we look at beyond–Moore’s law computing, architectures exhibiting EH and specialization appear to 
offer promise to the seemingly conflicting goals of energy 
reduction and high performance. Given the potential diversity of 
heterogeneous components, there is an even greater need for tools 
that provide quantitative evaluation of the performance, energy, 
and reliability of science applications mapped onto novel 
architectures. Such tools are critical to design space exploration of 
specialized hardware building blocks and their interactions. The 
increasingly prominent role of ModSim in the era of EH was 
recognized by workshop participants even before the workshop 
began. A pre-workshop poll surveying attendees for their preferred 
breakout sessions revealed substantial interest, resulting in an 
additional ModSim breakout session being included in the 
workshop. The two ModSim sessions with 39 participants were 
high-energy and highly interactive and resulted in a distillation of 
research directions that will enable quantitative evaluation of EH 
architectures at the function unit, node, and system levels. Further, 
ModSim will play a major role in the design and evaluation of 
programming models/languages and runtime systems to be created 
for EH systems. 
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Status and Recent Advances. Numerous tools have been developed over decades, resulting in a rich 
assortment of mature modeling and simulation tools for traditional compute node components (i.e., CPU 
cores, caches, external memory, and networks). For example, in the CPU simulation space, the gem5 [4] 
simulator is widely used to study CPU cores, cache hierarchy, and on-chip communication, while Zsim 
[57] introduces optimizations to make possible fast simulation of hundreds of x86 cores. Sniper [16] 
trades off between accuracy and speed to facilitate co-design of multicore CPUs and applications. 
Evaluation of heterogeneous coprocessors with application-specific data paths and function units is 
enabled by the Aladdin extension to gem5 [61]. Highly used memory simulators include DRAMSim2 
[56] to simulate DDR memory systems, 3-dimensional stacked memory simulators (e.g., HMCSim [37] 
and CasHMC [29]), and nonvolatile memory (e.g., NVMain [52]). With the emergence of byte-
addressable nonvolatile memory, simulators such as CODES [73] and Supersim [41] are designed to be 
flexible event-driven, cycle-accurate, flit-level interconnection network simulation frameworks. They are 
being used in the Pathforward program to explore extreme-scale network topologies, routing algorithms, 
and router microarchitecture. The Structural Simulation Toolkit [55] is an open-source parallel simulation 
framework with a modular plug-in design to facilitate scalable simulation of CPU, memory, and 
networks. 

Emulation is playing an increasingly important role in speeding up architectural exploration. While most 
hardware emulation tools are kept proprietary to vendors, such as Cadence’s Palladium system, recent 
open efforts have emerged. Examples include the FireSim and the Logic in Memory Emulator (LiME) 
[27], which is an open-source FPGA emulator for design space exploration of novel accelerators closely 
coupled to CPUs. 

Meanwhile, given the size of the EH design space, analytical modeling tools provide early opportunities 
to assess performance and other requirements, such as power, even before the simulators are constructed. 
Two examples include the Roofline model [69] and the Aspen toolkit [64]. These analytical tools 
typically provide extremely fast evaluation at the cost of detail, which can be especially useful in the early 
design phases of new architectures. 

Addressing Extreme Heterogeneity. EH brings significant challenges to ModSim, as well as 
opportunities to advance the state of the art in ModSim tools. However, the participants recognized that 
ModSim tools for EH must span a much wider range of requirements for flexibility, accuracy, and fast 
evaluation than earlier tools. The number of architectural options on the horizon is daunting and demands 
composability and modularity among the ModSim tools themselves. There is a need to quantitatively 
assess new architectural features at a wide range of granularities. Architectural features are proposed as 
fine-grained enhancements within a CPU or GPU microarchitecture, as co-processors to traditional CPUs; 
memory/storage hierarchy innovations, including processing near or in memory; and processing in transit. 
Neuromorphic simulators—including Compass [53], NeMo [51], and MNSIM [71]—are vital for 
verifying hardware performance, testing new potential hardware changes, and hardware co-design. Most 
neuromorphic hardware has not been widely deployed or distributed, so accurate and efficient software 
simulators are key for identifying whether a neuromorphic system is useful for scientific applications. 

As important as the need to accurately capture the characteristics of proposed architectural features, is the 
need to assess characteristics of the proposed interconnect linking heterogeneous components. Accurate 
quantitative analysis through ModSim is needed to guide development of not only the hardware itself but 
also, as important, the supporting software and applications. The tools should be able to measure and 
characterize performance improvements and slowdowns to assess to what extent applications can benefit 
from proposed heterogeneous resources, and how application refactoring or modification affects overall 
performance. The tools should give insight into reasons for unexpected performance. This requires 
system-level ModSim concurrently at the microarchitecture, memory interface, and network interconnect 
levels, posing a scalability challenge to ModSim tools—especially when “applications” consist of entire 

https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/acceleration-and-emulation/palladium-xp.html
https://fires.im/
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workflows. And while accurately capturing the functions and their interconnection with respect to 
correctness and performance is the primary driver, the thermal and power characteristics of heterogeneous 
systems are also needed from the microarchitecture up to the system level. 

Tools must be applied/enhanced/developed to simulate and emulate emerging and envisioned complex 
CPUs that incorporate wide variability in function units, including floating point units of reduced 
precision, mixed precision integer units, and special-purpose intellectual property blocks. It is recognized 
that many-core architectures may require new cache coherence protocols that balance application needs 
for cache coherency with scalability drivers as the number and type of function units on-chip and off-chip 
increases. Interaction of cache hierarchy and function units is subtle and complex, increasing the 
algorithm development challenges of CPU architecture simulators. The complex memory/storage 
hierarchy is expected to include multiple types of memory—on-chip (scratchpad), on-package, on-node, 
and disaggregated, such as high-bandwidth vs. high-capacity memories—requiring detailed and faithful 
ModSim of memory controller designs and a spectrum of memory latencies, bandwidths. and capacities 
[34, 45]. The inclusion of persistent memory with a variety of possibly asymmetric latencies and wear 
characteristics—for example, phase change memory, ReRAM, MRAM, and 3-dimensional NAND—will 
also require new memory simulator modules. 

In highly integrated heterogeneous systems, the overhead of task dispatch and management of 
heterogeneous processing hardware near memory must also be modeled. It is important to capture the 
impact on the whole hardware/software system of introducing novel resources in nontraditional parts of 
the memory/storage hierarchy. ModSim tools must faithfully model, both functionally and in a timing-
accurate model, the communication protocols that use load/store, put, get, and atomic operations, 
especially with respect to the impact of proposed fine-grained communication primitives on whole 
application performance. 

At the discrete component level, new challenges are found in modeling heterogeneous interconnects 
combining photonics with electronic components. At the full system level, there is a need for scalable 
assessment of potential workflows that include disaggregated storage and distributed datasets. 

3.4.1 Finding 12—Methodology and Tools for Accurate Modeling of Extreme 
Heterogeneity 

Definition. New models and modeling methodologies will need to be developed or current ones adapted 
to an increasingly diverse and complex architectural landscape. The space under investigation is 
multidimensional, encompassing disparate technologies including new accelerators, memories, and 
storage; network concepts and beyond–Moore’s law technologies; the triad of performance, power, and 
reliability; applications and algorithms designed for heterogeneity; and static and dynamic modeling. 

Rationale. The current state of the art in modeling methodologies was developed in response to the 
architectures and application structures typically found in today’s HPC landscape. However, as we move 
toward EH and beyond Moore’s law, many of the assumptions built into these methods will no longer 
hold true. The group identified a broad set of crosscutting challenges including 

• Scope and scale: Coverage of new technologies (e.g., device, quantum, neuromorphic, analogous 
computing), new models of computation, and different scales from microseconds (power) through 
workflows (days).  

• Integrated Modeling: Development of methodologies and tools for integrated ModSim of EH 
components and power/performance/reliability/thermal.  
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• Application Modeling: Ability to capture and model realistic application workloads that use very 
diverse compute and storage technologies.  

• Accuracy and Cost Trade-offs: Different levels of accuracy, depending on use cases, for similar or 
better accuracy and level of detail for integrated simulations through new methodologies, reduction of 
model generation and execution time, automation, and simplification of validation.  

• Dynamic Modeling: Methodologies for dynamic modeling: assembling models on the fly for 
runtime/OS/compiler introspection. 

• Interoperability: Supporting interoperability via composition of workload, architecture, 
performance, and physical (e.g., power) models. 

Ultimately, the ModSim breakout participants identified potential research approaches and research 
directions: 

• Methodologies and tools to be researched and encapsulated in tools for ModSim of new architectures 
and applications 

• Investigation of new stochastic methods, machine learning, and other approximation techniques for 
model building and cost reduction 

• Targeted prototyping to assist in whole-system validation; techniques from model correlation and 
verification 

• New model reduction techniques 

• End-to-end performance prediction techniques that allow accurate assessment of diverse technologies 
on real workloads using realistic programming paradigms 

Additional Discussion. The group agreed that there would be a transformative impact on all aspects 
from hardware to workflow design—specifically, predictive and accurate design space exploration, 
optimization and design guide of new systems (memories, I/O, storage, processors, BML architectures, 
and application workloads. Also, this research direction is urgent for the successful transition to EH in 
that many other areas could benefit from useful ModSim artifacts. EH exhibits many degrees of freedom 
in the way workloads are mapped to system resources for optimality. ModSim is the key to achieving 
productive computing by many metrics. The identified research directions will enable comprehensive 
design-space exploration and lead to the ability to optimize execution of apps on systems dynamically. 
Metrics for success include cost reduction in architecture, application mapping, and programming 
model/language and runtime development; improved accuracy; ease of generation; and coverage of a 
wide spectrum of architectures and application workloads. 

3.4.2 Finding 13—Cohesive Integration of Modeling and Simulation Infrastructure with 
Programming Environment and Runtime System 

Definition. ModSim is well suited to helping solve programming and runtime system challenges (see 
Sections 3.1.2 and 3.3.3). ModSim will be critical in the developmental phase of these new solutions, 
facilitating co-design of programming environments with new devices and systems. ModSim will also be 
critical in the production phase, providing dynamic cost models that navigate compilers and runtime 
systems in the multidimensional EH space. 
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Rationale. While EH hardware will be required to satisfy performance/energy requirements, 
programming environments must evolve for these systems to be useful. Programming models geared 
toward EH (Section 3.1.1) and data centricity (Section 3.1.3) must emphasize performance portability 
across many target architectures to avoid a proliferation of device-specific programming systems. In this 
regard, several important challenges emerge. These challenges include the following. 

• Interoperability: How can we make ModSim tools useful and accessible in the design of 
programming environments? How can we integrate ModSim tools into the compilers or runtime 
system supporting a programming environment? 

• Efficiency: Can we develop approximate models and manage accuracy/cost trade-offs within 
ModSim tools to provide sufficiently accurate metrics within cost bounds so that ModSim is useful in 
informing compiler/runtime decisions? 

• ModSim validation: Programming models can be tested only on speculative technologies via ModSim 
if architecture prototypes are not yet available. Programming models on which fundamental design 
decisions are based require validation and verification of ModSim tools to ensure the design decisions 
are valid when deployed on real systems. The term “validation” may have different interpretations in 
different contexts, and the ModSim community currently lacks a general rule for validating 
simulation models. It is worth checking a multistep workflow presented in Mubarak et al. [44]. 

• ModSim diversity: ModSim will explore a dramatic range of new devices from “more Moore” 
architectures that implement existing architectural paradigms with new devices, to disruptive non–
Von Neumann architectures, including neuromorphic and quantum. The diversity of ModSim tools 
will grow with this diversity of proposed architectures. Can ModSim provide “performance model 
portability” to avoid requiring programming environment developers to understand the entire EH 
architecture space? 

From these challenges, the group identified potential approaches. They will require interfacing with 
efforts that further performance portability and those that advance new directions in programming 
models. As we are already seeing, compilers and runtimes supporting each programming environment 
will carry additional responsibility, having to decide between multiple target architectures and also tuning 
multiple parameters within each architecture. The proposed approaches and research directions include 
the following: 

• Management of design space complexity via approximate models: Use machine learning or synthesis 
models to distill complex multidimensional performance/energy behavior derived via ModSim into 
efficient mathematical models. Validation and verification of derived models against detailed 
simulation will be critical. 

• Componentize ModSim software: Direct software integration (rather than workflow integration) with 
compilers and runtimes will be required. ModSim performance models must be usable online via 
well-defined APIs. Although this involves a significant engineering component, significant research 
and exploration is required in collaboration with Programming Environment teams to develop 
interfaces and componentization strategies. 

• “Meta” ModSim to explore hardware acceleration of ModSim techniques: The majority of ModSim 
frameworks use conventional general-purpose CPUs to run simulation. Particularly for emulating 
performance behavior via machine learning models, ModSim can explore new devices or new 
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architectures for accelerating ModSim itself. This will lower its overhead and thereby increase its 
utility to programming environments. 

Additional Discussion. The group identified cohesive integration as the second pillar of ModSim 
research for several reasons. Success in EH ultimately depends on programming environments enabling 
productive application development. Industry tools are likely to be focused on single, proprietary 
architecture or specific market-driven workloads. This likely leaves the burden of programming model 
performance portability on DOE. 

The group also identified multiple metrics for success: 

• Number of programming models/environments leveraging ModSim tools: Although ModSim can 
achieve some success in isolation, success ultimately depends on its usefulness to and adoption by 
programming environments. 

• Improvements in accuracy/efficiency of ModSim performance models: As new mathematical models 
and software tools become available, the speed at which “optimal” execution paths can be down-
selected from a factorial design space via ModSim should be improved. Either the accuracy of models 
should be increased or their software overheads should be decreased to show measurable success. 

• Performance/energy improvements of science and engineering codes obtained by incorporating 
ModSim into programming environments: When ModSim performance models are used to inform 
compilation or runtime decisions, we can measure the actual performance improvement relative to the 
“default” decision made in the absence of ModSim tools. 

ModSim will have a gradual and consistent impact as new tools become available. ModSim tools can 
have near-term impact because ModSim precedes the full development/delivery of new hardware and 
applications. Adoption of tools will depend not only on the maturation of ModSim but also on the 
readiness of programming models/environments to incorporate them. ModSim can “lead” and be ready 
when the EH programming models/environment maturity level requires ModSim cost models. 

3.5 Facilitating Data Management, Analytics, and Workflows 

 EH systems and applications bring significant new 
challenges to usability through an unprecedented variety 
and volume of data, resources, and services. Future 
heterogeneous workloads will feature integrated 
computational, extremely large, experimental, 
observational, streaming, real-time, and multimodal data 
sets. No single data ecosystem will support all these uses 
while fully exploiting heterogeneous architecture. EH 
systems will need to accommodate and integrate complex, 
dynamic, and disparate workflows and software stacks in 
an agile—not monolithic and predetermined—way and 
dynamically manage conflicting resource demands, 
balancing the workload on heterogeneous resources. 

Paraphrasing from the Future of Scientific Workflows 2015 workshop report, a workflow is defined as the 
automation of sequencing, orchestrating, and moving data among the subset of scientists’ tasks involving 
the collection, generation, and processing of numerical data. Workflow execution is the realization of 
systems that aid in the automation of these tasks, freeing the scientist from the details of the process. 
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With heterogeneous architectures, the challenge of productively porting and scaling the performance of 
data analytics algorithms, workflows, and data models across target resources will increase dramatically. 
Performance portability, therefore, is key to successful data science. The increased software and hardware 
complexity of future systems will also impede the usability and productivity of computing resources. If 
we do not address usability and productivity in the data ecosystem, it will be difficult, if not impossible, 
to achieve the needed efficiency gains on future heterogeneous systems. 

To overcome these difficulties, two broad areas of research are essential: 

• Mapping of science workflows to heterogeneous hardware and software services 

• Adapting workflows and services through learning 

Support for work in the productivity and performance portability of workflows was also identified as a 
need, as was research in rapid adaptive analytics to facilitate the use of EH systems by domain scientists, 
not just data scientists. The last two areas are discussed in the Additional Discussion subsection, 
following the discussion of the priority research sub-directions. 

3.5.1 Finding 14—Mapping Science Workflows to Heterogeneous Hardware and 
Software Services 

 Definition. Workflow and data management decision making refer to activities related to the scheduling 
and placement of workflows and data on compute and data resources, and the adjustment of these plans in 
response to unfolding events such as new data, changes to workflow, or changes in cost or availability of 
resources. The group recognized that some of these challenges are similar to the challenges of those in the 
Operating and Runtime Systems area (see Section 3.3); but the workflow challenges exist at a higher level 
of abstraction, on longer timescales, for larger data set sizes, and with potentially global reach. Supporting 
complex workflows requires optimizing for a variety of user- and facility-level objectives that reflect 
goals motivated by issues ranging from scientific discovery to public policy. Optimal data management 
will improve the utilization of EH systems and understanding of the systems and security. Automating 
decision making will also ease programming and increase performance and resource efficiency (RD4.2). 
This in turn will allow application developers and users to focus on science goals by reducing data 
management and processing overhead. 

Rationale. Application teams are moving toward the coupling of many activities and codes—including 
data ingest, simulation, data analysis, and visualization—in which each code has diverse requirements. 
The EH of future systems requires proper abstractions to address this challenge. Workflow execution will 
require distributed optimization frameworks across all layers to support a wide range of data management 
strategies for diverse workloads, from deep learning of simulation data on cold storage, to in situ analytics 
critical for code coupling, to gathering the required provenance for reproducibility. The research 
directions below will not only allow application teams to optimize their workflow as it is running but also 
will expose information to aid teams in their science across the entire data life cycle. 

Data live in a variety of continually updated storage systems and heterogeneous storage devices with 
optimization opportunities that can change quickly. Practically, data are in very large data sets stored 
across—and continually moving among—geographically distributed locations, and across different  
storage tiers. At the same time, each analysis operation may access a different subset of the data, creating 
additional data access challenges. 

Systems with heterogeneous elements and data coming from various sources at varying rates will need to 
execute workflows dynamically. Workflows will need to adapt on-the-fly to rapidly changing resource, 
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data, and user constraints. Such constraints may present challenges such as failing components or data 
logjams, but they may also include opportunities such as new resources becoming available or human 
intervention leading to unexpected discoveries. Irrespective of the causes, workflows will need to adapt in 
real time to dynamic heterogeneity. 

Additional Discussion. In summary, EH systems and applications bring significant challenges to 
usability through an unprecedented variety and number of data, resources, and services. Research is 
needed to enable the discovery and mapping of science workflow requirements to appropriate data, 
hardware, and software services. The development of new methods of composing scientific workflows 
(e.g., via workflow motifs) is similarly critical to the success of future scientific endeavors, especially as 
it relates to moving workflows between platforms. Finally, prompt attention is needed to interfaces that 
facilitate hardware and service composition—“programming environments for data services.” Research in 
this area has close ties to Programmer Productivity (Section 3.1) and should be coordinated with these 
efforts. 

3.5.2 Finding 15—Adapting Workflows and Services Through Learning Approaches 

Definition. Autonomous workflows (AWs) are mechanisms that can be used to independently automate 
“sequencing, orchestrating, and moving data among the subset of scientists’ tasks involving the 
collection, generation, and processing of numerical data” with some initial human input or knowledge 
about workflow goals and constraints. These mechanisms can change a workflow dynamically so that it 
meets those goals and constraints as the workflow unfolds, as resource availability changes, and so on. 

Goals in this context can be specific or general guidelines, such as minimizing or maximizing some 
quantity, or getting as close as possible to a specific quantity; however, the workflow could still operate 
even if that goal is not met: goals are soft constraints. (Hard) constraints are guidelines that specify that 
the workflow must operate within certain bounds: constraints are not negotiable. 

Workflow goals and constraints can be, for example, in the areas of performance, data storage, fidelity of 
results, time-to-solution, resource usage, resilience, provenance, energy usage, communication, and/or 
reproducibility. AWs will need to work with other AWs that may use a subset of the same resources. An 
AW can operate properly and effectively in a system and among other AWs given that 

• It is possible to specify these goals and constraints easily via metrics, models, or other techniques 
(e.g., machine learning). 

• The workflow can be modified to meet the goals and constraints—it can control the sequencing, 
orchestration, and moving of data, as well as the refactoring or rework of the collection, generation, 
and processing of data. 

• It is possible to predict whether a specific workflow will meet the goals and constraints, and adapt the 
prediction based upon new data. 

• It is possible to measure how well the workflow is meeting those goals and constraints by interpreting 
telemetry data in real time. 

• It is possible for the AW to communicate what it knows (goals, constraints, and measurements) to 
other AWs and to incorporate what those AWs know into its body of knowledge. 
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• The inverse problem of “what workflow will have the outcome I want” within the space of possible 
workflows can be solved in an automated way or with minimal human intervention or decision 
making. 

Rationale. Extracting the highest value from EH systems requires rapid, complex balancing across a 
wide variety of computational, storage, and networking technologies in response to a widely varying 
workload and significant rate of faults. Owing to the complexity of and need for timely reconfiguration, 
these workflows will likely need to be guided by human-specified goals and constraints for the work to be 
done but will need to be constructed and dynamically adapted without a human-in-the-loop or with 
minimal human monitoring. Thus, AW is a research area and capability that will be needed, and machine 
learning is a promising enabler of such a capability. 

As a general theme, AWs are at the highest level, using the emerging EH capabilities and research 
developed in other areas mentioned in this report. AWs serve to automate the translation of the work to be 
done into concrete and adaptive workflows that meet human goals and constraints. Without the 
implementation of and research on the other capabilities, the mechanisms to create AWs cannot be 

implemented. 

AWs involve creating a higher-level abstraction that 
uses the abstractions provided by OSs and runtime 
systems to carry out dynamic discovery of resources. 
AW mechanisms are users of the future programming 
system abstractions that will enable adaptive execution 
and autonomous resource optimization. AW 
mechanisms will interface and query these capabilities 
to ensure they are meeting the goals and constraints 
specified for the workflow by the human user. 

AWs will use the future performance modeling and 
prediction methodologies developed in Section 3.4 to 
aid in reasoning about the trade-offs in the use of 
heterogeneous components. AWs will use “cost 
models” produced by future performance modeling and 

simulation infrastructures, and knowledge of the current and future availability of resources provided by 
telemetry data. They will use fault and error detection capabilities as well as the capability to check for 
reproducibility. A workflow system is ineffective if it is unaware of faults and errors, or if it is not 
reproducible to some degree. 

Finally, there is a tie-in with future analytics providing an AW with the information it needs in all the 
areas mentioned previously (resource usage, performance prediction, reproducibility, and fault detection). 
Rapid adaptive analytics could provide AWs with additional nimbleness so that the analytics within 
workflows can be reformulated and are not bound to a specific set of resources. 

At another level, several challenges exist at a lower, infrastructure level, which, when solved, would 
provide a major foundation to build solutions for these challenges. Methods of formally describing 
resources, workflows, goals, and constraints must be developed for the approach to be viable. Research 
into gathering telemetric data, at the system and workflow levels, is needed to understand how to best 
instrument these systems, what data is most valuable for enabling autonomy (e.g., via machine learning), 
and how to collect this data in a scalable manner. Additional research is needed in the application of 
online learning to adapt computation and data organization to available resources, emerging results, and 
new telemetry. Furthermore, research is needed in transfer learning to enable the application of the 
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knowledge learned from optimizing one workflow on one EH system to other types of workflows and EH 
systems. Research in this area has close ties to Managing Resources Intelligently (Section 3.3) and 
Modeling and Simulation (Section 3.4) and should be coordinated with activities in this area. 

Additional Discussion. During the workshop, two additional topics were identified as promising 
directions for future research, although they were not selected as priorities in the short term. 

Facilitating Workflow Productivity, Portability, and Performance. Workflow productivity, 
portability, and performance refer to properties that define time-to-solution for developers constructing 
these workflows, as well as measures of the “quality” of the result. In other words, how easily and rapidly 
a science team can develop or port a workflow to a new platform, and how well the resulting 
implementation makes use of the platform and its resources. Advances are key to executing science 
workflows and understanding their results, enabling efficient execution on diverse platforms, ensuring 
scalability of high-level descriptions of analytics workflows, and increasing user productivity and system 
utilization. This topic is in fact a superset of the two PRDs discussed earlier in this section. Additional 
research challenges in this area include 

• Understanding the trade-offs between productivity, portability, and performance metrics for scientific 
workflows 

• Raising the level of abstraction in workflow descriptions to hide implementations and platforms 

• Modeling user interactions with workflows (e.g., human in the loop) 

Rapid Adaptive Analytics. Rapid adaptive analytics refers to the ability to create advanced data 
analytics that are tuned to a given scientific problem and are specified via high-level goals and a 
description of the input data types. Such a system can compose multiple state-of-the-art machine learning 
and deep learning methods to allow the rapid development of complex, tailored analytics. The availability 
of rapid adaptive analytics means that without data modeling, algorithmic understanding, EH knowledge, 
and supporting data analytics staff, domain scientists can perform the data analysis task in less time, with 
similar or better quality of data analysis, than with supporting analytics staff. This topic also brings 
machine and deep learning to bear on problems of significance to DOE. Research challenges facing the 
development of successful rapid adaptive analytics include 

• Mapping high-level goals to quantifiable optimization objective functions 

• Managing and transforming data representations across algorithms 

• Understanding and modeling error bounds and error propagation 

• Understanding and modeling trade-offs among data models, algorithms, and EH hardware capabilities 
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4. Priority Research Directions 

At the end of the workshop and during the subsequent months, the organizing committee and breakout 
group leads collated, distilled, and prioritized the workshop findings into the following PRDs for extreme 
heterogeneity in HPC: 

1. Maintaining and Improving Programmer Productivity 

• Flexible, expressive, programming models and languages 
• Intelligent, domain-aware compilers and software development tools 
• Composition of disparate software component content 

2. Managing System Resources Intelligently 

• Automated methods using introspection and machine learning 
• Optimize for performance, energy efficiency, and availability 

3. Modeling and Predicting Performance 

• Evaluate the impact of potential system designs and application mappings 
• Model-automated optimization of applications 

4. Enabling Reproducible Science Despite Diverse Processors and Non-Determinism 

• Methods for validation on non-deterministic architectures 
• Detection and mitigation of pervasive faults and errors 

5. Facilitating Data Management, Analytics, and Workflows 

• Mapping science workflows to heterogeneous hardware and software services 
• Adapting workflows and services through machine learning approaches 

This section presents these PRDs and their respective subtopics in more detail. 

4.1 PRD 1—Maintaining and Improving Programmer Productivity 

The very high levels of effort and expertise required 
to develop verifiable, high-performance scientific 
software limit the ability to achieve key scientific 
milestones and transformational discoveries. 
Diversity and heterogeneity in the design of 
supercomputer architectures will increase the 
difficulty of these efforts and directly impact the 
overall time-to-solution. New programming 
environments, methodologies, and tools, combined 
with new approaches for effectively utilizing rapidly emerging capabilities such as machine learning and 
AI, will be essential for reducing complexity and boosting productivity. This will be critical to 
maintaining and establishing competitive advantages across any number of mission critical areas of study. 

Key Questions 
In an era of an increasingly diverse and 
complex computing environment, what 
advances in programming models, 
environments, and tools are required to 
improve the productivity of a broad range of 
scientific software developers? 
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PRD 1.1. Programmability. Programming systems provide abstractions for expressing algorithms and 
computations and the mechanisms for mapping these computations to architectures. This PRD 
encapsulates the need to simplify programming and enable performance portability (write once and 
execute with high performance everywhere). This goal implies more sophisticated implementations: (1) 
higher-level, orthogonal, and layered programming abstractions (descriptive and prescriptive); (2) new 
compiler technology, DSLs, hardware autotuning and software mapping mechanisms; and (3) 
standardization of interfaces (both hardware and software) to support the hierarchical abstractions. 

PRD 1.2. Mapping. Because of the diversity and complexity of EH machines, achieving reasonable 
programmer productivity demands that the mapping of software to specific features of high-performance 
EH architectures be automated as much as practical. Assume we start with a programming interface that 
separates program specification from details of how it is scheduled on the target architecture. Then, this 
research area defines the various approaches for deriving and realizing the mapping across a range of 
architectures, including (1) employing performance introspection to evaluate performance during 
execution; (2) using autotuning, performance models, and machine learning to analyze the results of 
performance introspection and automatically derive or determine how to improve the mapping; (3) 
developing both hardware and software mechanisms that dynamically improve the execution of software 
using results of this dynamic analysis in the context in which the application is executing; and (4) 
collecting and sharing performance data across applications to improve this mapping operation over time. 

PRD 1.3. Data Centricity. The cost of data movement has become a dominant factor for the energy 
efficiency and performance of HPC systems. And yet, contemporary programming environments offer 
few abstractions for managing data locality. Programming models remain steadfastly compute-centric, 
requiring that data move to the location of the scheduled computation, as opposed to a data-centric model 
in which the compute operation is executed in situ where the data is located (thereby minimizing data 
movement). Lacking data-centric programming facilities, application programmers and algorithm 
developers must continue to explicitly manage data locality using tedious methods such as manually 
rewriting loop-nests and reorganizing data layouts to indirectly manipulate the memory hierarchy to do 
the right thing. Some of these optimizations can be implemented through intricate compiler 
transformations, but compilers are often constrained by lack of the necessary information to efficiently 
perform those transformations because the programming model provides only compute-centric semantics. 
Application developers need a set of higher-level programming abstractions to describe data locality on 
the emerging computing architectures. These programming model abstractions can expose crucial 
information about data locality to the optimizing software stack to enable performance-portable code. 
This requires research to explore new concepts that enable data locality to be managed efficiently and 
productively while enabling users to combine the best of these concepts to develop a comprehensive 
approach to expressing and managing data locality for future HPC systems. 

PRD 1.4. Novel Design and Development Methodologies. As has been true for the past six 
decades, those who design and develop scientific software use tools and methodologies to facilitate their 
work and maximize their productivity. Programming languages, higher-level abstractions, libraries, and 
run-time tools for debugging and performance analysis are all part of these infrastructures. Increasingly, 
they are brought together in integrated development environments. Historically, each new generation of 
HPC systems has tended to be more complicated than the last, and this is further compounded by the 
increasing sophistication of the scientific software under development. The EH systems that are expected 
to be deployed in the next decade will further exacerbate this problem, threatening to undermine the 
productivity of scientific software developers, and hence the pace of discovery. Research into new tools 
for the design and development of scientific software is needed to enable effective use of these future 
systems, while striving to minimize the software changes required for each new system. 
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PRD 1.5. Composability and Interoperability. In EH computing environments, we anticipate that 
composition will play a central role in software development. In the “vertical” sense, this activity will 
layer APIs and functionalities from application code, libraries, and runtimes that translate the 
programmer’s intent into execution in the various environments offered by the system. In the “horizontal” 
sense, various software “components” will be assembled to form applications. These separate components 
of applications will have a range of suitability for different architectures and execution environments 
offered by the EH system, which may motivate componentization strategies. In turn, components may 
require very different implementations to work well in different execution environments (in ways that 
cannot be managed more transparently to the programmer), but they must be completely interoperable or 
interchangeable from the viewpoint of the programmer assembling components into the application. 
Likewise, components that interact with one another across the different execution environments must 
interoperate seamlessly, even with very different data representations and other factors. 

4.2 PRD 2—Managing Resources Intelligently 

Manually attempting to coordinate, reason about, 
and schedule the placement of data; which types of 
processors to select for certain calculations; and 
when computations will occur will become 
intractable as the complexity, diversity and scale of 
HPC systems grows alongside increasingly 
challenging scientific missions. Optimized resource 
management decisions must be made at a pace, scale, and level of complexity that exceeds human ability. 
Furthermore, today’s system software is not designed to manage rapid changes in resource scheduling and 
workloads that cutting-edge science and EH systems will demand. Infusing AI, especially machine 
learning, into system software capabilities provides an opportunity for improving and automating system 
use, increasing overall productivity, and accelerating scientific discovery and innovation. 

PRD 2.1. Design of Operating and Runtime Systems. In EH systems, current operating and 
runtime systems (ORTSs) are designed to integrate accelerators and special-purpose devices as isolated 
single-user devices attached over a relatively slow data path. We expect architectural advancements that 
will allow these devices to be virtualized and more easily shared between users, applications, and 
processes. We also anticipate advancements that will allow these components to be more tightly 
integrated on a high-performance data path, such as the memory bus, and to be able to share a uniform 
view of the virtual address space with all the other devices on a node. Additionally, early EH systems 
offered only one accelerator, but future EH systems will have multiple accelerators connected with 
different data paths. The ORTSs must support seamless scalability of these devices and be able to share a 
uniform view of the virtual address space with all the other devices on a node. 

PRD 2.2. Decentralized Resource Management. Resource management decisions are typically 
handled in a centralized way, if costs and capabilities are homogeneous and constant. However, in EH 
systems, we expect performance responses of architectural components to be more complex, as they will 
vary in response to both their designed capabilities and their dynamic and adaptive response to factors 
such as power, thermal, and contention. Since intelligent resource management capability is being 
embedded into hardware devices, the system software must adapt to and react to these changes as well. 
As the number of entities making resource decisions increases, it becomes infeasible to serialize 
distribution of resources through a single point, such as a single scheduler inside the OS. Resource 
management policies and strategies at the node and system levels must be enhanced to embrace and 
exploit these changes. 

Key Questions 
Can AI and machine learning be effectively 
incorporated into system software to 
coordinate and control a large and diverse 
set of computing resources? 
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PRD 2.3. Autonomous Resource Optimization. ARO refers to managing system resources without 
explicit direction of the resources by the application. To optimize performance and scalability today, users 
must explicitly place threads and processes on cores and must explicitly divide up memory resources and 
manage locality. While current techniques may utilize provided information in the form of hints, such 
information is assumed to be optional. Expecting the user or programmer to explicitly map applications 
onto the resources of the EH system is becoming untenable. Hence, the motivation behind such ARO 
systems is usually to reduce the burden placed upon applications to efficiently utilize increasingly 
complex EH architectures. AROs automatically and dynamically manage resources via runtime system 
and OS mechanisms and policies. By moving the arduous accounting task of managing the resources 
needed by millions of threads of execution to system software, we shift responsibilities from applications 
(e.g., software developers) to computers, which are much more adept at quantitative learning and decision 
making. 

4.3 PRD 3—Modeling and Predicting Performance 

With a growing number of options for processors, 
accelerators, networks and memories, optimally 
configuring a high-performance supercomputer for a 
wide range of scientific domains becomes 
overwhelmingly complex. New, intelligent 
modeling and simulation capabilities that facilitate 
evaluation of application behavior for novel 
hardware components would provide important 
guidance to software developers, programming 
environments, and intelligent system software, as well as enable potential system designs to be evaluated 
for their suitability for science and mission needs. This would also allow DOE to consider customized 
systems that can be tailored to mission-critical needs, thus improving productivity and maximizing the 
return on investment. 

PRD 3.1. Methodology and Tools for Accurate Modeling of Extreme Heterogeneity. The 
increasing diversity and complexity of EH architectures will force the development and adoption of new 
performance prediction methodologies and methodologies. Procurements, programming, and optimization 
are becoming increasingly complex as the EH design space adds technologies, including new 
accelerators, memories and storage, networks, and beyond–Moore’s law components like quantum and 
neuromorphic computing. These new technological options will make it increasingly difficult to predict 
performance, power, and reliability; map applications and algorithms to EH architectures; and understand 
how to optimize applications once these systems are deployed in the field. 

PRD 3.2. Cohesive Integration of Modeling and Simulation Infrastructure with 
Programming Models and Environments. Performance prediction is critical to solving imminent 
challenges in programming and runtime systems. These predictive tools will be critical in a development 
phase of algorithm design, will inform the co-design of programming environments for these new devices 
and systems, and will help runtime systems adapt both to changes in the executing system and to the 
application’s dynamic resource demands. Moreover, the tools will be critical in the production phase, 
providing cost models to help compilers and programming systems navigate the vast decision space in 
multidimensional EH architectures. 

Key Questions 
Can advanced modeling and simulation 
capabilities be used to predict (online and 
offline) the performance characteristics of 
applications running on emerging hardware 
technologies and provide insight into the 
design of future systems? 
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4.4 PRD 4—Enabling Reproducible Science Despite Diverse Processors and 
Nondeterminism 

The ability to validate scientific outcomes is 
essential, but it becomes increasingly difficult as the 
number and heterogeneity of hardware components 
grow and computations become increasingly non-
determinate and asynchronous. Effectively 
leveraging the increasing diversity of accelerated 
processors will require different approaches to 
computation that have the potential to impact the precision and thus exact reproducibility of numerical 
calculations. New methods, algorithms, and supporting software infrastructure are needed to enable 
developers to better reason about, evaluate, and limit the impact of these uncertainties inherent in the 
variability among diverse hardware components and workloads. 

PRD 4.1. Correctness. Correctness, broadly speaking, refers to our ability to predict and validate the 
behavior of the software and hardware systems we construct. In the HPC context, correctness 
encompasses not only functionality (how do we know that the system will produce the correct answer) but 
also performance (how do we know that the system will run in an acceptable period with the resources 
available). EH architectures further complicate this area by adding non-determinism, variable execution 
paths, and additional interactions between EH system components, such as memory consistency 
protocols. 

PRD 4.2. Reproducibility. Traditionally, reproducibility means getting the bitwise identical answer 
when running the same program repeatedly, even when considering different hardware resources or 
scheduling. We consider this “complete reproducibility.” Numerical reproducibility, which is predicated 
on enforcing IEEE 754-2008 arithmetic for floating point instructions, presents multiple challenges in a 
parallel environment, because the roundoff errors make floating point arithmetic non-associative. Thus, 
bitwise reproducibility would require imposing severe constraints on the order of execution for operations 
with distributed data structures and is usually too costly to be practical at scale. Therefore, some scientific 
applications achieve scientific replicability when key (but not all) scientific quantities are reproduced 
within measurable error bounds. We consider this “partial reproducibility,” which often suffices to ensure 
correctness of scientific simulations and discovery. For debugging purposes, some parallel codes 
implement a mode to enforce bitwise reproducibility at a much lower performance (e.g., with the same 
order of operations), but they remove this constraint for production runs. In addition, performance 
reproducibility is desirable in many situations. This can be guaranteed only when the program is built 
with the same development toolchain and configuration and run in the same execution environment. 

4.5 PRD 5—Facilitating Data Management, Analytics, and Workflows 

A scientific campaign relies on multiple simulations and/or experiments, which must be coordinated 
across an increasingly complex array of scientific 
instruments, distributed data resources and large 
geographically distributed teams. The system 
software environment must improve to facilitate this 
process across a range and combination of different 
computing and experimental facilities, from finding 
and scheduling the available resources to composing 

Key Questions 
What novel methods and techniques are 
needed to support productive, reliable and 
verifiable scientific findings in the face of 
architectural diversity and variability in future 
systems? 

Key Questions 
What software infrastructure and tools will be 
necessary to achieve usable and productive 
scientific workflow across multiple, different 
and increasingly complex computing 
environments? 
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and executing the complete workflow for a broad set  

 of scientific domains. New and innovative tools will be needed for tracking the scientific process from 
formulation of a hypothesis to final discovery, spanning both the dynamic and static selection of 
appropriate computing and data storage resources, analyzing the resulting data, and cataloging 
experimental results and findings. 

PRD 5.1. Mapping Science Workflows to Heterogeneous Hardware and Software 
Services. EH systems and applications using these systems bring significant challenges to usability 
through unprecedented variety in the number of data, resources, and services. Paraphrasing from the 
Future of Scientific Workflows 2015 workshop report, a workflow is defined as the automation of 
sequencing, orchestrating, and moving data among the subset of scientists’ tasks involving the collection, 
generation, and processing of numerical data. Workflow execution is the realization of systems that aid in 
the automation of these tasks, freeing the scientist from the details of the process. The participants of this 
PRD subdivided the topic into two subtopic RDs. This RD focuses on aspects related to scheduling and 
placement of workflows and data on compute and data resources, and the adjustment of these plans in 
response to unfolding events such as new data, changes to workflow, or changes in cost or availability of 
resources. 

PRD 5.2. Adapting Workflows and Services Through Learning Approaches. AWs are 
mechanisms that can be used to independently automate “sequencing, orchestrating, and moving data 
among the subset of scientists’ tasks involving the collection, generation, and processing of numerical 
data” with some initial human input or knowledge about overall workflow goals and constraints and can 
then schedule a workflow dynamically so that it meets those goals and constraints. Goals in this context 
can be specific or general guidelines like minimizing power, maximizing performance. However, the 
workflow could still operate and degrade gracefully, if it cannot meet those goals and constraints. 
Constraints are critical to satisfy and are not negotiable. 
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5. Summary 

The fundamental trends in computer architecture predict that nearly all aspects of future HPC 
architectures will have many more diverse components than past HPC architectures, leading toward a 
period of EH, including paradigms like machine learning and neuromorphic and quantum computing. In 
January 2018, ASCR convened a Workshop on Extreme Heterogeneity in HPC. The purpose of this 
workshop was to identify the PRDs for ASCR in providing a smart software stack that includes 
techniques, such as deep learning, to make future computers composed of a variety of complex 
processors, new interconnects, and deep memory hierarchies, which can be used productively by a broad 
community of computational scientists and help to preserve investments in DOE software and 
applications. In this regard, significant computer science challenges remain as barriers to efforts to 
develop a smart software stack that will help increase the usability and programmability of future systems 
and that will also increase the productivity of the computational scientists. The primary aim for the 
workshop was to identify the new algorithms and software tools needed from basic research in computer 
science to enable ASCR’s supercomputing facilities to support future scientific and technological 
advances on the DOE Office of Science’s grand challenge problems. In the context of EH, the workshop 
participants defined basic research needs and opportunities in computer science research to develop smart 
and trainable operating and runtime systems, prediction techniques, and programming environments that 
will make future systems easier to tailor to scientists’ computing needs and easier for facilities to securely 
deploy. After the workshop, the organizing committee and breakout representatives merged, collated, and 
distilled responses along five major areas: (1) programming environments; (2) software development, 
sustainability, and productivity; (3) operating system and resource management; (4) data management, 
analytics, and workflows; and (5) modeling and simulation. 

Ultimately, the following PRDs were identified by the participants of the Extreme Heterogeneity work- 
shop. 

1. Maintaining and Improving Programmer Productivity 

• Flexible, expressive, programming models and languages 
• Intelligent, domain-aware compilers and software development tools 
• Composition of disparate software component content 

2. Managing System Resources Intelligently 

• Automated methods using introspection and machine learning 
• Optimize for performance, energy efficiency, and availability 

3. Modeling and Predicting Performance 

• Evaluate the impact of potential system designs and application mappings 
• Model-automated optimization of applications 

4. Enabling Reproducible Science Despite Diverse Processors and Non-Determinism 

• Methods for validation on non-deterministic architectures 
• Detection and mitigation of pervasive faults and errors 

5. Facilitating Data Management, Analytics, and Workflows 

• Mapping science workflows to heterogeneous hardware and software services 
• Adapting workflows and services through machine learning approaches  
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Appendix A: Charge Letter 

The charge letter is appended below. 
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planned Summit upgrade at the OLCF is composed of one CPU coupled to three GPUs and has 
at least three types of memory. A recent analysis of vendors' current architectural roadmaps is 
consistent with the increasing heterogeneity ASCR is seeing in its computing upgrades and 
indicate that future computers will be more complex and composed of a variety of processing 
units and accelerators supported by open interconnects and deep memory hierarchies, in other 
words extremely heterogeneous. 

Scientifically, past DOE investments in applied mathematics and computer science basic 
research and in programs like SciDAC have broadened the community of computational 
scientists using HPC as one tool to address their grand challenge problems. Nevertheless, 
significant computer science challenges remain as barriers to efforts s to develop a smart software 
stack that will help increase the usability and programmability of future systems and that will 
also increase the productivity of the computational scientists. The primary aim for the workshop 
is to identify the new algorithms and software tools needed from basic research in computer 
science to enable ASCR 's supercomputing facilities to support future scientific and 
technological advances on SC program' s grand challenge problems. ASCR's grand challenges 
and the resulting priority basic research directions should be identified by spanning existing and 
next generation computer architectures, including novel technologies that may be developed in 
the "Post-Moore's Law era" and the promising tools and techniques that are essential to effective 
utilization. The workshop and subsequent report should define basic research needs and 
opportunities in computer science research to develop smart and trainable operating and runtime 
systems, execution models, and programming environments that will make future systems easier 
to tailor to scientists' computing needs and for facilities to securely deploy. 

The chair and co-chairs are responsible for leading the entire workshop planning process. The overall 
tasks are listed below in approximate chronological order. We will schedule regular conference calls 
among the chair, co-chairs, and DOE to start the planning process beginning next week. 

● Develop the high-level workshop structure, including deciding on the number and focus of the 
panels. Based on the meeting venue, we can have up to 3 panels. 

● Based on the panel topics, identify possible plenary topics and speakers, 

● Work with DOE to identify panel leads, and then work with the panel leads to identify the 
workshop participants, including a plan to engage a broad range of DOE Lab personnel, 
academics and industry representative. Ideally, this plan will provide for inclusion of people 
who have not participated in ASCR's workshops before. This is a time consuming process that 
we should begin as soon as possible in order to get the meeting on people's calendars. 

● As soon as possible, coordinate preparation of a background document on the status of the 
field that would be distributed to participants ahead of the workshop. DOE program managers 
from ASCR will participate in preparing this document. 

● During the workshop, synthesize the panels' ideas, guide the identification and definition of 
priority research directions, and coordinate an oral report to the full workshop at the closing 
session. 
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● Critically, coordinate and integrate the topical narratives provided by the panel leads and 
other identified writers into a final report As much of the writing as possible is to be 
completed during the workshop, but follow-up writing is almost always required. ASCR 
will support a technical editor to help finalize the document. 

The goal is to have a final report within 3 months after the workshop in order to maximize the report's 
impact on programmatic planning. 

We really appreciate your willingness to lead this essential planning activity for ASCR. 

Barbara Helland  
Associate Director 
Advanced Scientific Computing Research  
Office of Science 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix B: Workshop Agenda 

The final workshop agenda is appended below. Note that when the workshop was transformed to a virtual 
online workshop (see Appendix B and Section 1.1), the agenda was adapted to accommodate several time 
zones and other factors. 

ASCR Computer Science Workshop on Extreme Heterogeneity, 
January 23–25 

Revised Virtual Agenda 

Revised January 25, 2018, 14:43 EST 

All times are Eastern Standard Time 

Tuesday, January 23, 2018 
10:00 – 10:15 Introductions: Lucy Nowell and Jeffrey Vetter 

10:15 – 10:35 Welcome and ASCR Update 
Barbara Helland, Director, Advanced Scientific Computing Research 

10:35– 11:05 View from ASCR Research Division – Steve Lee, Acting Division Director 

11:05 – 11:35 Invited Plenary Talk: IEEE Rebooting Computing – Tom Conte 

11:35– 11:45 Break 

11:45 – 12:15 Invited Talk: Architectural Trends and System Design 
Issues – Bob Colwell 

12:15– 1:30 FSD Introduction to Extreme Heterogeneity – Jeffrey Vetter, John Shalf, and Maya 
Gokhale + FSD section owners 

1:45 – 2:30 Break for lunch 

2:30 – 3:15 Invited Talk: Report on the ASCAC Future of Computing Study – Maya Gokhale 

3:15 – 4:30 Panel on Issues Raised by Extreme Heterogeneity –Moderator Ron Brightwell 
Usability, Understandability and Programmability – Salman Habib 
Operating and Runtime Systems – Ron Brightwell 
Data Analytics – Wes Bethel 
EH Workflow Management –  Ewa Deelman  
Open Q&A 

5:00 – 5:10 Break 

5:10 – 7:00 Switch to BOG mode 
Breakout 1: 

• BOG 1: Programming Environments, Models, and Language – Moderators 
Alex Aiken and Pat McCormick 

• BOG 2: Data Management and I/O – Moderators Rob Ross and Suren Byna 
• BOG 3: Data Analytics and Workflows – Tom Peterka and S. J. Yoo 

7:00 Adjourn for the day 
  



 

 

Wednesday, January 24, 2018 
Session Chair: John Shalf 

10:00 – 10:30 Invited Plenary Talk: Memory Systems and I/O - Bruce Jacob 

10:30 – 11:00 Invited Plenary Talk: Beyond CMOS Workshops - Neena Imam 

11:00 – 11:30 Exascale Computing Project Computer Science R&D for Heterogeneity – Mike 
Heroux Session Chair: Maya Gokhale 

11:30 - 12:00 Invited Plenary Talk: Quantum Computing in ASCR – Ceren Susut 

12:00 – 12:10 Break 

12:10 – 12:40 Q&A/Discussion with morning speakers 

12:40 - 1:10 Invited Plenary Talk – ASCR Scientific Machine Learning Workshop 

1:10 - 1:45 Break for lunch 

1:45 – 2:30 Report Back from Breakout Session #1 and Discussion – Moderator: Jeffrey Vetter 

2:30 - 4:30 Switch to BOG mode 
Breakout 2: 

• BOG 4: Operating Systems and Resource Management – Moderator Ron 
Brightwell 

• BOG 5: Software Development Methodologies – Moderator Sherry Li 
• BOG 6: Modeling and Simulation for Hardware Characterization – 

Moderators Andrew Chien and David Donofrio 

4:30 - 4:40 Break 

4:40 – 6:40 Breakout 3: 
• BOG 7: Programming Environments: Compilers, Libraries and Runtimes – 

Moderators Michelle Strout and Barbara Chapman 
• BOG 3: Data Analytics and Workflows – Moderator Christine Sweeney 
• BOG 8: System Management, Administration and Job Scheduling – 

Moderators Paul Peltz and Rebecca Hartman-Baker 
• BOG 9: Crosscut: Productivity, Composability, and Interoperability – 

Moderator Bob Lucas 

6:40 Adjourn for the Day 
  



 

 

Thursday, January 25, 2018 
10:00 – 11:35 Report Back from Wednesday Breakouts –Moderator: Katie Schuman 

11:35 – 11:40 Break 

11:40 – 1:30 Switch to BOG mode 
Breakout 4: 

• BOG 1: Programming Environments: Abstractions, Models and Languages – 
Moderator Pat McCormick 

• BOG 6: Crosscut: Modeling and Simulation – Moderators Jeremy Wilke and 
Zhiling Lan 

• BOG 10: Operating Systems and Resource Management: Locality and 
Programming Environment Support – Moderator Mike Lang 

• BOG 11: Crosscut: Portability, Code Reuse and Performance Portability – 
Moderator Anshu Dubey 

1:30 – 2:00 Break for lunch 

2:00 – 3:50 Breakout 5: 
• BOG 2: Data Management and I/O – Moderator Rob Ross 
• BOG 12: Programming Environments: Debugging, Autotuning, and 
• Specialization – Moderators Mary Hall and John Mellor-Crummey 
• BOG 13: Crosscut: Resilience and Power Management – Moderators 

Franck Cappello and Kirk Cameron 

3:50– 4:00 Break 

4:00- 4:30 Report backs from those technical areas that have not presented 
• BOG 11 
• BOG 12 
• BOG 13 

4:30 Closing Session – Lucy Nowell and Jeffrey Vetter 
Next steps and timeline 

4:45 Adjourn 

4:50 OC and BOG representatives move to writing session 
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Appendix C: Workshop Participants 

The following is a list of all registered participants for the face-to-face workshop in Washington, DC. 
However, as discussed in Appendix B and Section 1.1, the workshop was quickly transformed into a 
virtual online workshop, making it difficult to measure the full level of participation. For example, many 
organizations, like the DOE labs, allowed open participation for staff in scheduled conference rooms, 
which probably increased participation greatly. The list represents a lower bound on the number of 
participants. 

Workshop Participants 

First Name Last Name Affiliation 
Gagan Agrawal Ohio State University 
Alex Aiken Stanford University/Stanford Linear Accelerator Center 
Esameldin Aly University of Kansas 
Scott Baden Lawrence Berkeley National Laboratory 
Ray Bair Argonne National Laboratory 
Pavan Balaji Argonne National Laboratory 
Kevin Barker Pacific Northwest National Laboratory 
Jonathan Beard Arm Inc. 
Peter Beckman Argonne National Laboratory 
John Bell Lawrence Berkeley National Laboratory 
David Bernholdt Oak Ridge National Laboratory 
Wes Bethel Lawrence Berkeley National Laboratory 
Jay Billings Oak Ridge National Laboratory 
George Biros University of Texas, Austin 
Laura Biven US Department of Energy 
Shekhar Borkar Qualcomm 
Ron Brightwell Sandia National Laboratories 
Anastasiia Butko Lawrence Berkeley National Laboratory 
Suren Byna Lawrence Berkeley National Laboratory 
Kirk Cameron Virginia Tech University 
Franck Cappello Argonne National Laboratory 
William Carlson IDA Center for Computing Sciences 
Richard Carlson US Department of Energy 
Jeronimo Castrillon The Technische Universität Dresden 
Barbara Chapman Brookhaven National Laboratory 
Andrew Chien Argonne National Laboratory 
Alok Choudhary Northwestern University 
Edmond Chow Georgia Institute of Technology 
Almadena Chtchelkanova National Science Foundation 
Robert Colwell Lawrence Berkeley National Laboratory 
Tom Conte Georgia Institute of Technology 
Jeanine Cook Sandia National Laboratories 
Claire Cramer US Department of Energy 
Candace Culhane Los Alamos National Laboratory 
John Daly US Department of Defense 



 

 C-2  

First Name Last Name Affiliation 
Tina Declerck Lawrence Berkeley National Laboratory/National Energy 

Research Scientific Computing Center 
Ewa Deelman University of Southern California 
Ronald DeMara University of Central Florida 
David Donofrio Lawrence Berkeley National Laboratory 
Anshu Dubey Argonne National Laboratory 
Christian Engelmann Oak Ridge National Laboratory 
Mattan Erez University of Texas, Austin 
Robert Falgout Lawrence Livermore National Laboratory 
Nicola Ferrier Argonne National Laboratory 
Michael Garland NVIDIA 
Balazs Gerofi RIKEN Advanced Institute For Computational Science 
Andreas Gerstlauer University of Texas, Austin 
Maya Gokhale Lawrence Livermore National Laboratory 
Gary Grider Los Alamos National Laboratory 
Salman Habib Argonne National Laboratory 
Mary Hall University of Utah 
William Harrod US Department of Energy 
Rebecca Hartman-Baker Lawrence Berkeley National Laboratory/ National Energy 

Research Scientific Computing Center 
Michael Heroux Sandia National Laboratories 
Thuc Hoang The National Nuclear Security Administration 
Adolfy Hoisie Brookhaven National Laboratory 
Travis Humble Oak Ridge National Laboratory 
Wen-mei Hwu University of Illinois at Urbana-Champaign 
Costin Iancu Lawrence Berkeley National Laboratory 
Khaled Ibrahim Lawrence Berkeley National Laboratory 
Neena Imam Oak Ridge National Laboratory 
Latchesar Ionkov Los Alamos National Laboratory 
Kamil Iskra Argonne National Laboratory 
Bruce Jacob University of Maryland 
Douglas Jacobsen Lawrence Berkeley National Laboratory/National Energy 

Research Scientific Computing Center 
Terry Jones Oak Ridge National Laboratory 
Jim Kahle IBM 
Laurence Kaplan Cray Inc. 
Ian Karlin Lawrence Livermore National Laboratory 
Scott Klasky Oak Ridge National Laboratory 
Brian Kocoloski Washington University in St. Louis 
Sriram Krishnamoorthy Pacific Northwest National Laboratory 
Zhiling Lan Illinois Institute of Technology 
Michael Lang Los Alamos National Laboratory 
Randall Laviolette US Department of Energy 
Cara Leckey National Aeronautics and Space Administration 
Seyong Lee Oak Ridge National Laboratory 
Steven Lee US Department of Energy 
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First Name Last Name Affiliation 
John Leidel Tactical Computing Laboratories 
Richard Lethin Reservoir Labs, Inc. 
Vitus Leung Sandia National Laboratories 
Hai Li Duke University 
Lingda Li Brookhaven National Laboratory 
Sherry Li Lawrence Berkeley National Laboratory 
Meifeng Lin Brookhaven National Laboratory 
Gerald Lofstead Sandia National Laboratories 
Robert Lucas University of Southern California/ISI 
Andrew Lumsdaine Pacific Northwest National Laboratory 
Abid Malik Brookhaven National Laboratory 
Carlos Maltzahn University of California, Santa Cruz 
Andres Marquez Pacific Northwest National Laboratory 
Satoshi Matsuoka Tokyo Institute of Technology 
Sonia McCarthy US Department of Energy 
Patrick McCormick Los Alamos National Laboratory 
Lois McInnes Argonne National Laboratory 
John Mellor-Crummey Rice University 
Tiffany Mintz Oak Ridge National Laboratory 
Shirley Moore Oak Ridge National Laboratory 
Kenneth Moreland Sandia National Laboratories 
David Mountain US Department of Defense 
Lucy Nowell US Department of Energy 
Eun Jung Park Los Alamos National Laboratory 
Valerio Pascucci University of Utah/Scientific Computing and Imaging Institute 
Steve Pawlowski Micron 
Kevin Pedretti Sandia National Laboratories 
Paul Peltz Jr. Los Alamos National Laboratory 
Thomas Peterka Argonne National Laboratory 
Robinson Pino US Department of Energy 
Raphael Pooser Oak Ridge National Laboratory 
Line Pouchard Brookhaven National Laboratory 
Lavanya Ramakrishnan Lawrence Berkeley National Laboratory 
David Richards Lawrence Livermore National Laboratory 
Katherine Riley Argonne National Laboratory 
Robert Roser Fermi National Accelerator Laboratory 
Robert Ross Argonne National Laboratory 
Christopher Rossbach University of Texas, Austin 
Barry Roundtree Lawrence Livermore National Laboratory 
Florin Rusu University of California, Merced 
Catherine Schuman Oak Ridge National Laboratory 
John Shalf Lawrence Berkeley National Laboratory 
Sameer Shende University of Oregon 
Mark Sims US Department of Defense 
Shuaiwen Song Pacific Northwest National Laboratory 
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First Name Last Name Affiliation 
Julie Stambaugh US Department of Energy 
Thomas Sterling Indiana University 
Michelle Strout University of Arizona 
Ceren Susut US Department of Energy 
Christine Sweeney Los Alamos National Laboratory 
Keita Teranishi Sandia National Laboratories 
Angie Thevenot US Department of Energy 
Stanimire Tomov University of Tennessee, Knoxville 
Antonino Tumeo Pacific Northwest National Laboratory 
Brian Van Essen Lawrence Livermore National Laboratory 
Eric Van Hensbergen Arm Limited 
Brian Van Straalen Lawrence Berkeley National Laboratory 
Dilip Vasudevan Lawrence Berkeley National Laboratory 
Jeffrey Vetter Oak Ridge National Laboratory 
Uzi Vishkin University of Maryland/Institute for Advanced Computer Studies 
David Wang Samsung Semiconductor 
Noah Watkins University of California, Santa Cruz 
Jeremiah Wilke Sandia National Laboratories 
Samuel Williams Lawrence Berkeley National Laboratory 
Matthew Wolf Oak Ridge National Laboratory 
Nicholas Wright Lawrence Berkeley National Laboratory 
John Wu Lawrence Berkeley National Laboratory 
Sudharkar Yalamanchili Georgia Institute of Technology 
Anthony Yau Department of Defense 
Shinjae Yoo Brookhaven National Laboratory 
Andrew Younge Sandia National Laboratories 

 

 



 

 

Appendix D: Call for Position Papers: Extreme Heterogeneity 

Important Dates 

• December 1, 2017: Position paper submission deadline 

• December 7, 2017: Contact authors will be notified of selection for workshop 

• January 23–25, 2018: Workshop dates 

• Workshop URL: http://orau.gov/exheterogeneity2018/papers.htm 

• Submission URL: https://easychair.org/conferences/?conf=weh2018 

Motivation 

On behalf of the Advanced Scientific Computing Research (ASCR) program in the US Department of 
Energy (DOE) Office of Science and ASCR Program Manager Dr. Lucy Nowell, we are organizing a 
Workshop on Extreme Heterogeneity (EH). EH is the result of using multiple types of processors, 
accelerators, and memory/storage in a single computing platform that must support a variety of application 
workflows to meet the needs of increasingly diverse scientific domains. Extremely heterogeneous 
supercomputers will be acquired by the ASCR-supported computing facilities as we reach the end of 
Moore’s Law while still facing rapidly increasing computational and data-intensive demands. The ASCR 
Computer Science research focus for this workshop is on system software and software development tools 
and environments for supercomputers that will be delivered for operational use from 2025 to 2040. 

The purpose of the EH workshop is to more clearly define the challenges that EH presents to the software 
stack and the scientific programming environment and to identify related computer science priority research 
directions that are essential to making extremely heterogeneous systems useful, usable, efficient, and secure 
for science applications and DOE mission requirements. 

The workshop aims to identify and prioritize research directions by analyzing existing and next-generation 
computer architectures. The workshop will target post-exascale architectures including novel technologies 
that might be developed in the ”Post-Moore’s Law era” and promising tools and techniques, such as 
advanced analytics and machine learning, that might enable efficient and productive use of such 
architectures. Participants will also discuss options to leverage methods developed by industry, such as 
approaches to improved developer productivity for Big Data. 

We anticipate participation by personnel from universities, industry, and DOE national laboratories. The 
workshop will feature a variety of plenary talks and multiple breakout sessions, with every invitee expected 
to participate actively in discussion of potential research directions. 

Workshop participants will produce a report that will define basic needs and opportunities in Computer 
Science research to develop smart and trainable operating and runtime systems, execution models, and 
programming environments that will make future systems easier to tailor to the computing needs of scientists 
and for supercomputing facilities to securely deploy. 

http://orau.gov/exheterogeneity2018/papers.htm
https://easychair.org/conferences/?conf=weh2018


 

 

Invitation 

We invite community input in the form of two-page position papers that identify and discuss key challenges 
posed for supercomputing operating and runtime systems, programming models, and software development 
environments for scientific computing by the trend towards increasing heterogeneity in supercomputer 
architectures and workflows. In addition to providing an avenue for identifying workshop participants, the 
position papers will be used to shape the workshop agenda, identify panelists, and contribute to the 
workshop report. Position papers should not describe the authors’ current or planned research, nor should 
they recommend solutions or narrowly focused research topics. Rather, they should aim to improve the 
community’s shared understanding of the problem space and help to stimulate discussion. 

Submission Guidelines 

Position papers should describe a fundamental Computer Science research direction that addresses key 
challenges associated with extreme heterogeneity. 

• Key Challenges: Which challenge(s) related to EH does this paper address? 

• Research Direction: What is the promising research direction for this topic? 

• State of the Art: Across the community, identify state of the art for this research direction. 

This description should be followed by an assessment of potential research directions based on the 
following dimensions: 

• Maturity: Are there existing methods or Computer Science Program research directions that address 
the challenge(s) and that show promise for scientific computing? What are the indicators that a given 
method or approach will address the identified challenges? If there are not existing methods or 
research approaches to meeting the challenge, can you suggest ways to gain new insight into the problem 
space? 

• Timeliness: Why now? What breakthrough or change makes progress possible now? 

• Uniqueness: Is the identified challenge unique to scientific applications of supercomputing, whether 
for simulation or data-intensive science? What makes it so? 

• Novelty: To what extent is existing method or approach unique to extreme heterogeneity in super- 
computing for scientific research? Is the approach being addressed by other research programs? By 
the private sector? How is this approach different from existing approaches or solutions? Why should it 
be of interest to the ASCR Computer Science program? 

Each position paper must be no more than two pages, including figures and references. The paper may 
include any number of authors but must provide contact information for a single author who can represent 
the position paper at the workshop. There is no limit to the number of position papers that an individual or 
group can submit. Authors are strongly encouraged to follow the structure previously outlined. Papers 
should be submitted in PDF format at the URL listed previously. 



 

 

Selection 

Submissions will be reviewed by the Organizing Committee. Authors of selected submissions will be invited 
to participate in the workshop, which will be held on January 23–25, 2018, in Gaithersburg, Maryland. 
Authors are not expected to have a history of funding by the ASCR Computer Science program. Authors 
of selected position papers will be invited to participate in the workshop based on the overall quality of the 
position paper(s) and an expectation that their active participation in the workshop will stimulate constructive 
discussion by the workshop participants and contribute to an informative report. Unique positions that are 
well presented and emphasize potentially transformative research directions will be given preference. 
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Appendix E: Related Activities 

Not surprisingly, the trends discussed in the Workshop on Extreme Heterogeneity have been recognized 
by the community and presented in recent reports and workshops by a number of other entities. In some 
cases, such as quantum computing, programs addressing these trends have already been created: 

IEEE Rebooting Computing (RC) initiative and conference (link). The current incarnation of 
RC was started by IEEE as a working group to rethink the computer, “from soup to nuts,” including all 
aspects from device to user interface. The RC initiative works from a holistic viewpoint, taking into 
account evolutionary and revolutionary approaches. It sponsors RC summits and cosponsors workshops 
and conferences on related topics. 

International Roadmap on Devices and Systems (IRDS) (link). The International Technology 
Roadmap for Semiconductors (ITRS) tracked the exponential lithography improvements that underpinned 
Moore’s law for nearly 20 years but disbanded in 2015 because further technology-driven forecasts no 
longer made sense with the end of the technology roadmap in sight. The IRDS, which is part of the IEEE 
Rebooting Computing Initiative, has for all practical purposes replaced the disbanded ITRS effort by 
changing from a device/lithography focus to a systems and application focus. 

DOE Big Ideas: Beyond Moore Electronics (BME) (link). This started as a pitch to DOE at the 
2015 Big Ideas Summit for a DOE-wide initiative to create a new public–private partnership for 
basic/applied research to accelerate the development of energy-efficient IT beyond the end of current 
roadmaps as well as maintain an advanced manufacturing base in the economically critical semiconductor 
space. The goal of this eight-laboratory consortium is to enable low-power computing and suitably low-
cost smart grid and building electronics. The scope of this endeavor ranges from materials and devices to 
systems, software, and advanced manufacturing. 

ASCR Quantum Computing Research programs. Quantum computing (QC) is a promising early-
stage technology with the potential to provide a significant impact on computing for scientific applications. 
The DOE ASCR program office has previously held several workshops to gather community input on 
scientific use cases as well as testbed prototypes for quantum computing. The results from these workshops 
have identified new avenues of research for creating algorithms and applications of quantum computers to 
scientific computing as well as a production facilities component that seeks to deploy QC capabilities for 
a broad user community. With a focus on demonstrating the novelty of quantum computing, these ASCR-
sponsored projects hint at some of the looming issues in future computing platforms that are captured by 
extreme heterogeneity. Additional information is available from the workshop reports: 

• ASCR Report on Quantum Computing for Science (pdf) 

• ASCR Report on Quantum Computing Testbed for Science (pdf) 

Alongside recent efforts from ASCR, several other government departments and agencies have invested in 
the development of QC theory, applications, and implementations, including multiple organizations within 
the Department of Defense via the Defense Advanced Research Projects Agency and the military branches, 
the Department of Commerce via NIST, the National Science Foundation, and Intelligence Advanced 
Research Projects Agency. Industrial investments have also increased significantly in recent years with an 
emphasis on early-stage technology development. This includes small-scale quantum processing units; 
small-size application demonstrations in chemistry, materials science, and high-energy physics; and initial 
efforts to define reusable software infrastructure. This vibrant and growing community is augmented by 
international efforts in the European Union, China, Canada, Australia, Japan, and several other countries. 

https://rebootingcomputing.ieee.org/
https://irds.ieee.org/
http://www.postmoore.org/
https://science.energy.gov/%7E/media/ascr/pdf/programdocuments/docs/ASCRQuantumReport-final.pdf
https://science.energy.gov/%7E/media/ascr/pdf/programdocuments/docs/2017/QTSWReport.pdf
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DARPA Electronics Resurgence Initiative (ERI) (link). The DARPA Microsystems Technology 
Office launched a new ERI in 2017 to ensure far-reaching improvements in electronics performance well 
beyond the limits of traditional scaling. The scope of the program includes architectures, design, and 
advanced electronic materials and integration. 

 

https://www.darpa.mil/work-with-us/electronics-resurgence-initiative


 

 

 
 
 
 

 
 
 
 
 

Disclaimer 
This report was prepared as an account of work sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, 
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would 
not infringe privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof. 
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Non-captioned images used in this report are courtesy of Oak Ridge National Laboratory, Los Alamos 
National Laboratory, and several licensed stock photo sources.
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