rammi@

Report of the 2011 Workshop on
Exascale Programming Challenges
Marina del Rey, July 27-29, 2011

ENERGY

Office of Science

Sponsored by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research (ASCR)

ASCR Programming Challenges for Exascale Computing

July 27 - 29, 2011
University of Southern California / Information Sciences Institute (USC/ISI)
Marina del Rey, CA

Workshop Report Committee Additional Authors
Saman Amarasinghe (MIT) Pavan Balaji (ANL)
Mary Hall (U. Utah) Pedro C. Diniz (USC/ISI)
Richard Lethin (Reservoir Labs) Alice Koniges (LBNL)
Keshav Pingali (U. Texas-Austin) Marc Snir (ANL)

Dan Quinlan (LLNL)

Vivek Sarkar (Rice U.) Report Editors

John Shalf (LBNL) Sonia R. Sachs (ASCR)
Robert Lucas (USC/ISI) Katherine Yelick (LBNL)

Katherine Yelick (LBNL)

This paper reports on the results of a workshop on programming models, languages, compilers
and runtime systems for exascale machines. The goal was to identify some of the challenges in each
of these areas, the promising approaches that should be pursued, and measures to assess progress.
The challenges derived from more complex systems with additional levels of memory, orders of
magnitude more concurrency, and with less memory, memory bandwidth, and network bandwidth
per core than today’s petascale machines. Additional problems arise from heterogeneous processor
architectures or accelerators, and the possible need for power and resilience management. The
workshop participants considered a range of approaches, from evolutionary ones based on existing
programming techniques to revolutionary ones that changed the basic concepts for creating and
managing parallelism and locality. They also considered models that separated the intra and
inter-node parallelization strategies and agreed that while there were challenges in both, the more
daunting ones were within the node where most of the hardware disruptions would occur.

As described in this paper the participants in the workshop articulated the research challenges
in programming support for anticipated exascale systems, including specifying what is known and
what remains uncertain.

Contents
Executive Summary

1 Introduction
1.1 Application Requirements
1.2 Advanced programming models and languages
1.3 Language constructs, compiler and runtime engines

2 Hardware Challenges
2.1 Power as a Leading Design Constraint
2.2 Parallelism L
2.3 Locality
2.4 New Communication and Synchronization Mechanisms
2.5 Heterogeneity L
2.6 Asynchrony e
2.7 Fault Tolerance
2.8 Disruptive Changes are Already Underway

3 Application Requirements
3.1 The Extreme-fidelity Science Challenge,
3.2 The Exascale Execution Model Challenge
3.3 Programmatic Challenges

4 Programming Models: Challenges, and Strategies
4.1 Programming Models Stack o
4.2 Major Implementation Challenges
4.2.1 Exploiting properties of the problem domain
4.2.2 Unified Abstract Machine Model
4.2.3 Challenges Particular to Exascale
4.3 Objective Criteria to Assess Programming Models
4.4 Objective Criteria to Assess Programming Notations

5 Compiler: challenges and strategies
5.1 Compiler Organization
5.2 Reconceptualizing and broadening the role of the compiler
5.3 Managing fine-grain parallelism, locality and heterogeneity
5.4 Increasing resiliency
5.5 Managing energy and POWETl e e e
5.6 Support for Domain Specific Languages and Constructs

6 Runtime Systems: challenges and strategies

6.1 Runtime Support for Exascale Execution Models

6.2 Intra-node Runtime Support for Multicore Processors: Current Trends

6.3 Integration of Intra-node and Inter-node Run-time Systems

6.4 Runtime Interoperability Lo

6.5 Decentralized Monitoring, Data Aggregation, Data Analysis, Data Mining, and In-
trospection L L e e e

6.6 Fault Tolerance: Detection and Recovery

ASCR Ezascale Programming Challenges Workshop

10
10
11
11
14
15
15
16
17

18
18
18
20

22
22
25
25
26
26
29
30

31
32
34
37
38
38
39

40
40
41
43
44

44
45

ii

6.7 Compiler/Runtime/User Interface
6.8 Runtime/Architecture Interfaceo
6.9 Interaction between OS and Runtime L.

7 Path Forward

7.1 Introduction e e e
7.2 Evolutionary Path
7.2.1 Considerations
7.3 Revolutionary Path
7.4 Global Considerations L
7.5 Cross-Cutting Issues
7.5.1 Internal Collaborations
7.5.2 External Collaborations
7.5.3 Vendor Interaction
754 TP . . e
7.5.5 Common vs. Vendor Specific Technology
7.5.6 The Vendor Ecosystem
7.5.7 Common Research Infrastructure
7.5.8 Integration vs. Specialization o 0oL
7.5.9 Work replication
7.5.10 Pedagogical Role e
7.6 Programmatic Challenges L L
7.6.1 Programming models. L
7.6.2 Rapid Prototyping of New Language Concepts
7.7 Application Engagemento L
7.8 Strategies for Validation and Metrics

8 Bibliography

References

ASCR Ezascale Programming Challenges Workshop

47
47
47
49
50
ol
54
o4
54
o4
54
o6
56
o7
o7
o7
o7
o7
o7
o8
99
99

61

65

iii

Executive Summary

For application programmers, meeting the exascale challenge will require rethinking the al-
gorithms and software used in HPC applications. Because clock speeds are expected to remain
relatively constant, exascale systems are expected to have approximately 3-5 orders of magnitude
more concurrency than on current petascale platforms. Because the available memory will not
scale by the same factor, machines cannot be exploited simply by weak scaling of applications that
benefit from larger problem sizes as in the terascale and petascale eras. New algorithms will be
required that can exploit vastly more parallelism than existing algorithms without requiring the
same order of magnitude more memory. A further complication is that exascale systems will be en-
ergy constrained, so reducing power consumption will be a paramount concern. Much of the power
required to execute an application will be consumed in data movement, so new parallel algorithms
with improved locality of reference are required.

In the terascale to petascale transition, HPC machines used a consistent execution model as
a network of serial processors, with most of the performance increases coming from single proces-
sor performance increases and larger system scale. While there was extensive performance tuning
with some systems, they did not involve major algorithmic changes or code restructuring. With
the significant increase in complexity of exascale platforms due to energy-constrained billion-way
parallelism, and most of those changes happening within the node architecture, this approach is in-
feasible. We must investigate new abstractions for machines and their execution models. The work-
shop participants therefore considered many different approaches to exascale programming, from
evolutionary ones based on the MPI+Fortran/C/C++ model to revolutionary ones that change
the underlying execution model along with the programming interface.

For the evolutionary approaches, MPI can be used as the software substrate for inter-node com-
munication, but will need to be extended to support resilience, increasing importance of topology-
aware communication, and to take advantage of integration of networks onto processor chips. Even
more significant programming challenges will focus on intra-node parallelism approaches and how
to integrate that parallelism with MPI communication. Although MPI is still popular today within
multicore compute nodes, the shrinking memory space per core and the likelihood of heterogeneous
compute nodes with accelerators make MPI impractical as the intra-node programming model for
exascale. There may be no evolutionary path to an intra-node programming model: popular models
based on serial programming with OpenMP annotations will require significant breakthroughs in
compilers, runtimes and the annotation languages to support mapping onto heterogeneous nodes
with more explicit levels of memory; if entirely new models are developed or adopted from other
fields such as graphics, this may greatly reduce the implementation challenges, but will shift cost
and risk to application software. A more revolutionary approach takes advantage of the hardware
disruptions to rethink the entire software substrate and has the potential to simplify program-
ming by having a superior integration of the parallelism within and between nodes. This approach
can take advantage of global addressability across the machine along with unified abstractions for
handling hierarchies of parallelism and locality. There should be a natural migration path for appli-
cations from the evolutionary to revolutionary approaches, as inter-node communication becomes
more tightly integrated and unified with intra-node parallelism.

Many scientific applications currently hide some of the parallelism within libraries and application-
specific frameworks, so that application programmers do not use MPI directly. These software layers
will continue to be important on exascale machines and may help ease the transition to systems that
require resilience, increased network and memory hierarchies, or even new languages and new forms
of parallelism. Expanding the historical notion of programming language implementation from stat-
ically compiled languages and libraries to more interactive and dynamic ones that use automatic

ASCR Ezascale Programming Challenges Workshop 1

performance tuning, runtime optimization, and programmer feedback, will also be important to
address the performance and productivity challenges. Other tools for correctness and performance
analysis and debugging are also important part of the exascale programming environment, but were
not addressed by this workshop.

The current model of MPI+FORTRAN/C/C++ that has sustained HPC application software
development for the past decade is likely to be inadequate for exascale era machines, and it is im-
portant that new programming techniques are usable across machine scales and are portable across
multiple machine generations. Research investments need to address these aspects of scalability
and portability, as well as offering a transition path for applications through interoperability and
multi-language support. Systems software designers need to rethink programming models, compil-
ers and runtime systems for this new era of fine-grained parallelism, strong scaling, and resilience
on heterogeneous and hierarchical hardware. They need to offer programming techniques that will
be productive and performant across many machine generations, and across current and emerging
application domains.

ASCR Ezascale Programming Challenges Workshop 2

1 Introduction

This report summarizes discussions conducted at the DoE Workshop on Exascale Programming
Challenges held during July 27-29, 2011 in Marina del Rey, California. The goals for the workshop
were as follows [24]:

1. Define objective criteria for assessing programming models, language features, compilers, and
runtime systems for exascale systems, and metrics for their success.

2. Prioritize programming model, language, and compiler challenges for exascale systems.

3. Prioritize options for (i) evolutionary solutions, (ii) revolutionary solutions, and (iii) bridging
the gap between evolutionary and revolutionary solutions.

4. Lay out a roadmap, with options, timeline, and rough cost estimates for programming Ex-
ascale systems that are responsive to the needs of applications and future architectural con-
straints.

To that end, the workshop agenda included 24 presentations by leading experts in parallel com-
puting from DoE laboratories, academia, and industry, six focused panel discussions in break-out
groups, and two general panel discussions. A brief summary of the workshop presentations is
included below, with a focus on past failures and successes highlighted in these talks as well as
recommendations for future directions. The remainder of the report dives deeper into the technical
details of these topics and also discusses their strategic implications in a broader context.

1.1 Application Requirements

Given the workshop’s focus on programming challenges for exascale systems, it was appropriate to
start with a session on application requirements. First, it was observed that past changes in parallel
computing hardware have all relied on programmer intervention [36]. Examples of programmer
intervention for parallel computing include the use of MPI for distributed-memory parallelism,
OpenMP directives for SMP parallelism, SSE directives for SIMD parallelism', and new variants
of C (notably, CUDA and OpenCL) for GPU parallelism. Severe energy constraints will require
applications to exploit multiple degrees of heterogeneity while minimizing data movement, and
current approaches to these requirements also require significant programmer intervention. One
area in which it is hoped that programmer intervention will be minimal is resilience. With hardware
approaches such as ECC available for memory and networks, standard checkpointing techniques
may suffice for processor-level fault tolerance. However, given the tight energy budget for exascale
systems, some application groups may be willing to trade-off resilience for energy/performance
benefits by tolerating the presence of certain levels of error thresholds.

Second, a report on experiences with five applications highlighted promising approaches [32]
on the path to exascale — GTS, PIR3D, fvCAM, S3D and Computational Screening of Carbon
Capture Materials. The first three applications highlighted the importance of hybridization of
inter-node MPI/CAF parallelism and intra-node OpenMP parallelism. For GTS, the classical
approach of only performing MPI communications in OpenMP serial regions was shown to be
inferior to approaches in which inter-node communications are performed by OpenMP threads in
parallel with other computational /communicating OpenMP threads. The experience with PIR3D
reinforced the benefits of hybridization, and demonstrated that the best choice of number of cores

1Given past successes in using vectorizing compilers for vector processors, it is reasonable to expect that compilers
can help reduce the programmer intervention burden for SIMD parallelism (Section ?7).

ASCR Ezascale Programming Challenges Workshop 3

per process to use for OpenMP parallelism can vary significantly depending on the application,
platform, and the scale of the run. The experience with fvCAM showed that there may be cases
when the best choice for performance is to just use one core per MPI process, but the overall memory
requirement was significantly reduced when multiple cores were used within a single MPI process;
these memory benefits of hybridization due to strong scaling in intra-process parallelism will become
increasingly important as the imbalance between computation and memory continues to increase
on the path to exascale. The experience with the Computational Screening of Carbon Capture
Materials application underscored the fact that certain applications can get a very significant boost
from the use of heterogeneous accelerators; for this application, the execution time was reduced
from years to weeks through the use of GPUs. Further, experience with S3D showed that currently
proposed OpenMP directives for GPUs can provide both portability and performance improvements
relative to hand-coded CUDA kernel invocations.

Third, an opinion shared by multiple participants [7,64] is that application developers recognize
the major disruptions expected in exascale systems, and are open to the possibility of rewriting ap-
plications for exascale. However, if a rewrite is undertaken to a new “revolutionary” programming
model, application developers need to be assured that the return on their effort can be leveraged
for multiple years thereafter with at most evolutionary rewrites thereafter (which could include
changes in programming mechanisms and notations, while the overall programming model remains
unchanged). This goal was referred to as requiring at most “one and a half” code re-writes, as
opposed to a rewrite (say) each time a new hardware platform is introduced. Further, the impor-
tance of supporting sparse irregular applications in new programming models was also highlighted,
which includes support for asynchronous data movement and effective movement of non-contiguous
data [7]. Another shared opinion was support for performance transparency such as programmer-
visible maps from logical to physical views of data for locality control [7], and the ability for
programmers to tune for performance, power, and resilience [64]. In addition, the importance of
mini-applications was cited in validating new programming models [64].

Finally, the case for asynchrony was made using a Hartree-Fock theory application as an ex-
emplar [28]. In this application, the use of synchronous constructs such as barriers and collectives
significantly limited the exposed parallelism compared with the intrinsic parallelism the exists if the
application is represented as a directed acyclic graph (DAG). It was recommended that a hierar-
chical approach be pursued for exploiting this DAG parallelism, both in terms of computation and
data hierarchies. A two-fold approach was proposed to support the introduction of new languages:
1) creation of embedded DSLs, libraries, and frameworks in ways that do not require changes to
the base sequential language, and 2) introduction of new general-purpose languages when they are
ready to be adopted by a wide community.

1.2 Advanced programming models and languages

This state-of-the-art session summarized examples of current advanced programming models and
languages whose features could be indicative of constructs that may be expected in future exascale
programming models.

The case for a systematic approach to expressing fine-grained nested parallelism was made in
[10]. The NESL project has shown that it is possible to express large amounts of nested parallelism
in a high-level declarative language in which programmers need not worry about pernicious parallel
programming bugs such as data races and deadlock. Further, this approach to specifying parallelism
provides great flexibility to the implementation in scheduling parallelism at both vector/SIMD and
multicore levels while also using hierarchical approaches to optimizing locality using cache-oblivious
algorithms. There is a natural synergy between fine-grained nested parallelism and the collective

ASCR Ezascale Programming Challenges Workshop 4

operations that have been used for decades by DOE application developers when using MPI and
OpenMP, suggesting that this form of parallelism is a likely candidate for implementation as a new
language or as an embedded domain-specific language (DSL).

A synergistic opinion in favor of functional dataflow programming was offered in [53]. The
justification for revisiting this model is that achieving asynchrony with imperative semantics can
be very challenging, and usually leads to over-specified ordering constraints. As explained in this
presentation, there are a wide range of options to express functional semantics e.g., use of current
languages in a careful way, use of libraries and frameworks, use of directives/pragmas, use of an
embedded DSL with C++ templates (as in Intel’s Ct model), use of new type systems, and the use
of fully functional languages. Further, a clear separation of concerns can boost the productivity of
different classes of programmers (e.g., domain experts, CS experts, hardware experts) when work-
ing at different levels of an application (driver implementation, solver implementation, application
assembly) as shown in figure 1. There was a general recognition across multiple talks that when
talking about programming models it is important to identify, which kind of programmers we are
referring to. The domain experts were loosely referred to as ”Joe” programmers and the computer
science experts were loosely referred to as ”Stephanie” programmers. Their differing levels of ex-
pertise regarding computer hardware and the scientific domain demand a different set of criteria
for the programming environment that they would use. So a Joe programmer would need a more
declarative programming style that emphasizes the semantics of the domain whereas a Stephanie
programmer would want a more imperative programming model that provides full control over
mapping of the problem to hardware architecture. The declarative style of the Joe environment
provides the Stephanie programmers more freedom to rearrange computation to better map onto hi-
erarchical system architecture. One way to provide Stephanie with the constraints for a declarative
style of programming is to have the modules of computation from Joe’s programming environment
obey three simple rule; be stateless, only operate on the data you were given (isolation), hand
control of Main() over to Stephanie. These three principles constitute functional semantics, which
can be implemented in many different ways — from careful programming (shown in Heroux’s talk)
all the way to functional programming languages. Functional semantics provide Stephanie with the
freedom to reorganize computation that she needs for optimization combined with the constraints
required to preserve correctness. However, it is also well know that functional programming cre-
ates implementation challenges in memory management and scheduling. As a result, a pragmatic
suggestion is to build a language that allows incremental adoption of functional semantics rather
than an all-or-nothing approach.

A declarative approach to fine-grained parallelism, as in NESL or dataflow, allows programmers
to “think parallel, write sequential” as advocated in [25]. Another approach to achieving this goal
is to use frameworks such as Tramonto. Both approaches are well suited to the reality that the
number of science experts (justifiably) far outweighs the number of parallel programming experts in
DOE. However, the framework approach also simplifies integration with a cluster communication
library like MPI, by supporting commonly used patterns such as halo exchanges and collectives
without the application programmer having to worry about the details of their implementation in
MPI. The opinion offered in [25] is that MPI can continue to suffice for inter-node communication,
but significant changes are needed at the intra-node level. One suggestion in [25] to simplify intra-
node parallelism is to use stateless vectorizable computational kernels as the basic building block
for applications. This goal is synergistic with declarative approaches to vector parallelism and dag
parallelism. Further, the approach suggested in [25] is to provide domain scientists with a rich
“palette” of intra-node parallel primitives to choose from. Examples of these primitives include
forall parallel loops, reductions, pipeline filters,thread teams, and new storage layouts. Metapro-
gramming and composability are viewed as two requirements for integrating these primitives in

ASCR Ezascale Programming Challenges Workshop 5

Developer Roles Domain CS/Coding Hardware

Expertise Expertise Expertise
Mort

Application: Assemble solver modules to
Joe solve science problems. (eg. combine hydro

+GR+elliptic solver w/MPI driver for Neutron
P rogrammer Star simulation)

Solver: Write solver modules to implement
algorithms. Solvers use driver layer to
implement “idiom for parallelism”. (e.g. an
elliptic solver or hydrodynamics solver)

Driver: Write low-level data allocation/
placement, communication and scheduling
to implement “idiom for parallelism” for a
given “dwarf”. (e.g. PUGH)

Stephanie

Programmer

Figure 1: This diagram shows the stratification of developer roles and expertise on a complex code
project. Domain experts were referred to as ”Joe” programmers whereas the computer science
experts were referred to as ”Stephanie” programmers as shown on the left. The matrix on the
right represents the expertise of these respective programmers in the areas of the science domain,
numerical algorithms, and the low level details of computer architecture and tuning. A person is
an "einstein” if they are an expert, an ”elvis” who is conversant in the area, and an ”mort” who is
a non-expert. The programming environment offered to Joe may require a different set of criteria
than the environment offered to Stephanie.

a standard language. In the opinion of [25], PGAS languages such as CAF and UPC are “too
little, too late” at this stage, and that new programming environments have to be standardized to
ensure that they get full vendor support. On a related note, [15] identified five “anti-patterns” in
HPC programming models — exposing platform details in algorithms, lack of portability, lack of
migration paths, lack of applicability to smaller scale problems and ignoring the development of
tool components such as debuggers performance tools, and storage systems.

Vis-a-vis debugging, a case for higher levels of programming with logical invariants and algo-
rithmic debugging was made in [51] and [42]. The concurrent constraint programming approach
advocated in [51] supports deterministic “tell” and “ask” operations instead of standard imperative
read/write operations on shared data. The Orc language advocated in [42] includes “powerlists”
as a core data structure for synchronous parallelism enabling declarative specifications of algo-
rithms such as FFT. Both approaches also offer the possibility of expressing formal specifications
of algorithms.

Another trend in the talks presented at the workshop was the emphasis on different dimen-
sions of variability that can be expected in future exascale systems and the challenges they impose
on programming models. These include architectural variability, application execution variabil-
ity, algorithmic variability, and application programmer variability [33]. Sources of architectural
variability include multi-threading, memory hierarchies, heterogeneity, and power management.
Sources of application execution variability include strong vs. weak scaling, stand-alone execution
or execution in the context of another calculation, as well as the degree of coupling with other
applications. Sources of algorithmic variability include new coupling of existing components (e.g.,

ASCR Ezascale Programming Challenges Workshop 6

direct vs. iterative solvers), reformulation of existing algorithms (e.g., factorized representation of
a specific input operator), and new algorithms (e.g., low-order methods with increased sparsity).
Another source of application variability is related to earlier comments regarding the separation of
roles and concerns. For example, different abstractions are needed by infrastructure developers and
the implementers of computational methods. An evolutionary approach was advocated in light of
these variabilities, in which programming models are designed to be inter-operable e.g., a phase-
based execution that is capable of dynamically switching between an SPMD model and a PGAS
model. A number of technologies can support this interoperability including the use of DSLs for
key primitives, automatic generation of glue code, auto-tuning, and intelligent/adaptive runtime
systems.

The variability theme was reinforced by the viewpoint of [37] that there will always be a degree
of uncertainty in the global state of an exascale computer, so an “unintelligent design” approach
should instead be pursued in which the exascale computer is a resilient self-aware system and global
state emerges from local behavior. A proof-of-concept of such a self-organizing system that was cited
was past work on “paintable computers” as motivation to apply the same principle to arrays of tiled
processing elements. A key software implication is that the execution model must include dynamic
distributed tasks that can be replicated for fault recovery. This in turn requires the programming
model to support ensembles of tasks interacting through distributed data structures. While there
is past work (such as global arrays and tuple spaces) on such programming model approaches, a
big open problem is how to create new resilient algorithms for these forms of self-aware systems.

Finally, as a counterpoint, an opinion was offered from the hardware perspective that new pro-
gramming models are a necessary part of the codesign needed to perform a system-wide power
optimization for exascale [25]. Further, the two main tests of a programming model are: 1) how
well does it match the application writer’s needs?, and 2) can the hardware implement it in a
performant, energy-efficient fashion? An additional challenge is that exascale hardware designers
need to know what the key elements of the programming model are by 2015, so that the hardware
can be designed accordingly. This talk highlighted key elements that need to be specified in an
execution model (concurrency, coordination, movement of data/computation, naming, introspec-
tion) and summarized the ParalleX model as an exemplar. It emphasized that the current SPMD
approach in MPI is not tenable for an exascale execution model because of its high energy require-
ments. Thus, MPI+X is not the right question to be asking. Instead, the focus needs to be on
small data transfers for both asynchrony, energy efficiency, and high message rates. The talk also
advocated data-oriented synchronization, which was synergistic with earlier discussions of dataflow
computing.

1.3 Language constructs, compiler and runtime engines

Another state-of-the-art session summarized the past and future of implementations of program-
ming models in both compilers and runtime systems.

Two presentations covered a similar theme of previous successes and failures of the compiler
community’s support of high-performance computing, and described a path forward. The first
presentation counted instruction-level parallelism and memory hierarchy optimization as major
compiler successes for the high-performance computing community, the former benefitting from
speculation and branch prediction, and the latter from techniques for loop transformation and
polyhedral frameworks [46]. A unifying aspect of these two optimization areas is that they rely
on the compiler to lower abstraction of the application code to target low-level hardware features.
The second presentation similarly included register allocation and instruction-level parallelism as
key compiler successes for high-performance computing, and described compiler contributions to

ASCR Ezascale Programming Challenges Workshop 7

programmer productivity in general-purpose computing, such as expression and construction of
codes in higher-level languages, elimination of many classes of bugs and portability [1]. Both
presentations declared that automatic parallelization of dusty decks has failed, and had similar
arguments for why this is not a realistic goal. Identifying parallel constructs from sequential
specification requires that the compiler raise the abstraction of the code from what the programmer
has written, resulting in a heroic compiler that is complex and fragile. A proposed path forward
is to rely on the programmer to specify information that is impossible for a compiler to automate,
such as available parallelism, data partitioning, and algorithmic choices. The compiler can then
automate the mapping of this specification to different architectures, perhaps by evaluating a space
of different implementation possibilities proposed by the programmer. Runtime support must then
work in collaboration with the compiler to finalize decisions based on runtime knowledge. Both
talks recognized that a system must support multiple levels of parallel programming expertise —
both the “Stephanie programmers” that are performance experts, and the “Joe programmers”
that are not (such as, for example, the domain scientists). Both speakers also point out that an
evolutionary approach that is based on existing programming models such as MPI and OpenMP
will be insufficient, as they do not support well the proposed features.

A similar set of themes was the topic of a talk on programming model requirements for exascale,
with a cautionary look backward at High Performance Fortran, which engaged the best efforts of
the community during its time but was never able to garner widespread acceptance [38]. From
HPF, we learned that proper data partitioning and optimizing communication were critical to
scalability, and that single-processor efficiency must be competitive with serial implementations.
A challenge of HPF for savvy developers was that it tried to do too much behind the scenes, and
did not give programmers enough control to hide or avoid latency. This talk proposed a unified
programming model for exascale, rather than a hybrid programming model that combines MPI for
domain decomposition and a threading language for each socket (often called “MPI + X”). The talk
proposed partitioned global address space (PGAS) languages as the unified programming model.
Compilers for PGAS, and particularly for CoArray Fortan, can provide the support to communicate
across address spaces, and compiler support to optimize these operations and interface to runtime
layer. The Cilk runtime was also proposed as an exemplar of how to manage plentiful fine-grain
parallelism on a socket. This presentation concluded with an argument that the HPC world moves
slowly, so a new programming model involves working with language standards committees to make
changes to existing languages.

Another presentation echoed the theme of the need to extend existing languages rather than
invent new ones [48]. The reasons included user training, existing code base and tool availability.
In this talk, the proposed solution for exascale was to provide a source-to-source compiler toolkit
for building domain-specific programming models. In this way, a set of users (perhaps “Stephanie
programmers”) could encapsulate abstractions with well-defined semantics into implementations in
the compiler and runtime to support domain scientists (“Joe programmers”). Such support could
also address new exascale challenges such as offloading work to accelerators, improving application
resilience, and energy management.

Another presentation expanded on the theme of new compiler technology needed to address
exascale challenges [34]. The talk pointed out that we should not expect the numerous new chal-
lenges of exascale to be addressed by programmers or libraries, and that compiler support was
essential to managing complexity. The presentation advocated the use of high-level, semantics-rich
programming approaches that are separated from architecture tuning languages such as is done,
for example, in Concurrent Collections (CnC). Compiler support then automates transformations
of code from their semantic description to their implementation on a specific architecture. As a
driver for this sort of approach, could the system automatically check a proof that an application’s

ASCR Ezascale Programming Challenges Workshop 8

implementation is correct with respect to dynamism, faults, precision? This resilience challenge
could be used as a litmus test for the programming language, annotation system, tools, runtime,
and hardware.

The remainder of the presentations in this session addressed runtime mechanisms and their sup-
port in the programming models and compilers. One runtime presentation advocated virtualization
of processor resources in the application program, creating abundant work, dynamic parallelism
and association of data with an affinity to the virtualized parallel constructs [29]. This concept was
called “work-unit, data-unit” or WUDU. Scheduling would be performed dynamically, and may
involve reducing parallelism and migrating data at runtime to map more efficiently to hardware.

On the topic of migrating to new programming models, one presentation argued that it was
essential for new models to interoperate with existing programming models and runtime systems
to offer a smooth migration path [5]. Interoperability was defined as being able to use data from
one model in a different model, with safe use of data buffers and the ability to use data objects on
other models as examples. Resource management and tool availability were cited as other barriers
to interoperability.

Related to interoperability, another presentation described four key intermediate-level parallel
programming constructs that would require support in programming models, or at least extensions
to evolve current runtime systems: (1) asynchronous tasks and data transfers; (2) collective and
point-to-point synchronization and reductions; (3) mutual exclusion; and, (4) locality control for
task and data distribution [52]. The talk described language support for these concepts in X10
and Habanero. The compiler should be involved in supporting these constructs for a scalable
implementation, while evolutionary solutions would focus on runtime support.

ASCR Ezascale Programming Challenges Workshop 9

2 Hardware Challenges

Over the past forty years, progress in supercomputing has benefitted from improvements in in-
tegrated circuit scaling according to Moores law, which has yielded exponential improvements in
peak system-level floating-point performance. HPC system peak floating point performance (an
indirect measure of system capability) has consistently increased by a factor of 1000x every 11
years. Moore’s law has supplied 100x of that improvement, but the extra 10x has been delivered
through innovations that are specific to the leading-edge HPC architectural space.

Unfortunately, for the first time in decades, the advances in computing technology are now
threatened, because while transistor density on silicon is projected to increase with Moores Law,
the energy efficiency of CMOS logic in silicon is not. Power has rapidly become the leading design
constraint for future HPC systems systems. Numerous studies conducted by DOE-ASCR [58],
DOE-NNSA [59] and DARPA [19] have concluded that given these new constraints, the current
approach to designing leading-edge HPC systems is unsustainable as it would lead to machines
consuming hundreds of megawatts. New approaches will not emerge from evolutionary changes
in processor speed and scale from todays petascale systems, but will require fundamental break-
throughs in hardware technology, programming models, algorithms, and software at both the system
and application level.

The primary design constraint for future HPC systems will be power consumption, and the
cost of data movement has overtaken the energy cost of a floating point operation. Consequently,
management of data locality is key to future scaling of application performance and energy effi-
ciency. Programming models, algorithms, and applications must evolve to overcome these disruptive
changes in hardware characteristics. This section provides a short overview of how the emerging
design constraints motivate changes in the construction of future programming models.

2.1 Power as a Leading Design Constraint

Since 1986 performance has improved by 52 percent per year with remarkable consistency. During
that period, as process geometries scaled according to Moore’s law, the active capacitance of circuits
scaled down accordingly. This effect is referred to as Dennard scaling after the theory advanced
by Robert Dennard of IBM Research in 1974 [50]. As a consequence of Dennard scaling, supply
voltages could be kept constant or even dropped modestly in order to allow manufacturers to
increase clock-speeds. This application of the Dennard scaling parameters, known as constant
electric field frequency scaling [13] fed the relentless increases in CMOS CPU clock-rates over the
past decade and a half. However, below the 90nm scale for silicon lithography, this technique began
to hit its limits. With the end of Dennard scaling, power density has now become the dominant
constraint in the design of new processing elements, and ultimately limits clock-frequency growth
for future microprocessors. Energy efficiency of all design choices has become the leading order
constraint on the future system architectures.

The direct result of power constraints has been a stall in clock frequency that is reflected in
the flattening of the performance growth rates starting in 2002 as shown in Figure 2. In 2011,
individual processor cores are nearly a factor of ten times slower than if progress had continued at
the historical rate of the preceding decade. Other approaches for extracting more performance such
as Instruction Level Parallelism (ILP) and out-of-order instruction processing have also delivered
diminishing returns as shown in Figure 2.

ASCR Ezascale Programming Challenges Workshop 10

10000000

1000000 . =
¢ Transistors (Thousands)

= Frequency (MHz)
a Power (W) >
10000 +—— © Cores

100000 —

1000

100 /

10

1

0 T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 2: This graph shows that Moores law is alive and well, but the traditional sources of
performance improvements (ILP and clock frequencies) have all been flattening. The performance
of processors as measured by SpecINT has grown 52% per year with remarkable consistency, but
improvements tapered off around 2003 due to the end of Dennard scaling rules. (This figure is
based on original data from Kunle Olukotun and Herb Sutter, but updated with more recent data.)

2.2 Parallelism

With growth in clock frequency stalled, performance growth is new being achieved by an exponen-
tial growth in the number of processing elements per chip and growing hardware threading per core.
Having exhausted other well-understood avenues to extract more performance from a uniprocessor,
the mainstream microprocessor industry has responded by halting further improvements in clock
frequency and increasing the number of cores on the chip. The number of ”cores” or explicitly
parallel computational elements per chip is likely to double every 18-24 months henceforth. These
trends motivate new programming abstractions that virtualize the notion of a core (implicit paral-
lelism) and threading APIs with expanded semantics for thread control, placement, launching, and
synchronization as well as scalable runtimes to manage massive numbers of threads.

2.3 Locality

Systems today, and those anticipated in the future, are increasingly bound by their communications
infrastructure and the power dissipation associated with high-bandwidth information exchange
across the rapidly growing number of computing nodes. According to DOE and DARPA projections,
the energy efficiency of a FLOP in 2018 improves by a factor of bz to 10z from an equivalent 2008
FPU [19,54], but the energy required to move data is NOT improving at a corresponding rate as
shown in figure 5. The cost of moving data over conventional copper wires is proportional to the
product of the bitrate and the distance traversed, which leads to highly localized bandwidth [6,40,
41]. Whereas our existing programming models embody a notion that communication costs between
cores on-node are equal and that MPI communication between nodes is equal cost, the emerging
machine architectures are increasingly non-uniform. Management of data locality has become a
first order concern. This motivates adding features to the hardware design and to the programming

ASCR Ezascale Programming Challenges Workshop 11

1.E+09 billio: per cvele
1.E+08 EFMY LR
1.E+07
E 1.E+06 1 million| per cycle
7] _—
£ 3
5 1.E+05 =
]
s
O 1.E+04
= X
©
B 1E+03 1,000 [per cyrcle
-
- 0
e <@
1.E+02
P 000
1.E+01 “x
X X
1.E+00 -
/72 76 171780 1/1/84 /1788 11/92 1/1/96 1/1/00 1/1/04 1/1/08 11712 1116 11720
¢ Top 10 = Top System ———-Top 1 Trend X Historical Heavy Node Projections

How much parallelism must be handled by the program?
From Peter Kogge (on behalf of Exascale Working Group), “Architectural Challenges at the Exascale Frontier”, June 20, 2008

Figure 3: With flat clock rates, all performance improvements must come from parallelism. Exascale
computing systems are anticipated to contain millions or even billions of FPUs (source DARPA
FEzascale Report [19])

environment that conserve bandwidth (both on-chip and off chip) by carefully managing data
movement to stay within practical thermal limits. Programming tools, execution models, and their
requisite runtime systems must become aware of data locality to conserve available bandwidth
and reduce power consumption. Diminished off-chip bandwidth (both memory bandwidth and
interconnect bandwidth) motivates execution model that offers more explicit management of both
vertical and horizontal data locality to conserve bandwidth. This also motivates an execution model
that allows computation migration, i.e., migrating an executing thread from one core to another;
in many cases execution migration can reduce the number of bits that need to be moved across the
chip.

Vertical data movement is defined as the communication of data through the memory hierarchy
(from memory to processing element and back). Existing automatically managed caches virtualize
the notion of vertical data locality because it is convenient for our current programming models, but
this approach will be very difficult to scale efficiently because it restricts the ability of programmers
to make energy efficient or bandwidth conservative choices for data locality. Software controlled
memories (such as STT Cell Local Stores) are emerging as an effective approach to explicitly manage
data movement. The STI Cell has demonstrated huge benefits of using software-managed memory
to explicitly control data movement [66,67], but it has also demonstrated the pitfalls of the approach
because the local-stores are difficult to program.

Horizontal data movement refers to communication between peer computing elements in a
system. Whereas existing programming models have evolved with an assumption of uniformity of
data access performance between peer computing elements within a node or between nodes in a
system, the locality-dependence of data communication is breaking that assumption. By 2018 chips
are anticipated to have hundreds or even thousands of processing elements per chip. However, even
with aggressive chip stacking (8-layers), the communication fabric that connects these processing
elements together will need to scale out in a primarily 2-D planar geometry as shown in Figure 4
from the 2009 DOE Exascale Hardware Workshop [54,61]. It is increasingly impractical to offer
an interconnect topology with uniform bandwidth and latency between all cores and memories

ASCR Ezascale Programming Challenges Workshop 12

within a node due to the wiring constraints, especially the superlinear wiring complexity and
power consumption for a crossbar. By the end of the decade, the cost of moving data a mere 20mm
across the surface of a chip will exceed that of performing a floating point operation (FLOP) as
shown in Figure 5.

(a) 2Dplanar (b) HierarchicalMachine

Figure 4: As the number of computational elements per chip scale to hundreds of endpoints,
Networks-on-chip are expected to adopt constrained topologies (meshes or torus) as they scale out
a 2D planar geometry with hundreds of processing elements [54,61]. The abstract machine model
may need to include notions of hierarchy or even topology for effective management of horizontal
data locality.

The topological constraints for horizontal data locality management together with the band-
width locality constraints currently manifest themselves as NUMA (non-uniform memory access)
behavior. We have witnessed a exponential growth rate in the quantity and performance disparity
of NUMA domains for existing petascale node architectures. This trend is expected to continue
at an exponential pace through the decade, with the Cray/AMD systems going from 1 NUMA
domain in the first Jaguar to 2 NUMA domains for JaguarPF, and 4 NUMA domains in the latest
NERSC-6 XE6 nodes (shown in figure 4 on the right). The on-chip fabric will increasingly resem-
ble the topology of past system-wide networks. As the number of NUMA domains scales up, the
topological connectivity between processing elements using Networks-on-chip (NoCs) will become
increasingly important.

There are a number of new considerations that must be managed by programming systems as
a result of locality management concerns.

System-Scale Topology Constrained interconnect topologies such as torus and dragonfly, require
topology aware communication. The need to optimize the mapping of the application commu-
nication pattern onto diverse interconnection network topologies (e.g. toruii or dragonflies)
motivates the need for topology-aware communication mechanisms in an execution model and
for automated methods supported by runtime communication topology monitoring.

Chip-Scale Topology Increased localization of bandwidth due to cost of data movement results
in exponential growth in the number of NUMA domains/chip. Networks-on-chip will require
topology aware communication mechanisms. This motivates use of similar mechanisms for
communication topology introspection and optimization that are required for the system-scale
interconnect.

ASCR Ezascale Programming Challenges Workshop 13

Intranode/SMP Internode/MPI

Communication Communication
10000

c 1000
‘% On-chip / CMP
& -
8 communication
(=]
> 100
&
2
= —&—now
o
= 10 —8-2018

1

Q = N o
. \Q\ (\'f _\\\ o «}\ \C\\

Q‘\ & o~ o~ Ks) & &

) Q¥ [A\ »

< & & R \c\“ o

& o &~ o ¢

Figure 5: With new scaling rules and massive growth in parallelism, data locality is increasingly
important. This diagram shows the cost of a double-precision multiply-add at different levels of
the memory hierarchy (from the cost of performing the flop to the movement of data operands
from registers, different distances on-chip, and distances off-chip.) The model or FPU and register
access is based on the Tensilica LX2 core energy model, the energy consumed for cross-chip wires
uses the Orion2 power model which is based on Balfour’s model [6], memory access is based on the
JEDEC DDRzx memory roadmap, and cross-system is based on projections for VCSEL-based optical
transceivers.

2.4 New Communication and Synchronization Mechanisms

Increased use of non-conventional (non-cache-coherent) methods for interprocessor communication
on chip (e.g. GPU Warps and Intel SCC inter-processor hardware message queues) suggests new
approaches are needed for expressing data locality so that runtime systems can manage data move-
ment instead of increasing the burden on the application programmer.

Configurable Caches: Increased use of configurable caches (automatic vs. user-managed) to
explicitly manage vertical data movement. Motivates new APIs for making effective use of
these new hardware locality management features in a cross-platform manner.

Coordinated Power Management: Local power management decisions (such as Intel/Sandybridge
thermal-throttling of FPU clock rates) will result in system-wide performance inhomogeneity.
This motivates systemwide coordinated power management.

Energy Aware Data Movement/Load-Balancing: New sources of transient load-imbalances
are increasing (such as software-based fault resilience mechanisms, and localized power man-
agement), but rebalancing the load may be more costly than tolerating it. Balancing the cost
of fixing a load-imbalance vs. tolerating its continuation requires an API for expressing the
energy-costs of data movement to the application and runtime.

ASCR Ezascale Programming Challenges Workshop 14

2.5 Heterogeneity

Accelerators and heterogeneous processing offer an opportunity to greatly increase computational
performance within a fixed power budget, while still retaining conventional processors to manage
more general-purpose components of the computation such as operating system (OS) services.
Currently, such accelerators have disjoint memory spaces that are at the other end of a constrained
PCle interface. That architecture makes programming very difficult due to the lack of support for
implicit data movement. There is a move to integrate scalar cores with accelerators. These projects
include AMD’s Fusion, Intels MIC, and NVIDIA’s recently announced ARM-64 IP agreement.
We need to understand what the minimum necessary application-level information is required to
manage computation for both categories of heterogeneous processing systems.

2.6 Asynchrony

The SPMD style of programming dominates the DOE workload. This approach has a lower cogni-
tive load for programmers (it is easy to reason about), but exposes programs to severe performance
losses due to sources of load imbalance. With exponential increases in system parallelism the con-
sequences of such load-imbalances are much greater, and are further compounded by the fact that
the sources of load imbalances are increasing.

SPMD /bulk-synchronous programming models presume that massively parallel systems offer
homogeneous performance properties across their computing elements. However, numerous sources
of performance inhomogeneity are emerging that may challenge our ability to maintain this illusion
of uniformity. It remains to be seen whether SMPD-oriented programming models can be preserved,
or if a more asynchronous execution paradigm must be considered to overcome the increasingly
heterogeneous nature of future machines.

Hardware and software overheads have stymied previous attempts to introduce alternative,
naturally asynchronous programming paradigms such as dataflow. It will require a quantitative
assessment of programming model alternatives and realizable implementations on exascale hardware
to determine a path for future programming models that can benefit from asynchrony.

Sources of non-uniform execution rates that contribute to load-imbalances include the following;

Adaptive Algorithms: The most commonly cited sources of load-imbalance are irregular and
adaptive applications. In the context of SciDAC, adaptive applications will be critically important
to tackling future multi-scale multi-physics computational problems. Adaptive Mesh Refinement
(AMR) approaches can also dramatically reduce memory footprints and power consumption by
applying increased resolution and computation only where it is needed.

The fastest FLOP is the one you dont have to execute.

The consequent benefits of reduced memory utilization through selective refinement are also im-
portant since the DARPA and DOE reports predict future machines will have severely constrained
memory capacity because industry is no longer able to improve DRAM density as fast as logic
density.

Power Management: From an applications perspective, active power management techniques
improve application performance on systems with a limited power budget by dynamically directing
power usage only to the portions of the system that require it. However, current power management
features are primarily derived from consumer technology, where the power savings decisions are all
made locally, which is tremendously non-optimal for large-scale systems. Performance heterogeneity
due to thermal throttling of CPU clock rates (local decisions) will be increasingly prevalent. In
particular, Intel has introduced Turbo Boost technology into its Nehalem line of chips that can
temporarily boost the clock rate of the FPU if the chip is under-utilized. Whereas Nehalem will

ASCR Ezascale Programming Challenges Workshop 15

use turbo-boost if only one core is active, Sandybridge expands this capability to temporarily
boost clock rates until the chip gets too hot to operate, at which point it backs off the clock rate
incrementally in response to temperature. However, non-uniformities in the chip fabrication process
leads to chips that heat up at different rates, and consequently the thermal throttling will behave
non-uniformly across the system. This is not unique to Intel, performance variations due to such
process non-uniformities are anticipated to increase in the future leading to massive imbalances.

Fault Resilience: Another source of non-uniformity is fault detection and recovery mecha-
nisms. There are examples of codes that saw load-imbalances that were traced back to correctable
ECC errors in the memory system [62] causing irregular execution times. With increased soft
error rates, such sources of irregularity will increase even for non-adaptive codes despite the fast
response rate of hardware recovery mechanisms. This will get dramatically worse with the move
towards software mechanisms for fault resilience, which take much longer to recover from transient
errors. Whereas application load-imbalances tend to be persistent, so that the cost of correcting
the imbalance in one application timestep can be amortized in the improved efficiency of subse-
quent timesteps, correcting transient load imbalances caused by fault recovery require new runtime
mechanisms to both detect and proactively react to load imbalances.

Current SPMD programming models are ill-prepared to accommodate these emerging sources
of performance heterogeneity. New mechanisms are needed to alert applications and system ad-
ministrators that performance is being impacted by thermal variations or by hardware detection
and correction of errors. It would likely simplify exascale system designs if these mechanisms could
report such errors and leave it to the application to respond rather than having to transparently
correct them.

2.7 Fault Tolerance

As with system power usage, we are faced with a looming crisis in system reliability. Current
projections [27,31] anticipate exascale systems in 2020 with hundreds of millions of cores. Circuits
will have feature sizes as small as 7 nm, and they will operate at lower voltages than today.
These very small feature sizes and the growing total feature count in a system will significantly
increase the variability in the behaviors of different circuits and thus the probability that some
circuit will occasionally produce the wrong result. In addition, these circuits will be implemented
in deep submicron technologies with unknown aging issues. Today’s petascale systems are already
vulnerable to such soft faults. The 108k-node Blue Genel. at the Lawrence Livermore National
Laboratory (LLNL) suffered one L1-cache bit flip every 4-6 hours and similarly, the ASCI Q machine
experienced 26.1 cache errors per week [39]. More general failures are widely reported in a variety
of clusters [3,4].

The semiconductor manufacturing industry cannot be expected to expend the money to harden
circuitry to the required levels for exascale systems since high-volume commodity systems in 2020
will have many fewer components. While data paths and memories can be protected with error
correcting codes, logic cannot. Traditional triple modular redundancy (TMR) techniques require
at least three times the hardware, consuming three times the energy, and hence are not an option.
Therefore, we will need to invent techniques that can asymptotically provide the reliability of TMR,
yet at a minimal hardware and energy cost (perhaps 10%).

Soft faults can affect applications in three major ways. First, they can reduce performance,
leading not only to longer execution times but also higher energy consumption. Second, they can
cause unexpected application aborts, which can cost large amounts of debugging effort looking for
phantom coding errors and force applications to re-execute, wasting significantly more time and
energy. Finally, and most important, they can corrupt the application’s results, possibly leading

ASCR Ezascale Programming Challenges Workshop 16

to invalid conclusions derived from the results of the computation. These outcomes underscore the
need to study the resilience of scientific applications, identify their most vulnerable components,
and design techniques to address these challenges. The technology that enables such resiliency
will have to span the entire system stack, from circuit design to applications. It will include new
mechanisms for detecting errors in hardware. There will had to be system software to isolate and
contain faults, remap applications, and resume them from a correct state.

2.8 Disruptive Changes are Already Underway

The following architectural features are already present in existing petascale systems, and the
technology trends are already apparent from examining 3 generations of petaflop-scale leadership
computing systems in the DOE. Table 1 shows that the progression towards the disruptive changes
predicted for exascale systems in 2018 are already underway today. The target for exascale pro-
gramming models may well be the first-derivative of the exponential changes that are anticipated
rather than the specific design of a single exascale platform.

System Cray Cray Cray Change
Architecture XT3 XT4 XE6
Clock (GHz) 2.80 2.3 2.2 flat
Cores/node 1 4 24 exponential growth
FLOPs/core 5.6 9.2 8.4 flat
Memory /node 4GB 8GB 32GB modest increases
Memory/core 4GB 2GB 1.3GB decreasing
NUMA Domains/node 1 2 4 exponential growth
STREAM mem BW /node 4.5GB/s 14 GB/s 51 GB/s modest increases
STREAM bandwidth/core 0.8 0.4 .25 decreasing

Table 1: Summary of emerging hardware trends that are already evident in the last three generations
of Cray hardware.. The disruptive changes to hardware characteristics are already well underway.

ASCR Ezascale Programming Challenges Workshop 17

3 Application Requirements

Exascale-class computing presents application developers with several unique challenges beyond
those posed by current HPC systems. Some of these issues are driven directly by the hardware
challenges outlined in Section 2 and present themselves to the application developer collectively
as the exascale execution model (Section 3.2), while additional challenges flow from the extreme-
fidelity science enabled by exascale machines (Section 3.1). This section will conclude with a
discussion of programmatic challenges in Section 3.3.

3.1 The Extreme-fidelity Science Challenge

From the perspective of memory volume or arithmetic throughput, the needs of computational
scientists are, for all practical purposes, unbounded. As computing power grows, resolution in-
creases, time scales are extended, and the number of phenomena that can be studied together, in
context, increases. Application codes have moved from one, to two, to three-dimensional geome-
tries, often on unstructured and dynamically changing grids. Growth in computational capability
has also enabled the expansion of simulations using discrete particles, including highly accurate
many-body quantum theory predictions, molecular dynamics simulations, and Monte Carlo appli-
cations. In the next generation of application codes there will be a continued drive towards higher
fidelity through full multiphysics simulations of real-world phenomena. Examples include full nu-
clear reactor simulations from the fuel and chemistry to the containment vessel, plasma physics
simulations that model the extremely small scale of the fusion reaction all the way to the fusion
device’s heat exchange mechanisms, quantitative theoretical understanding of the multiphase inter-
facial dynamics of excitons and molecules, and complicated combustion engine models that capture
detailed chemistry and fuel combustion in addition to the turbulent dynamics. Figure 6 shows a
typical multiphysics simulation which captures different regimes of material state (solid fragments,
radiating plasma, and vapor) all on an irregular moving adaptive mesh.

The various physics models employed must be designed to inter-operate in a multi-scale, mul-
tiphysics environment, both in terms of data layout and in terms of employing the appropriate
boundary or scale-coupling physics. Additionally, challenges arise when considering the large scale
of the systems that can be studied with an exascale machine. Convergence of numerical methods
often slows as the system size increases and conditioning becomes worse. Development of new pre-
conditioners and judicious use of variable precision (both lower and higher than double) can deal
with some of these issues. However, in some cases, the best approach may be to rethink the theories
and methods employed to find better-suited approaches in the context of extreme computational
power and the concomitant large physical system sizes.

3.2 The Exascale Execution Model Challenge

The manner in which scientific software is developed is both influenced and constrained by founda-
tional factors, ranging from the computing platforms available, to programming languages, software
libraries, mathematical algorithms, and even the precision of the arithmetic. This ensemble has
been referred to as the ezecution model [60]. An execution model is not simply a programming
model, it provides the conceptual scaffolding for deriving system elements in the context of and
consistent with all of the others. It is a coherent abstract schema that permits co-design and
operation of such multiple layers.

The parallel scientific and engineering applications written for today’s execution model tend to
be large codes, often with many years of effort behind them. The computational scientists who

ASCR Ezascale Programming Challenges Workshop 18

0.06

0.04-

0.02

0.00+

-0.02

:0.04

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
(cm)

Figure 6: A typical current-day multiphysics simulation including vastly different physical regimes
from hot vaporizing plasma to cold fragmented solid, all on a moving AMR mesh.

have written them enjoy an execution model that has been slowly evolving for half a century. This
model has largely assumed a von Neumann node architecture, programmed in Fortran and more
recently in mainstream languages such as C++. Leadership class systems for the last two decades
have been large ensembles leveraging components developed for commodity markets, utilizing the
Message Passing Interface to realize Hoare’s communicating sequential processes model (CSP).
The end of Dennard scaling and the advent of multicore microprocessors has reintroduced shared
memory to the individual nodes of the model. Hardware for improving graphics performance has
reintroduced data parallel computing to the model for individual nodes (SSE and/or GPUs).

The prospect of moving today’s codes to a new model is daunting to the application scientist.
However, if a new programming paradigm allows a significant performance improvement and/or
the ability to add significant new physics, application scientists will adopt the new model. Such
transitions have happened before, first with the emergence of vector mainframes and later, with
distributed memory CSP systems. The execution model must change to allow for code developers to
fully exploit such systems by offering appropriate architectural features, programming models, and
APIs to effectively utilize memory hierarchies, manage faults, and minimize power consumption.
The process to make this adjustment will be highly application-dependent. Some applications may
be able to achieve sufficient efficiency on an exascale machine using an evolutionary approach,
where gradual software changes result in an exascale-ready application. Other applications will
require a revolutionary approach necessitating an extensive rethinking and rewrite of the code.
Indeed, this has already happened in some application subdomains to deal with recent increases in
both architectural and application complexity, a case in point being the Tensor Contraction Engine

ASCR Ezascale Programming Challenges Workshop 19

(TCE) Domain-Specific Language (DSL) used in many-body theory as illustrated in Figure 7.

EOMCCSD(T)

n 1 vnmﬁ/‘fab _ Vnznfa{/‘tab +

1
4 Vef Vij “mn 2 Tef “mi'nj

B Tce

next = NXTASK(nprocs, 1)

DO p3b = noabt1,noabt+nvab

DO p4b = p3b,noab+nvab

DO hlb = 1,noab

DO h2b = hlb,noab

IF (next.eq.count) THEN

CALL GET_HASH_BLOCK(d_a,dbl_mb(k_a),dim
- 1+ (noabtnvab) * (hlb_1 - 1 + (noabt

+nvab) * (p3b_1 - 1)))))
CALL GET_HASH_BLOCK_I(d_a,dbl_mb(k_a),d

10000 100000
Number of cores

Figure 7: The Tensor Contraction Engine generates high-performance code from a high-level
domain-specific language, thus reducing the coupling between application and architecture com-
plexity into a relatively small translation layer. The resulting code has demonstrated excellent
scaling to today’s largest machines.

The dominant driving force that will cause applications to undergo a revolutionary change
is the need for higher performance in the solution of new science problems and the underlying
architectural changes described in the Section 2. Concurrency will increase exponentially, and
neither memory bandwidth nor volume will keep up with the growth in arithmetic performance.
Locality must be exploited in a way that allows the memory hierarchy to be used with good power
and time efficiency. Soft error rates will increase, and it will no longer be enough to simply drop an
occasional checkpoint to achieve resilience. Finally, to attain orders-of-magnitude more concurrency
than today, it is likely that we will need to rearchitect our application code base, and perhaps even
our methodologies, in order to exploit finer-grained parallelism. However, a revolutionary change
for each future generation of hardware is unacceptable. It is necessary to design an execution model
that can be applied to exascale machines and their descendants. Essentially the same application
code must be portable from developers’ laptops to the exascale and beyond. They must present
abstractions to applications programmers which map into multiple architectures. Once applications
have made a revolutionary change, then future adaptations, if necessary, must be evolutionary.

3.3 Programmatic Challenges

The current approach typically taken towards application development is to adapt an application to
new hardware once the characteristics of the hardware design have been fixed. Exascale machines

ASCR Ezascale Programming Challenges Workshop 20

will not have enough margin in feeds and speeds for applications to perform well using this decoupled
design approach, motivating the concept of hardware/software co-design for exascale systems. This
requires the diversion of application developers’ attention from the math, physics, and programming
issues at hand to interactions with vendors and computer scientists. In order to get sufficient mind
share from developers for co-design to succeed, we must rethink how projects are structured and
funded, and the ASCR Exascale Co-design Centers are a small step in this direction.

An additional burden on application developers is the anticipated need to perform a revolution-
ary rewrite of their codes. Even though this may be justified strictly in terms of the new capabilities
permitted in such a rewrite, this is still a psychological hurdle which many developers still find dif-
ficult to accept, particularly given the current uncertainty as to how the exascale execution model
will manifest itself. Computer scientists, with input from application developers, must soon begin
charting a clear path that developers can confidently follow to obtain exascale-ready applications.

Finally, only one or two of exascale machine designs are likely to be built, at least initially,
and these must support the needs of multiple applications. Either the current applications being
targeted to exascale will end up bearing enough similarity to each other that co-design will converge
onto a single platform with sufficient performance for all, or it will be necessary to prioritize
application requirements in consideration of realizable hardware designs.

ASCR Ezascale Programming Challenges Workshop 21

4 Programming Models: Challenges, and Strategies

DOE codes have largely evolved from being directly written in C++/Fortran with MPI into being
layered above sophisticated frameworks and making heavy use of libraries. The complexities of
node-level parallelism are forcing another form of layering, with two levels of parallelism. As systems
become more complex, it usually becomes necessary to add more layers of abstraction between the
application programmer and the hardware. Each layer is associated at least implicitly with an
abstract machine and a related programming model. An abstract machine exposes some but not all
features of the platform, and the programming model permits the specification and optimization
of how those features are used by the program without having to deal with the complexity of
the full machine. It is useful to distinguish between a programming model and a programming
notation, which refers to the actual syntax and semantics of the language used to express programs
in that model; in general, a given programming model can be implemented in many programming
notations.

The production of high-performance code for an application therefore involves multiple levels of
transformation that map a high-level specification of a problem into an executable that is specific
to a particular platform. Each transformation maps a higher level programming model into a lower
level one. The higher-level models are more problem-domain specific, while the lower level models
are more machine specific. Transformations at the top level currently tend to be more manual, while
the transformations at the bottom levels tend to be more automated and are usually performed by
compilers.

4.1 Programming Models Stack

Figure 8 shows one possible stack of programming models. Although the figure is very general,
we will use examples from the digital signal processing (DSP) domain to illustrate various points.
At the highest level, we might have a very abstract specification of the computation; for example,
a linear transform like an FFT of a certain size might be specified by writing down the matrix
representing that transform. In general, there are many algorithms for implementing a given spec-
ification, and it may be advantageous to use different algorithms on different platforms. Therefore,
the first transformation determines which algorithm is best suited for the machine of interest, and
produces a representation of that algorithm. For the FFT example, this step involves determining
the best factorization of the transform matrix. In most domains, this step is currently done man-
ually, but in DSP, this step has been automated by systems like SPIRAL, using very sophisticated
search techniques. The next step in lowering the abstraction level might map the computations
and data of the selected algorithm to a virtual topology of abstract processors, and select a partic-
ular communication framework such as MPI or active messages. At this point, the computations
mapped to a single node are still represented abstractly. The next step might choose library routines
for implementing some of these computations; for the remaining computations, it might generate
OpenMP or CUDA code. The resulting node program might be optimized further by a compiler
using transformations like loop blocking and loop invariant removal, and then converted into exe-
cutable code. At runtime, this executable might be optimized using just-in-time techniques if this
is useful for the particular problem domain.

A variety of technologies exist for implementing these programming models: frameworks embed-
ded into general-purpose languages, domain-specific languages, pragmas and annotations, libraries,
meta-programming, etc. What is important is that the existence of these well-defined layers enables
distinct programmers with specialized skills to work at different levels — with “Joe” programmers
that are highly skilled in the application domain working at the top level(s) and “Stephanie” pro-

ASCR Ezascale Programming Challenges Workshop 22

Specification

| Algorithm |

/%

Abstract node program +
communications

N
Abstract representation +
computational libraries

T

Optimized sequential
code + runtime calls

y

| Runtime optimized code |

Figure 8: Possible Stack of Programming Models

grammers that are highly skilled in the computing domain working at the lower level(s).
With respect to such a stack of programming models, the parallel programming community has
learned a number of important lessons over the decades, summarized below.

1. In environments where performance is paramount, full automation of transformations may be
infeasible: even for simple tasks such as matrix multiplication, a carefully hand-coded library
usually achieves better performance than code produced by a compiler from a triple-nested
loop. Therefore, a properly designed hierarchical environment should support the intervention
of the “human in the loop” at each level.

2. In environments where performance matters, the successive mappings should not only be
(mostly) “semantic-preserving”, but also (approximately) “performance-preserving”. Other-
wise, one cannot manage performance at the higher levels of programming through the design
of efficient algorithms. This means that one should be able to define performance metrics at
each level of the hierarchy and define how performance metrics at a higher level map into
performance metrics at the lower level. The metric of operation counts, which is useful in
the context of sequential programming, does not capture parallelism, and does not capture
communication/memory accesses, which is the dominant performance bottleneck today as
well as tomorrow in the exascale era.

3. While automated translation tools are good at preserving semantics, they are not as effective
at preserving performance: Programmers are repeatedly surprised by programs that “do not
behave as expected”. Even with a perfect translation, programmers have wrong expecta-
tions about their programs; their programs have semantic bugs and performance bugs. These

ASCR Ezascale Programming Challenges Workshop 23

are discovered through a debugging and tuning process that tests the software. Bugs intro-
duced at some programming level must be fixed at that programming level. Therefore, a
good hierarchical environment has to support accurate “reverse mapping” where semantic
or performance information captured at execution can be translated into semantic or per-
formance information at the level of a programming model, and information expressed in a
lower programming model can be translated back into concepts of the higher programming
model.

4. There is an inherent conflict between good isolation between layers and performance. Isolation
between layers restricts the amount of information passed across layers and hides the details
of lower layers. This facilitates programming at a given level. However, good performance
may require passing more information across levels.

5. While the current conventional view is that the high level stages require more manual effort,
increasingly, the application of automation for higher levels of programming are increasingly
the norm. Tools like the aforementioned SPIRAL and FFTW perform algorithm exploration
automatically, and increasingly, can exceed the performance of that attainable by human
programmers through the sheer range of alternative mappings that can explored and the
target complexities that can be managed. As evidence, it is the case that the major vendors
of high performance math libraries are moving away from doing this coding manually with
outsourced mathematician teams in low-wage countries and toward moving to auto-generation
of the libraries from tools such as SPIRAL. This is increasingly the trend for linear algebra
and spectral transform (e.g., FFT) libraries. The reason for this is that the portability of
middle and lower levels of code, especially across different hardware targets and through
hardware generations, is increasingly low. It is not just the particular blocking of loops or
unrolling, or register use, but the specific algorithms themselves need to change from machine
generation to generation. Thus any investment in coding at low levels of the programming
stack for libraries or application code, will have very short time for payoff, as it will rapidly
become obsolete with hardware architecture changes. In contrast, investment in programming
at higher levels, with richer levels of semantics, and the embodiment of tools for automating
the exploration of algorithms, is the trend for its better long term payoff. Furthermore, it is
likely to be the route to the absolute best performance.

These considerations lead to a view of the stack of programming models illustrated in Figure 9:
The successive mappings from level to level are “semantics and performance-preserving”; reverse
mappings translate information captured during execution to the constructs of each programming
model, to support debugging and tuning (system in the loop); and the Joe and Stephanie program-
mers, while preferring to program at higher levels, do occasionally program directly at lower levels
(human in the loop).

Programming models that permit this kind of user intervention and guidance at all levels of
abstraction are called multi-resolution programming models. It is important to note that each pro-
gramming model will be embodied in a particular programming technology (language, framework,
library) and will come with a suitable programming environment. The programming environment,
which consists of the set of tools available for creating, generating, debugging, testing and tuning
codes is a major contributor to productivity, often more important than the programming model
itself.

ASCR Ezascale Programming Challenges Workshop 24

System

in the
; Loop
T
“ o

PM1

A

) ~
~
~

~, v

(PM4
Human
in the
Loop

4

execution

Figure 9: Interactions

4.2 Major Implementation Challenges

In this subsection, we discuss the major challenges in implementing a programming models stack
like the one shown in Figure 8.

4.2.1 Exploiting properties of the problem domain

At the very highest level, the programming model is likely to be a domain-specific language. This
is because in many problem domains, there are domain properties that can be used to optimize
programs: compilers and runtime systems must be able to exploit these properties for performance,
and the programming notation used by the application programmer must not obscure opportunities
for exploiting them. For example, matrices have a rich algebra, and exploiting these algebraic
properties can improve the performance of matrix computations dramatically. If the programming
notation allows programmers to use matrices as data types and to write expressions involving
matrix operations like addition and multiplication as APL, MATLAB and Mathematica do, it
is possible for a compiler to optimize these programs by exploiting the algebraic properties of
matrices. However, if the programming notation is like FORTRAN-77 and requires matrices to be
expressed as two-dimensional arrays, and matrix computations to be expressed using nested loops
and indexed access to arrays, it is much more difficult for a compiler to exploit matrix algebra to
optimize programs since the high level abstractions are missing in the application program.

While the example above illustrates in the familiar terms of automating the exploration of
different linear algebra algorithms, there are benefits to pushing toward higher level expressions of
the problem domain. This can provide additional semantic information to be mined by automated
tools for program mapping and also for verification. For example, programmers coding scientific

ASCR Ezascale Programming Challenges Workshop 25

applications should be provided domain languages for expressing the underlying partial differential
equations for the system under study. This can be annotated with information that is known to
the domain scientist, such as value ranges, symmetries, and boundary conditions. Furthermore,
with the trend toward multi-physics simulations, the different physical models could be expressed
at high-level. Particularly with the demands of finding more parallelism/concurrency for exascale,
and the criticality of eliminating communication, such very high level programming (VHLP) will
be essential. VHLP will expose opportunities for new dimensions of concurrency, such as places
where the nature of the underlying physics removes the requirement for particular orderings of
operations. Or for example, expressing physics at high levels of abstraction exposes opportunities
for high-level scheduling transformations that fuse model evaluations at grid points in order to
eliminate communications and memory traffic. Recent research in FLAME [17] provide a guideline
for high-level specification of a range of linear algebra operations. One particular exemplar of
moving to the level of the physics are programming approaches working from the variational form
to facilitate exploration with discretization and solver strategies in finite element methods [30].

Exploiting domain properties to optimize programs does not necessarily require a different
domain-specific language for every problem domain. A language like C++ that provides extensi-
bility through the use of features like meta-programming and templates might be adequate as a
sandbox for prototyping systems that exploit domain-specific properties. New languages can be
designed after the utility of such systems has been demonstrated and there is enough experience in
using them.

RESEARCH QUESTIONS: How do we build systems that support programming notations in
which programs can be written directly in terms of domain abstractions? How do we build systems
that permit domain experts to specify properties important for program optimization? How do
we build compilers and runtime systems that can optimize programs using the domain knowledge
specified by domain experts?

4.2.2 Unified Abstract Machine Model

At the lowest level, the programming model must expose a unified execution model that provides
abstractions for the communication system, memory hierarchy, and core heterogeneity of future
high-end machines. This execution model can be parameterized suitably to adapt it to a particular
machine. The abstractions should capture all aspects of machine architecture that may substan-
tially impact the performance of programs, without being so detailed as to be overwhelming and
intractable for programmers.

RESEARCH CHALLENGE: Develop a common machine model that abstracts performance-critical
features of future high-end machines such as core heterogeneity, memory hierarchy, and communi-
cation topology.

4.2.3 Challenges Particular to Exascale

The problem of building suitable multi-resolution programming models is difficult in general, but it
is exacerbated for exascale machines by a number of cross-cutting concerns, including the following.

Parallelism: roughly 1 billion threads

Memory: the amount of available memory, which is likely to be relatively smaller per ALU than
in today’s systems

Bandwidth and latency: Communication, at all levels of the system (caches, memory, remote
nodes) will be the main performance bottleneck and the main source of energy consumption.

ASCR Ezascale Programming Challenges Workshop 26

Hierarchy: The system storage (caches, memory, disks) is organized hierarchically; accesses to
lower levels of the hierarchy consume more energy, suffer from increased latency and are more
bandwidth limited. The storage hierarchy becomes deeper, with the inclusion of various forms
of persistent memory.

Communication and synchronization mechanisms: The architecture provides a different set
of communication and synchronization mechanisms: coherent shared memory, non-coherent
shared memory; atomic read-modify-write operations; rDMA; channels; etc. The mechanisms
differ at different levels of the same system and across systems.

Energy: Energy consumption per solution becomes a critical resource; the architecture will provide
multiple mechanisms to control energy consumption of various subsystems.

Resilience: A lower MTTI may require exposing failures at higher levels of the stack.

Heterogeneity: The system is likely to include different types of computation engines (CPU-like
and GPU-like).

All these aspects do not necessarily have to be handled at the top level - indeed, the way we
defined the programming models stack, no aspect of the architecture is visible at the topmost level,
and all levels of the architecture are visible at the bottom level. The key issue in the design of
the stack of programming models is to decide which aspects of the system are made apparent to the
programmer at what level.

Let us consider each of the previously listed aspects in turn.

Parallelism: There is no consensus about the programming level at which parallelism must be
exposed explicitly. The precise form in which parallelism is exposed currently varies between
systems:

1. A fixed number of statically mapped threads (e.g., MPI)

2. A rarely changing number of semi-statically mapped threads. The threads are occasionally
remapped, for load-balancing (e.g., Charm++)

3. A frequently changing number of dynamically mapped tasks (e.g., Rice’s Habanero).

Hybrid approaches such as MPI4+OpenMP or even MPI4+OpenMP+CUDA are being used to
express multiple levels of parallelism in application programs.

As codes become more irregular and dynamic, it becomes more important to support a pro-
gramming layer where parallelism is dynamic, with mapping possibly controlled at a lower layer.

RESEARCH QUESTIONS: What is the right mix of information provided by programmer, derived
by the compiler and derived by the run-time that should be used to expose parallelism and control
mapping? How are mapping decisions stacked across layers? At what level is the number of nodes,
the number of cores per node, etc., exposed to the programming model, and how? How does one
manage the trade-off between load balancing and locality?

Heterogeneity: FExascale computers will likely combine conventional cores with GPU-like SIMD
cores and, possibly, cores that support high levels of concurrent multithreading. The different cores
present different programming models at the bottom of the stack. Different exascale systems are
likely to have a different mix of such engines, with differing architectures, and differing connectivity.

RESEARCH QUESTION: At what level of the programming models stack can we abstract the
differences between such cores? How?

ASCR Ezascale Programming Challenges Workshop 27

Memory: The current programming model is that of virtual memory at each node. More explicit
memory management may be needed in the future for large NUMA nodes and for systems that
replace caches with scratchpads. If a framework is used for the management of the data structures
(e.g., meshes), then memory management could be handled in the framework implementation.

RESEARCH QUESTION: What additional hooks are needed for efficient memory management
and at what level of the programming stack should those be provided?

Bandwidth and latency: The interconnect bandwidth and latency constraints of a system
are addressed by managing communication. For many applications, communication already is the
main performance bottleneck in current systems, and it will become an even greater challenge in
the exascale era. Communication minimization often requires algorithmic solutions, hence needs to
be handled as an algorithm design problem. Furthermore, as the number of cores per chip increase,
on-chip communication becomes a major issue. For data-parallel computations with a fixed data
layout, communication can be largely handled via data partitioning. Codes with more dynamic
data structures (AMR, particle algorithms, multi-scale algorithms) may require more dynamic
repartitioning and/or software caching.

RESEARCH QUESTION: What level of programming support is needed to minimize communi-
cation? Is it possible to support good locality, while using a global name space? Is it feasible to
handle communication as done in sequential systems — as a temporal locality issue — and having
good temporal locality mapped into low communication by hardware and run-time?

Hierarchy: Many codes are currently written with a one-level hierarchy (all MPI codes), with
multiple MPI processes per node; an increasing number of codes are written with a two-level
hierarchy (MPI+OpenMP). Exascale systems are likely to exhibit deeper hierarchies. Current
approaches to handle the HW hierarchy expose the size of each level of the system: e.g., number
of cores per node and number of nodes. This impairs code portability. One alternative approach,
which has been explored by the Cilk project, is to express parallelism using recursive divide-and-
conquer constructs; these can be naturally mapped onto any hierarchical hardware (similar to
cache-oblivious algorithms that map to any storage hierarchy) — but, as currently implemented,
may not preserve locality.

RESEARCH QUESTIONS: Can the hierarchical nature of exascale systems be managed, at the
top layers of the programming models stack, using “oblivious” divide-and-conquer control and/or
data partitioning constructs?

Communication and synchronization mechanisms: The communication and synchroniza-
tion mechanisms used intra-node are very different than those used inter-node — not only in per-
formance, but also in semantics. This difference is currently exposed in the programming layers
used by application programmer. Exascale systems may add one more layer of complexity; e.g., in
a chip where cores are partitioned into clusters, with coherent shared memory inside cluster and
non-coherent shared memory across clusters.

RESEARCH QUESTION: To what extent is it possible to hide at the higher levels of program-
ming the differences between the communication and synchronization mechanism provided by the
hardware at different levels of the hardware hierarchy?

Energy: FEnergy is becoming an essential resource in the exascale regime. Energy consumption
is largely controlled by reducing the movement of data, be that access to main memory or interpro-
cessor communication. In addition, future systems will provide increasingly fine-grain mechanisms

ASCR Ezascale Programming Challenges Workshop 28

for controlling the energy consumption of various subsystems. One needs to decide at what level
those mechanisms become visible to the software and to the programmer.

RESEARCH QUESTION: How can the programmer, the compiler and the run-time assist in the
management of of power consumption.

Resilience: Exascale systems are expected to have a much lower MTTI and to suffer from
undetected soft hardware errors. In current systems, we assume that all errors are detected and are
either corrected transparently, or cause a fatal exception that stops an entire parallel job. In the
latter case, error correction is handled via global checkpoint and restart. Checkpointing and restart
can be automatic, but more often than not, involves the programmer who initiates the checkpoints
and provides a restart routine. There is no other common API for managing resilience today, and
at exascale, the MTTI could be so short, that global checkpointing and restart is not longer a viable
option. More aggressive techniques will become necessary, and pairing for fault detection or triple
modular redundancy for fault correction are not attractive alternatives as they divert circuitry from
useful work and increase power consumption.

RESEARCH QUESTION: Can we support enhanced resilience solely via new APIs or automatic
compiler and run-time solutions? If not, what additional support for resilience do we need to
provide at higher levels of the programming models stack? How can a programming model support
more efficient, localized transactions or checkpointing? How can it be extended to support error
detection, and where possible, error correction?

4.3 Objective Criteria to Assess Programming Models

Important criteria for assessing proposed solutions are the following.

e Does the programming model permit the specification of domain properties that can be used
to optimize programs at the highest abstraction levels?

e Does the lowest abstraction level represent all the features of exascale machines that must be
exploited for performance?

e Does the programming model permit users with different skill sets to intervene and guide the
lowering of abstraction levels from the algorithm level all the way down to the executable
level?

e Does the proposed programming model interoperate with current programming models?

A large number of programming models have been proposed, designed and developed over the
past several years to revolutionize parallel programming environments for high-end systems.
However, many of them have had limited adoption because of the effort involved in porting
applications to these models. Specifically, many DOE scientific applications have had a life-
time of several decades, over which millions of lines of code has been written for many of
these applications. Further, each application relies on a complete chain of libraries, tools and
execution environments for solving various aspects of the computational and communication
requirements (e.g., math libraries). For an application to migrate to a new programming
model, not only does the application need to ported to this model, but all of the execution
environment that it relies on has to be ported as well because many of the new programming
models are not interoperable with legacy models. This issue has cornered applications into
an all-or-nothing position where incremental migration is not possible.

ASCR Ezascale Programming Challenges Workshop 29

For revolutionary new programming models and notations to gain traction, an evolutionary
path that would allow applications to use them incrementally is desirable. Interoperability
with existing programming models would be key in such an environment. Although the
conventional wisdom is that legacy applications have to work on exascale as-is, it was observed
by workshop participants that most important applications are continuously rewritten. Thus,
if an effective programming model and notation for exascale is available, and they provide an
incremental path for code migration, we believe that important legacy applications will get
ported.

4.4 Objective Criteria to Assess Programming Notations

Important criteria for assessing programming notations are the following.

e Expressivity: The programming notation has to have the expressiveness to describe all classes
of important problems in a clear and concise manner. Domain experts should have the
opportunity to describe the intent of the program, but should not be required to provide the
methods of getting high performance from the code.

e Portability: It is critically important to have an algorithm description that abstract away
details that are tied architectural variations. Programs need to be made future-proof by not
prematurely binding it into the architecture of the day.

e Effectiveness: While the algorithm description abstracts away architectural details, it is
equally important to make sure that either an effective compiler and runtime system can
find high performance instantiations for these abstractions or all the tuning parameters are
exposed to a performance expert.

e Scalability: It is important to have the ability to write programs that scale from small systems
to exascale systems.

ASCR Ezascale Programming Challenges Workshop 30

5 Compiler: challenges and strategies

Compilers provide analysis, optimization, code generation and essential transformation capabilities
that will be required to support software on future architectures. While compiler research is well
established in computer science, today’s complex and monolithic compilers are in some respects
a bottleneck to productivity in the development of DOE application software. The complexity of
exascale architectures and the DOE applications that will use them will place significant demands
on future compilers. The compiler research community is shackled by the current languages used
and largely powerless to change the languages used by application groups. The time scale for
application groups to use alternative programming language changes on the order of decades.The
introduction of new programming models, as thin layers of abstraction above existing languages,
facilitates the development of new compiler technology (and associated run-time support) and can
be more tractable on a shorter time scale than new programming languages. It is not a given though
that existing programming languages will scale to the new applications, architectures, and execution
models for exascale. Significant experimentation with new languages and programming models will
be a component of exascale research and development. These new programming models will place
new demands on compilers and drive new research and new envisionings of the roles of compilers.
This section describes the requirements for new generations of compiler tools to support future
petascale and exascale systems, driven by the multi-resolution programming model description in
Figure 8.

e Managing fine-grain parallelism, locality and heterogeneity: The performance op-
timizations performed by compilers must adapt to new properties of exascale architectures:
support for billions of concurrently-executing threads, more constrained memory systems,
heterogeneous processing units and configurable memories.

e Increasing resiliency: Concerns about increased component counts, transient hardware
failures, increased software complexity, and numerical accuracy at exascale will require new
approaches to resilience beyond today’s most commonly used strategy of checkpoint/restart.
Code that performs non-intrusive sensitivity analysis, applications that characterize numerical
properties of their result, self-checking code, transactions and rollback, and other resilience
approaches will likely require specific compiler support.

e Managing energy and power: Active energy and power management may require remap-
ping software dynamically to adjust to changing resource availability, also requiring compiler
support.

e Modifying the compiler’s organization: An exascale compiler must be fundamentally
restructured to support the multi-resolution programming model of Figure 8. Specifically, dy-
namic software mapping, programmer interaction, heterogeneous hardware, and various other
features of exascale system design will demand new bi-directional interfaces between compiler
and programmer, run-time and various abstraction layers to support modular systems and
an ecosystem for language and compiler development.

e Support for domain-specific languages and constructs: Domain-specific languages and
tools have emerged as one strategy for managing parallel code generation while retaining a
high-level of abstraction for the programmer. A domain-specific tool can be developed by a
performance expert for use by domain experts, and can facilitate optimization by exploiting
how to optimize codes for the specific domain.

ASCR Ezascale Programming Challenges Workshop 31

e Programmatic challenges: Developing this compiler technology in time for exascale sys-
tem deployment demands a new strategy that accelerates technology introduction, leverages
tools developed by different members of the community and by commercial vendors. To
achieve the goals of exascale in a cost effective and timely manner, it is important to draw
on all members of the vendor, laboratory, and academic community. Hardware vendors in-
vest significant resources in to their advanced compilers in order to multiply the effectiveness
of their hardware. Highly innovative independent software companies with experienced and
established compiler teams, can provide technologies that significant private investment and
in some cases, government funding have supported. Laboratory efforts has a rich history
in knowledge of their applications, the history of machines that they have targeted and an
application focus. Academic groups have brought an understanding of context and new ideas.
A challenge is to have these groups work together and, more importantly, have the results be
sufficiently focused to emerge as robust solutions for DOE. An additional challenge is that
without a common compiler framework it can be difficult for separate vendors to work with
each other and both labs and academic groups. The structure of the collaborations will play
an important role in shaping how broadly different groups will be able to participate.

Key challenges in compiler technology are discussed in the subsequent sections.

5.1 Compiler Organization

An impediment to adopting new architectures or new architectural features is the long lag between
architecture introduction and compiler availability, usually spanning multiple years. Usually this is
due to several factors, including underinvestment in compilers; a rule of thumb is that the investment
needed for a good compiler is the same as the investment needed to develop the hardware, and many
system development efforts have failed to invest the needed resources in compilers. A second factor
is that typically compilers embody the manual optimization strategies used by uber programmers;
there is a lag for the practices and techniques used by programmers to be identified, formalized,
and embodied in automated trasformations in the context of other automated transformations.

If we had an exascale architectural design and programming model today, could we have a
compiler built in time for the emergence of exascale architectures? The natural lag in compiler
development means the answer is without question no, but there may be ways to reduce this gap
and accelerate the pace of compiler research and development.

Today’s organization of compilers is somewhat monolithic. This monolithic organization has a
strong engineering rationale in terms of amortizing the cost of developing intermediate representa-
tions over many transformations, facilitating the development of fused and joint transformations
to overcome phase ordering limtations, and in eliminating performance-reducing impedance mis-
matches in transforming code and analyses from one representation to another.

However, it does make it somewhat difficult to integrate new ideas into existing systems. As
a consequence, compiler researchers are often compelled to replicate the work of others in their
own infrastructure, further slowing the rate of progress in compiler research?. Figure 10 shows an
abstract conceptual model of a compiler and associated ecosystem, showing an evolutonary path
from today’s systems.

Current compiler organization: The blue rectangles, circles and connectors reflect the organi-
zation of current compilers. Full source-to-binary compilers traditionally consist of two internal
representations, one close to the source language, and another close to the architecture. If someone

2There are other programmatic reasons for this as well, such as current restrictive DOE policies regarding com-
mercial sources.

ASCR Ezascale Programming Challenges Workshop 32

wants to add new optimizations to a compiler, they must adopt the compiler’s intermediate repre-
sentation. To modify the input programming language requires extensions to the frontend, which
are usually very difficult, and also support in the compiler’s intermediate representation. Targeting
new ISAs requires extensive backend support for which it may be difficult to replicate the success
of vendor backend compilers given vendor investments. A compiler represented by the blue portion
of the figure is typically comprised of hundreds of thousands to millions of lines of code, and an
investment of a decade or more. Such an extensive investment should be leveraged for exascale,
but extended with lightweight additional technology.

Source-to-source compilers. An intermediate strategy for reducing compiler complexity is rep-
resented by the left-hand-side of the blue portion, where the output of the compiler is source code.
Source-to-source is a productive approach that permits leveraging the vendor specific compiler on
the backend generated source code (common to source-to-source technologies). A source-to-source
compiler does not need to provide translation to architecture-specific binary, and instead can rely on
hardware vendor investments in optimizations for instruction-level parallelism, register allocation,
instruction selection and low-level standard optimizations (e.g., common subexpression elimination,
constant propagation, dead code elimination, etc.). In addition to reducing compiler complexity,
source-to-source compilers are commonly used in the DOE research community because they pro-
duce code that is portable across different hardware vendors’ platforms, and offer a path for the
research community to fill in gaps in hardware vendor compiler technology.

One key challenge in source-to-source compilation is efficiently crossing the source barrier to
the hardware vendor back end compiler. Back end compilers typically are not tuned for accepting
machine generated code. Syntax-oriented source-to-source compilers can work to preserve the orig-
inal text of the program to avoid inefficiencies in the process of regenerating optimized programs
to source (aka “unparsing.”). They use relatively old representations such as parse-trees for per-
forming optimization. Being tied to the syntax so tightly, can make transformations more complex.
It is important to move beyond parse-tree based systems in source to source compilation systems.
Alternatively, source-to-source systems may use an abstract-syntax tree to remove the complexities
of syntax. Still other means internal to source-to-source compiler may operate directly on more
abstract representations, such the generalized dependence graph, which eliminates syntactic arti-
facts, before translations back to a form from which to generate source code as output. Significant
work can be done to clean up the generated code to make it suitable for use with vendor compilers
that frequently don’t handle automatically generated code well.

New interfaces to the compiler. The green clouds and trapezoids in the figure represent ad-
ditional compiler libraries that could be added to an existing framework. The two trapezoids
represent new interfaces to the compiler that are not commonly available in today’s compilers. The
multi-resolution programming model described in Figure 9 demands a compiler that can leverage
optimization constraints and strategies and other information suggested by a performance program-
mer. Thus, a new interface is needed between compiler and programmer that allows specification
of this useful information.

It is vital that these specification of constraints and strategies be limited strictly to those that
preserve semantics, to avoid the introduction of bugs through this orthogonal interface. In some
systems, this extra information is presented as an external “tuning language” designed to carefully
preserve semantics by only affecting the schedule and placement of the computation.

Possibly, these directives could be integrated into Integrated Development Environments (IDE)
for performance programmer guided exploration of semantics preserving transformations and visu-
alization of the transformations.

A separate interface between compiler and run-time provides the rich interface that permits
the compiler both to tailor its optimization strategy to dynamic behavior and empirical search-

ASCR Ezascale Programming Challenges Workshop 33

based optimization techniques that use autotuning and machine learning. The latter search-based
techniques involve a compiler exploring a range of possible implementations of a computation and
through heuristic search identifying the best solution. These autotuning and search capabilities live
more naturally in the compiler than in auto-tuning libraries. In exascale architectures, such search-
based techniques will be critical to navigating the multiple optimization criteria of performance,
energy and resilience.

Composable compiler library technology. The cloud structures include separable analyses, com-
bined analyses and transformation, and search algorithms as examples of composable compiler
library technology that can be reused and integrated into different systems. Much of these types
of components have internal abstractions that do not need to be tied to the specific intermediate
representation of a compiler, and could potentially be made available for wider use. A domain-
specific language could be implemented in this way and thus have abstractions carry additional
semantics that the compiler may not infer from the base language directly, making it possible to
communicate greater explicit and implicit degrees of parallelism available for compiler mapping.
Separate compiler passes over a common internal representation typically can share information,
but must be organized to understand the information being shared. Through explicit support
from within a compiler framework (e.g., common attributes), a compiler developer can share data
between independent analysis and transformations, a key step towards composable libraries.

Different compiler technology for different parts of the computation. Compiler optimization
strategies are often driven by transformation requirements that may be local to narrow regions of
the application (e.g. critical kernels, etc.). Tailoring the compiler support is both an efficiency
optimization and a pragmatic approach to supporting large-scale HPC applications. Architectural
features may make only local demands for transformations that in turn have local program analysis
requirements. Optimizations involving data organization and layout may require global knowledge
of the application. This non-uniformity in the program analysis and optimization requirements
suggests that compiler support may need to be tailored to the application and its components.
Future research may be productive in supporting the time and space complexity of transformation
requirements by adaptively using multiple levels of compiler support (analogous to adaptive mesh
refinement for some numerical methods for solving partial differential equations).

5.2 Reconceptualizing and broadening the role of the compiler

Because of the radical changes associated with exascale hardware and applications, it is also impor-
tant to support research that explores opportunities to reconceptualize the role of the compiler. For
example, as the level of programming abstraction rises toward the physics of scientific computing
application, the compiler will be a natural place to implement optimizations that explore options
for discretization, data representation, and even the choice of solvers. In a sense, the techniques
that compiler developers use to search spaces of alternatives - analytically and empirically - should
admit the informal “know-how” of computational scientists, to remove aspects of drudgery within
their responsibilities; and allow them to focus on science. Automation can provide for consistency
in results, performance, range of possibilities explored, that are tedious for human programmers.
With the complexity of exascale hardware and applications, the importance of verification tech-
niques will grow to assure the correctness of an implementation through nondeterministic and
asynchronous execution. This suggests that approaches based on advanced systems verification
technology, such as Foundational Proof Carrying code, be explored for problems of scientific com-
puting. This may require projects to formalize the know-how of computational scientists into
knowledge ontologies that can be used for such verification. Such knowledge to be formalized
would include numerical methods and even the scientific theories and models that are under study.

ASCR Ezascale Programming Challenges Workshop 34

Interface for
Programmer

(optimization

specification,

other context

information)

Optim
(= Ana

Transformatio

Analysis+
Transformation

ization
lysis +

anguage anguage

Translation

Representation (e.g.,
Abstract Syntax Tree)

Machine

1

Search

Algorithms

epresentation (e.g., >-

address code)
?
p)

Machine

2

Interface to
Run-time
(optimization,
dynamic
response and
code
selection)

Figure 10: Organizing more modular compilers.

H = High Level Applications Mapping Correctness
Appllcatlons Spec Specification Annotations Proof
(Math language) (Hierarchical Assertions
Tilings, etc.)
CO m pl I er Algorithm/Formulation Exploration Numerical Math
Algorithms | Ontology
Ontology
Irregular/ Amorphous Proof
Algorithm Compiler Preserving
Parallel
- Intermediate
Dynamic Representation
Machine
Model Proof
Assistant
H Online Profiler Online Parmeterized Mapping Security and Correctness
Ru ntl me Projector Resilience Checker
Checker

Figure 11: Advanced capability compiler

ASCR Ezascale Programming Challenges Workshop

35

This would multiply the semantic resources available for automating techniques of uncertainty
quantification and would also provide additonal semantic information that could suggest implicit
opportunities for optimization, such as new degrees of concurrency or alternative, lower-energy
representations and operators.

Framing such knowledge of computational science in a compiler centric manner moves the
know how from the opaque bodies of code into reusable modules that can be mix-and-matched
with other optimizations. Not only can this result in higher quality of results via verification and
higher performance through new optimization opportunities, it can also reduce cost by removing
duplication of such efforts across multiple applications and libraries.

A research challenge is in the joint optimization of these new algorithm exploration techniques
with established areas of compiler technologies such as automatic parallelization. While program-
matically one might want to organize the compiler as distinct modules, the familiar phase ordering
problem occurs between algorithm exploration, representation exploration, and traditional com-
piler techniques such as automatic parallelization. New research into declarative framings of these
optimizations into joint solvers is needed.

Another area in which the domain of compiler optimization might be broadened is in support
of the increasing degree of multi-physics simulations anticipated for exascale. The opportunity is
in automating the scheduling and placement of multi-physics code. This can allow computational
scientists to express the computation in terms of distinct physics ensembles, and the underlying
physics in terms of the variational forms of the partial differential equations. The compiler could
explore different representations, discretations, solver algorithms and different and novel schedul-
ings to fuse different physics modules into regions of high spatiotemporal locality on the exascale
architecture.

Finally, the evolution of programming models in more exploratory directions will pose new
challenges for compilers. Explicitly concurrent programming abstractions will demand facilities
for reasoning about state and operation ordering that are not available on today’s compilers. In
particular, some of the proposed revolutionary execution model concepts for exascale involve new
mechanisms for communication, synchronization, task management, and their regulation/flow con-
trol/balancing. These execution mechanisms may depend on complex combinatorial analyses of
the problem in order to find separators in the representation that can support good hierarchical
placements and schedules of computations over irregular data structures. The research challenge
will be in embodying such optimizations for parallelism and locality in the context of other mapping
challenges into a newly envisioned supercompilation system.

Figure 11 illustrates a notional modularization of compiler components aligned with this recon-
ceptualization. Algorithms are presented to the compiler in a high-level math form supported
by tuning annotations expressed separately and orthogonally. The programmer also provides an-
notations with respect to correctness, assertions and proof elements for those assertions. The
assertion and proof representations may follow from the Curry-Howard correspondence, between
assertions/proofs and types/programs, as exploited in contemporaty proof-carrying code compilers
used for certifying complex systems code (operation systems, etc.). The algorithm is subject to re-
formulations performed automatically, guided by a numerical algorithms knowledge base formalized
in an ontology. This reformlation would be for the purposes of finding more parallelism, reducing
communication, or other other optimization objectives. The knowledge ontology would provide for
alternative ways of solving the posed problems amidst declarations of their bounds of applicability,
as well as domain knowledge in an expert system form to guide the reformulation to productive
outcome. The numerical algorithms knowledge is itself supported by a math ontology. The knowl-
edge is also used to form and check proofs, using a proof assistant tool. The compiler’s intermediate
representation is designed not only to represent and support explicitly parallel programs, but also

ASCR Ezascale Programming Challenges Workshop 36

to support the preservation of proof information through optimizations. The runtime performs
dynamic optimization, e.g., projecting partial mappings based on runtime information. It also can
check the correctness of the implementation and mapping using lightweight checkers.

Achieving this reconceptualization is an ambitious project, but suggests a course for some
research. Questions that would be addressed would be such as: how can numerical algorithms
knowledge be formalized, in a way that can be injected into parallelizing optimizers? How can
power, resilience, and performance objectives be modeled and checked? To embark on this project,
technologies developed in the embedded systems community and the certified code and model
checking communities, would be juxtaposed with the practice of programming scientific computing
systems. While the end-objective is ambitious, such a juxtaposition is likely to result in significant
progress toward greater productivity, portability, and reliability.

5.3 Managing fine-grain parallelism, locality and heterogeneity

Three features of exascale architectures will increase the complexity of compiler mapping and
optimization techology, and drive changes at the interface between compiler and programming
model and between run-time system and compiler. First, exascale systems are projected to have up
to billions of simultaneously-executing threads. To identify this much parallel work in important
applications, these threads will necessarily be fine-grained, consisting of perhaps just tens to a few
hundred instructions. In light of active energy and reliability management, along with varying
latencies across the machine, exascale architectures will achieve performance that is different for
different runs of the same code. Therefore, these fine-grained threads will execute asynchronously.
The compiler will have several roles in managing billion-way parallelism. First, it must translate
threads as specified by the programming model into the appropriate run-time calls that will launch
an asynchronous thread and notify its dependent threads when it has completed. These fine-grained
synchronization operations may involve special hardware support so that overheads are minimized,
and the compiler will then be required to generate synchronization instructions. The compiler may
also identify fine-grained threads from sequential streams in the application. For example, such as
with vectorization technology, it can apply fine-grained automatic parallelization. In addition, the
compiler may identify computations that can be migrated into the memory system.

The second challenge in compilers for exascale is the order of magnitude or more anticipated
reduction in memory capacity vs. computation rate (i.e., number of bytes per flop). Coupled
with the hierarchical processing and memory structures, compiler management of data locality
and data movement across the system will become even more important to performance and also
essential to managing power and energy. Current petascale and commodity systems increasingly
rely on specialized memory structures such as scratchpad memories, configurable caches, non-
uniform cache structures, cache sharing across cores and large register files. Along with translating
the richer data decomposition semantics of the programming model, the compiler must employ
a combination of traditional locality optimizations for cache, emerging techniques for managing
software-controlled storage such as scratchpads and registers, and novel techniques for exascale
systems such as migrating computation to the memory system.

Locality and parallelism are objectives required for exascale that are in tension. The demand for
concurrency will drive toward parallelism, spreading things out, but this can destroy locality. This
presents a classical phase ordering problem. Advancing techniques that jointly trade parallelism
with locality with a high degree of scope to find a good tradeoff will be essential for exascale.

As the third issue, for efficiency reasons, exascale systems are expected to incorporate hetero-
geneous processing units with different capabilities, much like today’s CPU+GPU supercomputing
systems. In addition to supporting code generation across the different processing units, the com-

ASCR Ezascale Programming Challenges Workshop 37

piler must also generate code that decides how to partition a computation across processing units
or selects which processing unit to use given an application’s execution context.

5.4 Increasing resiliency

At exascale, the MTTI could be so short, that checkpoint/restart is no longer a viable option for
maintaining resilience. New techniques will have to be employed for resilient computational science.
In general, only computational scientists will know if an error in their program can be tolerated,
corrected, or require a rollback. The compiler will be critical to the efficient implementation of
these desired actions. The computational scientist will need to formalize this knowledge, and the
compiler role be broadened (aligned with the verification thrust above) to incorporate it into the
formation of spaces of legal transformations and to guide new optimizations for resilience.

Compiler support for resilience can include selective use of pairing to detect soft errors, software
transactions to allow rollback, and algorithmic tests to ensure the integrity of data. Future work
to support resiliency may have to be architecture specific and will almost certainly be application
specific. Ideally, compilers would address the above needs automatically, but more realistically they
may require direction from computational scientists, who will need new interfaces to describe their
resilience requirements. This interface could reasonably be supported by the programming model,
or in the near term could be a library or API interface.

A number of approaches to support automated transformations to locally support Triple Modu-
lar Redundancy (TMR) are reasonable goals of near future research work. Compiler analysis could
reasonably support the transformations and the optimizations required to minimize the associated
memory traffic based on different levels of redundancy; per operational unit, per core, per socket,
per node, etc. Additionally, memory correctness of data could be verified using more than just the
hardware based ECC and errors outside of the range of ECC detected and corrected. Compiler
transformations could be used to support this level of additional resiliency. It is reasonable to expect
that the analysis to support such transformations, and make them power and performance efficient
will be part of future research. Source-to-source transformation is just one way of approaching this
problem to lessen the dependence of such technologies on the vendor compiler teams.

5.5 Managing energy and power

Software for future architectures will require either restructuring and/or different algorithms to
support the demands of power reduction and overall energy management. The application developer
may be able to support this directly, but at some significant burden and likely without much
portability. Compiler based transformations may be the only alternative to direct application
programmer support for reduced power consumption. This is because the complexity of anticipated
hardware controls - voltage controls, clock controls, and schedulers for achieving spatiotemporal
energy proportionality - will be high. It will be necessary for the mapped program to adjust these
controls on a fine-grained basis in order to maximally exploit dynamic energy saving opportunities.
Hardware will likely be overprovisioned relative to power dissipation limits, placing a burden on
the software system that extends to the safety and integrity of the hardware itself (preventing
melt-down). Consequently, these power scheduling algorithms, which will be tightly integrated
with other computation scheduling mechanisms, will demand automation and autotuning not only
to reduce the burden on the programmer, but to maximally assure the correctness and integrity of
the system.

ASCR Ezascale Programming Challenges Workshop 38

5.6 Support for Domain Specific Languages and Constructs

Domain-Specific Languages (DSLs) define a means of packaging compiler support for domain spe-
cific abstractions. Such abstractions may be useful or critical to either a broad application domain
or as narrow as a single application. The economics of addressing compiler optimizations using
this approach must be weighed against programmer productivity, performance, and possible sin-
gle source dependence on the compiler support for such abstractions. Embedded Domain-Specific
Languages define a DSL using an existing base-language (perhaps a general purpose languages; e.g.
C, Fortran, C++, Scala, etc.) and represent a compromise in the development of DLS. While the
embedded DSL limits the design of new syntax (having to avoid too drastic of changes from the
base-language) they can reuse significant or even the whole base-language compiler infrastructure.
Thus Embedded DSLs are pragmatic and can be efficient to build as a way of packaging custom
compiler analysis and transformations for users. While many compiler infrastructures can be ex-
tended to support concepts worthy of Embedded DSLs, alternatively a compiler infrastructure for
less complex base-languages can be extended in ways that permit at least some new syntax and still
provide an efficient means to develop DLSs. Much DSL work is related to and leverages existing
compiler and/or language infrastructures.

Domain-Specific Languages’s can leverage source-to-source compiler technologies to further pro-
vide an economical means to exploit specific hardware and existing compiler technologies (e.g. for
GPUs; using CUDA and/or OpenCL as just one example). If designed well, and within a common
framework, or using a common base-language, DSLs could even be staged to define hierarchies of
more narrowly defined compiler solutions. The design of such systems is a worthy research direc-
tion since defining composable subsystems (compiler building blocks) may be key to opening the
exploration of new DSLs and/or programming models to make future architectures tractable to
HPC application teams.

ASCR Ezascale Programming Challenges Workshop 39

6 Runtime Systems: challenges and strategies

When considering the challenge of supporting billion-way parallelism for an Exascale system, it is
widely agreed that the bigger disruption will occur at the intra-node level rather than the inter-node
level. This is because the degree of intra-node parallelism needs to increase by about three orders
of magnitude relative to today’s high-end systems on the path to Exascale, while the degree of
inter-node parallelism only needs to increase by at most one order of magnitude. Other challenges
at the intra-node level include vast degrees of performance and functional heterogeneity across cores
within a node, as well as severe memory and power constraints per core. Taken together, these
challenges point to the need for a clean sheet approach to intra-node runtime systems. They also
have a significant impact on inter-node runtime systems, because any successful inter-node runtime
system for Exascale systems must be able to integrate well with new intra-node runtime systems
(as discussed in the multiple references to “hybridization” during the workshop).

Power management offers an interesting opportunity in the runtime system for understanding
and leveraging trade-offs between energy efficiency and performance. One of the examples cited in
the workshop was an application on a production system, for which it was possible to reduce the
total energy consumed by 50% while only reducing performance by 10%. A figure of merit such as
the energy-delay product can help take both energy and performance into account.

6.1 Runtime Support for Exascale Execution Models

Though there is a variety of execution models under consideration for Exascale computing, there is
also a consensus in the community on key abstractions that will need to be present in an Exascale
execution model and that the runtime system (assisted by the compiler and architecture) must
provide first-class support for these abstractions. Exascale execution model abstractions that will
need runtime support include the following:

o Lightweight tasks: Tt is widely accepted that the parallelism exposed by an Exascale applica-
tion must be over-provisioned by 1-2 orders of magnitude relative to the available parallelism
in hardware on an Exascale system. Even with lightweight OS kernels, it is unlikely to be prac-
tical to use OS threads for this over-provisioning, especially due to the memory overheads
imposed by standard OS threads. Thus, an Exascale runtime system must support large
numbers of lightweight tasks that are scheduled on a fixed number of “worker” OS threads
(typically, one per core or hardware context). A number of recent multicore programming
models (e.g., OpenMP 3.0, Cilk, TBB, and a multitude of dag-parallelism schedulers) already
assume the availability of lightweight task parallelism. In an Exascale runtime, there will
be additional challenges in supporting lightweight tasks that include support for heteroge-
neous processors and integration with asynchronous inter-node communications. Support for
end-to-end asynchrony across tasks and communications remains a major challenge.

o Memory hierarchies and data movement: While memory hierarchy details will vary from
platform to platform, there is agreement that Exascale software will have to deal with deep
memory hierarchies combined with the need to minimize data movement due to energy limita-
tions. Thus, the task scheduling runtime capabilities discussed above will need to be locality-
aware and be capable of supporting function shipping and data shipping as interchangeable
alternatives.

e Coordination of dynamic task teams: Past approaches to coordinated parallelism such as
thread groups and communicators involved a fixed number of threads e.g., the set of threads

ASCR Ezascale Programming Challenges Workshop 40

or processes synchronizing on a barrier does not change after the first barrier operation
is performed. However, we should expect dynamic task creation and termination to be a
frequent and common operation in future Exascale systems. Thus, there’s an urgent need for
synchronization operations such as barriers to be performed on dynamically varying sets of
tasks. The coordination can be in the form of a barrier, in which the set of tasks that need to
synchronize could potentially change in each phase, or in the form of a special join construct
for which the set of tasks can also vary dynamically.

o Atomicity and transactional semantics: Recent work on hardware and software approaches
to transactional memory has highlighted the benefits of a transactional model for tasks that
mutate shared locations. However, it is also widely recognized that global atomicity cannot
scale to the billion-way concurrency required for Exascale systems; instead, it is more appro-
priate to limit atomicity to sets of tasks that execute in the same “coherence domain” (also
referred to as a locale or place in Chapel and X10 respectively). Function shipping can then
be used to create tasks for execution in remote locales.

6.2 Intra-node Runtime Support for Multicore Processors: Current Trends

While considering future directions for runtime systems for exascale systems, it is worthwhile paying
attention to current trends in runtime systems for multicore processors. These runtime systems
focus primarily on intra-node parallelism and, in most cases, leave it to the user to deal with
integration with inter-node runtime systems.

Runtime Prog. Cont. Greedy Stack | Queue Scheduling Affinity
System Notation | Support | Scheduling | Bound | Bound Policy Support
OpenMP 2.5 Pragma No Yes Yes No Work-sharing Limited
OpenMP 3.0 Pragma Yes Yes Yes Yes Work-first work-stealing | Limited
Cilk/Cilk++ Language Yes Yes Yes Yes Work-first work-stealing No
StackThreads Library Yes Yes No Yes Work-first work-stealing No
Intel TBB Library No No Yes Yes Help-first work-stealing Yes
Habanero Language Yes Yes Yes Yes Adaptive work-stealing Yes

Table 2: Comparison of Selected Multicore Runtime Systems

Table 2 summarizes the comparison of some well-known multicore runtime systems from indus-
try and academia®. The Programming Notation column lists how the task parallelism is specified by
the user. The Continuation Support column indicates whether or not the runtime system provides
support for a worker thread to suspend a task before completion (e.g., when a blocking operation
is performed) and move to another task, while allowing the task to be resumed on the same or
different worker when it becomes unblocked. The Greedy Scheduling column indicates whether
the task scheduling algorithm is greedy i.e., whether it ensures that a worker will never be idle if
there’s work available to be done by the worker. The Stack Bound column indicates whether the
scheduling algorithm is able to limit the maximum stack size needed for a worker relative to the
stack size needed by a sequential execution of the program. The Queue Bound column indicates
whether the scheduling algorithm is able to limit the total size of all queues in the runtime system.
The Scheduling Policy column indicates if a work-sharing or a work-stealing policy is employed by
the runtime system, and (in the case of work-stealing) if a help-first or work-first policy is used.
The Affinity Support column indicates if the runtime system supports any form of affinity among
tasks or between tasks and data.

3This table was adapted from Table 7.1 in [22].

ASCR Ezascale Programming Challenges Workshop 41

Most OpenMP 2.5 implementations followed the SPMD origins of OpenMP that focused on
work-sharing in parallel regions. As a result, OpenMP 2.5 runtime systems usually lack robust
support for nested parallelism, and can exceed all reasonable bounds on queue size by creating
an exponential number of tasks in a queue in the worst case of nested parallelism. There was a
significant change in runtime scheduling technologies when moving from OpenMP 2.5 to OpenMP
3.0, due to the introduction of explicit task parallelism in OpenMP 3.0. Most OpenMP 3.0 imple-
mentations now use work-stealing schedulers and are able to support nested parallelism to arbitrary
depths. Both OpenMP 2.5 and OpenMP 3.0 support limited forms of affinity through the static
scheduling clause for parallel loops, and (in the case of OpenMP 3.0) the notion of tied tasks.

Cilk is a C-based dynamic task parallel language developed at MIT, accompanied by the Cilk
runtime [21] which is based on the work-stealing algorithm in [11]. Intel’s Cilk++ is a recent
extension to Cilk that is based on the C++ programming language [47]. The differences between
Cilk++ and Cilk mostly lie in language features rather than the runtime system. Both Cilk and
Cilk++ use the work-first work-stealing scheduling policy for all spawned tasks, and do not support
any form of affinity scheduling.

StackThreads/MP is a library that supports fine-grain multi-threading in GCC/G++. Stack-
Threads/MP uses a scheduling scheme that is a combination of work-sharing and work-stealing.
In StackThreads/MP, the idle workers send steal requests to busy workers. A steal request can
be picked up by the busy worker through a polling routine inserted in the program. Once a steal
request is picked up, the victim serves the request by preparing the execution context for the thief.
After the context is ready, the thief is notified and begins execution. As a library, StackThreads/MP
has a very unique stack management model to allow programs to compile with standard compilers
(notably, gcc) a standard calling convention, while allow task suspension, resume and migration.
In StackThreads/MP’s stack model, each worker thread has a logical stack as well as a physical
stack. One worker’s logical stack frames may be spread across the physical stacks of all workers.
Task suspension, task resume and task migration and are all implemented by linking the frames
of the worker’s local stack. For example, when a task is suspended, the logical stack frames are
unwound and saved as continuations. When logical frames are unwound, they still remain on the
physical stack. It is known that the StackThreads/MP can exhibit fragmentation in the physical
stack and can overflow the stack for large applications (due to the lack of a stack bound).

Intel’s Threading Building Blocks (TBB) model is a C++ template library for exploiting task
parallelism on multicore processors. The TBB library does not include any continuation support.
When a task is suspended and the worker goes stealing, the old stack frames remain on the runtime
stack. As a result, the suspended task can only be resumed by the same worker that suspends
the task (like tied tasks in OpenMP 2.5); TBB also restricts the stolen task to those deeper in the
spawn tree than the suspended task in order to avoid stack over now in the worst case. These two
restrictions reduce the effectiveness of the load balancing performed by TBB. It has been shown
that the depth-restriction can asymptotically serialize execution in cases where standard work-
stealing achieves linear speedup [63]. To mitigate these problems, TBB allows the programmer to
manually create continuation tasks. However, this approach is essentially trading productivity for
performance. In contrast to the Cilk’s work-first execution of all spawned tasks, TBB uses the
help-first policy upon task creation. TBB also has an affinity partitioner structure to utilize
temporal cache-reuse by binding the same iteration to the same worker thread that previously
executed the iteration. TBB allows stealing regardless of the affinity and has a mechanism to
reduce counter-productive stealing.

The Habanero runtime system developed at Rice University has been designed to provide first-
class support at the intra-node level for the execution model primitives identified in Section 6.1.
For lightweight task parallelism, the Habanero runtime includes an adaptive work-stealing runtime

ASCR Ezascale Programming Challenges Workshop 42

system for terminally strict async-finish computation graphs (which are more general than fully
strict spawn-sync computation graphs) [23], and are further extended with data-driven tasks to
support general forms of dag parallelism [65]. For memory hierarchies, it supports the hierarchical
place tree abstraction [68] along with locality-aware scheduling [23]. For coordination of dynamic
task teams, it unifies barrier and point-to-point synchronization in phasers with support for dynamic
parallelism and asynchronous collectives [55-57]. For atomicity and transactional semantics, it
includes a delegated isolation algorithm [35] with performance and scalability that is shown to be
superior to software transactional memory systems and comparable to more complicated user and
library approaches that enforce mutual exclusion with fine-grain locking.

6.3 Integration of Intra-node and Inter-node Run-time Systems

Current systems provide a programming model run-time as part of the library that supports that
run-time: Thus, in a system running MPI+OpenMP, the MPI library includes a run-time for
managing communications and the OpenMP library includes a run-time for task scheduling, syn-
chronization and memory allocation. The two run-time systems share the common services of the
OS, but are not integrated, otherwise. This results in performance problems that will worsen as the
number of threads per node increase, and intra-node memory accesses become less uniform: The
use of threads to support communication is not coordinated with the allocation of computation
threads; message-driven scheduling of tasks (e.g., in an active message model) is inefficient; the
physical location of communication buffers is not coordinated with the location of physical threads
that produce or consume the buffered data; and one cannot intelligently manage the trade-off
between critical path scheduling and buffer space reduction.

Future systems will need a better integration. There are two possible approaches to this problem:

1. A design for run-time interoperability, that would enable multiple run-time systems within a
node to to coordinate their activities

2. A common run-time that provides services to all programming layers running on a node.

The first approach has the advantage of enabling the coexistence of multiple run-time systems,
each possibly associated with a different programming language or library; it facilitates separate de-
velopment and support of these languages and libraries, and facilitates reuse of existing investments.
During the workshop, this approach was referred to as the MPI4+X runtime or PGAS+X runtime
for the cases when the inter-node runtime system is based on MPI or a PGAS implementation and
the X refers to an intra-node runtime system as in Section 6.2.

The second approach can provide better integration; it represents a clean sheet approach that is
better suited to a future unified programming model that can handle both intra-node and inter-node
parallelism and communication.

Whichever approach is followed, a modular organization will facilitate development and main-
tenance. The two alternatives are, essentially, whether to group run-time functions according the
library or language they support, or group them according the resources they manage and ser-
vices they provide: memory management, CPU management, power management, communication
resource management, etc. As is of ten the case, the answer is likely not be be black and white
— with a lower layer of services that are resource specific, and a higher level of services that are
programming model specific.

ASCR Ezascale Programming Challenges Workshop 43

6.4 Runtime Interoperability

The discussion in the previous section also applies in the case where multiple programming models
are supported on a node. Computing research has produced a rich variety of parallel programming
models and runtime systems, each with its unique set of capabilities and advantages. Different
programming models provide differing idioms for expressing parallelism, managing the work of a
computation, and operating on distributed and shared data structures. Their associated runtime
systems provide the low level capabilities needed to support a variety of high level models as well
as the layer of abstraction needed to efficiently harness increasingly complex hardware systems.

Many of the challenges that arise when combining multiple programming models stem from
the incompatibilities between runtime systems of these models, which are not able to communicate
with each other and share resources, often resulting in poor or erroneous application behavior and
resource stalemates. For new programming models to be successful, it might be desirable for their
runtime systems to be interoperable with existing runtime systems that applications use, including
all the other libraries they are composed of.

In short, for a completely new model, that provides its own separate runtime system, to be prac-
tically usable many existing libraries including math libraries, simulation tools and other frame-
works, would all need to be ported to work with this new model. This might be an expensive
proposition as it would not take advantage of the previous investment from DOE and other fund-
ing agencies. With a runtime system that is interoperable with legacy runtime systems, it might
be possible to alleviate some of these issues.

6.5 Decentralized Monitoring, Data Aggregation, Data Analysis, Data Mining,
and Introspection

There is a vast gulf to be bridged between hardware performance monitors (HPMs) that provide
detailed low-level information on the behavior of individual cores, and the holistic view that an
application programmer will need to understand the behavior of their program on millions of cores
in an Exascale system. It is essential that the monitoring of the whole program be decentralized.
Further, scalable approaches to data aggregation will be needed to help application programmers
and algorithm designers gain high-level insights into their behavior of their programs, since it
won’t be practical to just stream all the HPM information from all cores in an Exascale machine
to a single development node where the programmer runs their performance tools. Instead, it
will be important to use the Exascale machine itself to perform aggregation, analysis, and mining
of performance data. These aggregation techniques will also need to perform extrapolations to
predict counts for events that are not directly tracked by HPMs (e.g., communication events from
the interconnect) but can be reliably correlated with other HPM events. Mapping back from the
HPM level to the source-code level also poses significant challenges.

Having aggregated the data, the Exascale system should also be leveraged to support Data
Analysis and Data Mining, by performing scalable on-the fly analysis of the aggregated data as
opposed to detailed analysis of individual traces. Implicit in this analysis is a set of important
decisions about what information to collect, analyze and discard or retain. The retained data must
be organized in a performance database that provides meaningful information to subsequent exe-
cutions or phases in the current execution, but also provides efficient access for on-the-fly analysis.
In general, on-the-fly analysis can be viewed as a form of introspection that enables users and tools
to monitor potential performance bottlenecks.

ASCR Ezascale Programming Challenges Workshop 44

6.6 Fault Tolerance: Detection and Recovery

Given the resilience challenges for Exascale systems, it will be necessary for the runtime system
to support multiple techniques for error detection and recovery (e.g., checkpointing, redundant
computation, suspend-retry) while leveraging available monitoring techniques (Section 6.5) as well
as machine learning techniques.

Efficient, localized error handling will require the involvement of the run-time in error recovery
and, possibly, in error detection. This will require new run-time functions and new interfaces
between the OS (that manages changes in the configuration of the “virtual user machine” and
alerts from the hardware) and the run-time.

The run-time can provide enhanced protection from programming errors, e.g., a combination of
compiler, runtime and hardware can provide efficient race-detection in shared memory, or deadlock-
detection. It may be desirable to support different levels of safety, even within one execution, and
the run-time will have to support such choices.

6.7 Compiler/Runtime/User Interface

As previously stated, both codes and systems become more complex, dynamic and irregular: The
behavior of codes change as they adapt to the evolution of the simulated system; the behavior of
computers change as they adapt to failures or manage power. Therefore, “run-time compilation”
where the executable is changed dynamically during execution becomes increasingly important.
“Run-time compilation” methods range from the simple, such as the use of code that is parameter-
ized by machine parameters, or the selection of different methods, according to input or machine
characteristics, to the complex, such as auto-tuning and run-time code morphing.

Run-time compilation requires a tighter interaction between compiler and run-time, as the run-
time provides to the compiler performance information that is needed to tune the code, and the
compiler can provide to the run-time information’s about the code that can be used to improve its
execution environment.

Such a tighter interaction will also help a looser loop of off-line code tuning, where a compiler
improves code based on the properties of previous runs. This is essential when the expert program-
mer is in the loop, and program tuning results from a close interaction between compiler, ran-time
and programmer” The information produced by compiler and run-time have to be exposed to the
user in a framework that relates to the source code, so as to guide refactorings of this code.

6.8 Runtime/Architecture Interface

New hardware features can reduce the overheads of thread management, memory management,
communication and synchronization. Most of these features will be used by the run-time. Therefore
the interaction between run-time designers and architecture designers is an essential component of
the co-design process. New run-time prototypes should be guided not only toward the efficient use
of current machines, but also toward the testing of new hardware features for exascale machines,

6.9 Interaction between OS and Runtime

The design of an exascale machine will require new thinking about the division of labor between OS
and run-time. The OS isolates one application from another, and provides resources to the “virtual
user machine” that runs each application; the run-time manages resources within one “virtual user
machine” Current OS structure reflects the need for time sharing of one physical node by multiple
processes (each being a “virtual user machine”); One system where nodes are dedicated to one

ASCR Ezascale Programming Challenges Workshop 45

application and communication outside the “virtual user machine”, e.g., for I/0, is filtered by a
smart NIC, it is not clear why allocation of node resources (CPU, memory and power) should
involve the OS. Experience with systems with no OS, such as Anton, show that they can achieve
ultra-low communication latencies (200ns).

ASCR Ezascale Programming Challenges Workshop 46

7 Path Forward

7.1 Introduction

The timeline for Exascale is driven by the hardware, which will arrive in 2020 whether or not the
software is ready. Therefore it is critical to ensure that technologies necessary for the effective ex-
ploitation of exascale platforms will be available in a timely manner, both to influence the co-design
process for the systems and to ensure delivery of computational discoveries soon after deployment.
This is a very short time span in a normal lifecycle from a research project to a production system.
This will require careful consideration to find the least resistant path from current technology to
what is required to be deployed on exascale platforms. Thus, it is important to look at evolutionary
solutions to exascale platforms. On the other hand the current state-of-the-art software stack is
far from ideal. It is already showing many weaknesses that will only get amplified as we move to
exascale systems. Thus, it is imperative for the community to explore revolutionary alternatives
that can fundamentally alter the software landscape and eliminate many of these vexing problems.
These could be deployed by 2020 if research progresses fast, or later, otherwise.Therefore we propose
a multi-prong approach to going forward. An evolutionary path will take the existing MPI based
approach and develop an MPI+X solution that heavily rely on the current technology when possi-
ble and develop novel approaches when necessary. A revolutionary program will look at innovative
alternatives that can fundamentally eliminate vexing problems and provide a platform to build
portable, high-performance software in a cost effective manner while achieving greater flexibility
and productivity. The program as a whole should include a balanced mix of lower risk projects
and higher risk, higher return projects. The evolutionay path should provide a complete, low-risk
solution to the problems of exascale programming. The revolutionary program is not a standalone
path to exascale, but a set of opportunities to fundamentally alter the evolutionary path.

The program will have to do with the well-known problem of “crossing the chasm”, or “crossing
the valley of death” in discontinuous innovations [43], illustrated in Figure 12: Crossing the gap
between the first “visionary” adopters and adoption by a large group of pragmatic users. While the
first group will be willing to put up with much pain, the second group will require a technology that
is robust and well supported on all relevant platforms. This is especially true for new programming
models: As a rule, programmers are reluctant to change programming model, unless they are forced
to do so; i.e., unless some key goals cannot be achieved using the old programming models. The
evolutionary path will provide the users with a familiar programming model, but will require a
continuous porting effort to get from one system to another. The revolutionary path will require a
complete rewrite of the software stack, with the hope of performance portability that will eliminate
or significantly minimize requirements for porting to future platforms.

7.2 Evolutionary Path

We assume that the collaboration between DOE and the vendors will define an approach to the
achievement of exascale performance that minimizes risks and mazimizes returns. One approach
that minimizes risk assumes as few changes as possible in current programming models. The
approach is currently defined as MPI+X, and assumes that MPI is used for communication across
nodes, while “X”, which is most likely an evolution from current OpenMP, is used for intra-node
parallelism. An evolved OpenMP will have to address all of its current limitations, such as lack of
scalability, lack of composability, no dynamic parallelism, and no load balancing. We shall call this
the base programming model plan.

This plan is not risk-free and requires DOE research and advanced development for its imple-
mentation:

ASCR Ezascale Programming Challenges Workshop 47

Innovative
High-Tech

A The Early) The Mainstream

Product Market Market

Technology
Enthusiasts
Visionaries
Pragmatists
Conservatives
Skeptics

Figure 12: Crossing the Chasm

MPI has to evolve to support higher-levels of parallelism, to better use the communication
hardware of current and future supercomputers and to provide better interfaces to nodes that run
a large number of threads. Many of these issues are being considered by the MPI3 forum and
continued investments will be needed to support MPI evolution.

OpenMP has to support a better management of locality in a heavily NUMA platform, provide
better interfaces to GPU-like accelerators, and better interact with MPI. Some of these issues
are being considered by the OpenMP Architecture Review Board, and investments will be needed
to ensure the availability of good OpenMP implementations to these specifications. OpenMP
implementations are typically supported by hardware and software vendors investment in their
product lines; separate DOE funding in OpenMP implementations is likely to be redundant.

Work is also needed on a better interoperability between MPI and OpenMP to avoid the current
model of serializing MPI calls.

Note that an “enhanced OpenMP” could embody a programming model that is quite different
from the current OpenMP programming model, where parallelism is expressed as a flow graph of
tasks and inter-task dependencies [16]. This would provide increased asynchrony; if the tasks are
executed transactionally, then the model can provide error isolation. Similarly an “enhanced MPI”
could provide a programming model that is quite different from the current MPI programming
model: If MPI processes are virtualized, as done in Adaptive MPI [26], then the model of a fixed
number of processes can be replaced with a model of a dynamically changing number of processes,
with run-time load balancing. A better design and implementation for one-sided communication
as demonstrated by ARMCI [44] and GASNet [12] and will move MPI to support a programming
model similar to that provided by libraries such as Shmem [8] or GA [45], or PGAS languages such
as UPC [18] and Co-Array Fortran [49].

Ultimately MPI and OpenMP specifications could converge, nominally evolutions of the speci-
fications but adopting the more revolutionary execution model concepts that have been proposed,
such as uniform treatment of parallelism between the dimensions of node and system. With exas-
cale hardware promising very deep hierarchies of hardware partition (chips with themselves 4 to 5
levels of hardware partitioning and hierarchy) and system level packaging with another 4 to 5 levels

ASCR Ezascale Programming Challenges Workshop 48

(carriers, modules, boards, chassis, cabinets, ...) the notion of node will blur making irrelevant the
current basis for the distinction between MPI and OpenMP.

7.2.1 Considerations

Given such a base plan, and given the difficulty of moving from research ideas to deployed technol-
ogy, we believe that the following questions should be asked for any new research in programming
models:

To what extent is the new technology necessary? The report identifies several issues in
exascale computing that are likely to require handling in a programming model, even if one follows
the base plan. One approach is to handle these issues within the context of the evolutionary
approach, in order to minimize risks. This would follow the approach above where the evolutionary
approach increasingly integrates new research products.

Simultaneous DOE investment in alternative technologies is critical as the evolutionary approach
has a high risk of not being able to handle these issues by itself; these alternative approaches can
be tested and ready for integration as the evolutionary approach encounters anticipated barriers.
A pool of innovative approaches may initially seem to be of limited capability compared to today’s
established production MPI-based DOE application-supercomputing system complexes. However,
the rate of improvement in current established programming approaches is low. New, innovative,
revolutionary technologies, unburdened by source legacies, may achieve a more rapid rate of im-
provement, to not only match but surpass the established technologies [20]. These technologies
would address the goals below.

Scalability MPI will need to scale to higher process counts and to provide more scalable collective
operations. One-sided communication layers, whether integrated into MPI or separate, need
to scale as well. Both may need to handle a hierarchical model of the system topology.
OpenMP will need to scale better to large thread counts.

Functional Portability The portability of MPI and OpenMP have been essential to the HPC
ecosystem, but given the divergence of node architectures, portability will be harder to main-
tain in the future. Programming abstractions — whether in OpenMP or in some new model
— that perform well across a variety of heterogeneous and homogeneous nodes are needed.

Performance Portability If too many machine specific optimizations are embedded in MPI or
OpenMP, it will become difficult, if not impossible, to get good performance in a different
machine without extensive rewriting and performance tuning. It is important to study how
to bring performance portability to programs and evaluate alternatives to MPI and OpenMP
that will provide performance portability with minimal programmer effort.

Finer granularity Strong scaling requires support for finer grain tasks, hence a reduction in the
overheads per inter-node communication and intra-node synchronization. It is not clear that
the per message overhead can be significantly reduced for MPI. Alternative solutions (e.g.,
PGAS languages, codelet approaches) might be needed.

Locality The energy limitations of future platforms will require significant reductions in communi-
cation (in space) and in storage (i.e., communication in time). While the MPI model provides
explicit control of communication, the OpenMP model provides no support for reducing com-
munication and improving locality. It is essential to fix this problem. Polyhedral methods
provide ways to analytically manage locality in static and dynamic form. Cilk and Habanero

ASCR Ezascale Programming Challenges Workshop 49

provide elegant approaches based on cache oblivious algorithms for achieving complex hier-
archical locality.

Hierarchy Even though many computer scientists think of “THE programming model” and “THE
programming language,” domains that have succeeded in exploiting parallelism like dense
linear algebra and databases take a hierarchical approach to programming, using a hierarchy of
models and languages that exploit abstraction. In linear algebra for example, one has carefully
tuned BLAS at the lowest level, something like LAPACK on top of that, and MATLAB at
the highest level. Designing the interfaces between layers carefully, performing cross-layer
optimization, permitting higher layers to choose implementations in the lower layers (e.g
the implementation of join) are all essential to achieving performance. This is central to the
conception in the Galois system or the linear algebra DSL of Norris at al. [9]. As an increasing
number of DSLs, libraries and frameworks are built on top of MPI+X, more work can shift
to address these higher programming models, facilitating the shift to new models.

Heterogeneity Nodes are likely to have accelerators (GPU, MIC, FPGA). The “X” node language
needs to provide a suitable support for those, in order to avoid an MPI4+X+4Y” solution.
High-level compilers can avoid the MPI+X+Y problem by accepting high-level descriptions
of algorithms and automatically performing the low-level code generation in the current X+Y;
retargeting the compiler would address changes in X and Y without rewriting the application
base. In any case, one needs to support better interfaces between the various programming
models, e.g., to avoid sequential bottlenecks between MPI and OpenMP.

Explicit Memory Space Management Nodes programming may well have to handle software
managed scratchpads with affinities to different node components, as well as a level of memory
between current DRAM and disk. Both intra-node and inter-node programming are affected
to avoid unnecessary copies as one communicates data through multiple memory spaces.

Asynchrony The increased variation on execution speed of various components, due to error re-
covery and power management, will require codes that are more tolerant to noise, hence,
more asynchronous. Increased asynchrony can also be a major contributor to energy re-
duction. While it might be possible to achieve this goal using the MPI4+X programming
notation, this will require a change in the prevalent, bulk-synchronous programming model.
Tools and methodologies for the conversion of bulk-synchronous code to asynchronous code
are important.

Resilience It is essential to reduce the overheads of the current global checkpoint-restart approach
for error correction. It is likely that this will require some programming model support to take
advantage of new non-volatile memory technology. To make applications resilient to individual
component failures without a full application restart, programmers will need enhanced error
detection.

7.3 Revolutionary Path

In the revolutionary path we are looking for radically different approaches that can eliminate many
of the current and anticipated problems with the evolutionary solutions. Although MPIT is the pre-
ferred method of high performance programming today, everyone agrees that it is far from ideal.
MPI makes it possible to get high performance by exposing many of the underling architectural
details and asking the programmer to manually perform the bulk of the performance tuning. Thus,
the evolutionary path will still require extensive program modifications and manual performance

ASCR Ezascale Programming Challenges Workshop 50

tuning when porting a program to each new architecture. While the evolutionary path will look
at the novel problems introduced or existing problems magnified at the exascale level, it may be
difficult for any MPI based approach, which was originally designed under very different set of
constraints, to provide viable solutions to these problems. When the exascale imposed constraints
are approached with a clean slate using modern methods, tools and technologies, we hope solutions
that emerge will eliminate some of these vexing problems. For example, recent advances in ma-
chine learning based approaches to autotuning programs, coupled with the right language design,
may be able to eliminate much of the performance tuning burden from the programmer. If the
community does not invest in finding novel and radical solutions, in the long run the life of the high
performance programmers will get increasingly difficult and the cost of creating and maintaining
high performance programs will become unsustainable.

The revolutionary solutions we are looking for have to demonstrate viability for high perfor-
mance programming. These solutions have to demonstrate that they can handle a large class of
programs that are considered important by the community. The “mini applications” provided by
the application community will be a good start. However, it is also necessary to demonstrate
that these systems can scale up to realistic applications. They also have to demonstrate that it is
possible to achieve high performance comparable to, or better than, the evolutionary approach on
exascale system.

As revolutionary solutions will require more investment for adoption than the evolutionary
approach, it is important to demonstrate clear benefits of these approaches. We are looking for
solutions that will clearly reduce the burden we are placing on high performance programmers. A
revolutionary approach need not focus on yet another language — it needs to focus on the process
of generating software from the mathematical specification to the executable, and of modifying
such software to provide new functionality or to port to a new platform. A better programming
language may be one component of the solution but it is highly unlikely to be the entire solution.
Researchers should be encouraged to think about the entire software development process and
of ways to accelerate it. For example, a novel approach could radically reduce the programmer
involvement in porting to a new architecture, tuning a code, or testing it.

When looking at revolutionary approaches, it is unrealistic to ask for a comprehensive solution
that is close to deployment. The researchers should be able to address one or two specific problems.
However, it is important to demonstrate the viability of such a solution in a broader context by
perhaps integrating their solution into an existing framework. While revolutionary solutions may
not lead to a product at the inception exascale systems, there should be a clear path to integration
and productization in a reasonable timescale.

7.4 Global Considerations

Is the technology likely to be become available from other sources? The DOE funding
for exascale computing will be limited; it is important to focus investments on technologies that are
unique to exascale, while reusing as much as possible technologies that have a broader application
domain. For example, investments in core compiler technologies should be considered with care,
since core compiler technology has a broad applicability; it must be more productive to extend
successful open source and commercial COTS compiler infrastructures (gcc and LLVM; possibly,
Open64 and Rose, PGI, icc, R-Stream, etc.) than develop new ones from scratch. Decisions in this
area have to carefully balance the unique needs of exascale with the savings accrued form using
technologies with a broader applicability; and the intrinsic advantages of a particular infrastructure
with the viability of this infrastructure, due to its position in the market. This is the critical
“ubiquity” concept which already recognizes that exascale systems are not alone in facing certain

ASCR Ezascale Programming Challenges Workshop 51

challenges. For example the Near Threshold Voltage (NTV) innovations likely to provide significant
power savings for exascale are emerging from commercial investments targeted primarily at mobile
devices.

To what extent does new technology improve productivity? FEven if all the problems listed
in the previous paragraph can be solved within the context of the evolutionary approach, it is quite
possible that the solutions will significantly increase the programming effort needed to achieve good
performance at exascale with codes of interest. Alternative technologies that can achieve the same
goals with significantly lower programming efforts should be considered — provided that the expected
payoff is very significant. Work in this area has to be in the “high-risk, high-payoff” category,
because of the many obstacles in the adoption of totally new programming models: The X10 goal
of HPCS has not yet led to changes in the way we program; furthermore, code programming is
a very small fraction of the overall code development effort that includes verification, validation
and code tuning. It is quite possible that the more important impact could be achieved with new
V&V or code tuning methodologies, rather than with totally different programming models. For
this reason, changes to the programming models to enhance V&V efforts, such as increasing the
semantic content and enabling the use of automated theorem proving, could be very valuable.

To what extent is there a clear path to technology deployment? Research on program-
ming models for exascale needs to have a well-defined path for timely deployment, if successful.
We shall want every significant technology to be well-supported on all exascale platforms; a non-
proprietary implementation is also highly desirable to mitigate the risk of a vendor bailing out.
Successful deployment will be needed within eight years or less from research start. Therefore, it is
important that research not only provide a proof of context, but also a good quality implementation
that can be easily ported by vendors or by a DOE team. Such a port is facilitated if the prototype
development used a broadly available infrastructure (e.g., broadly available compilers, run-times
and libraries).

To what extend is there a clear path to application migration? Application running on
exascale platforms will have been mostly developed before new programming models or technologies
created by research starting now will see fruition. Thus, the deployment of a new programming
model cannot depend on the assumption that exascale codes will be developed entirely from scratch
in this model. A migration path should include solutions for interoperability — i.e., mixing the new
with the old; and for portability — ie.e., transforming the old into the new.

How easy it is to develop the new technology into a complete solution? A new program-
ming model cannot stand on its own: It requires good support from programming environments
(such as Eclipse), debugging and performance tools, compilers and run-times; codes need to be
able to use existing computational libraries, parallel I/O libraries, visualization libraries, etc. This
“complete” support will need to be deployed this decade, with limited funding. Point solutions
that require significant additional work to be deployed in broad use may not be appropriate.

Is the work done at the level that most facilitate insertion? Functionality required for
exascale may be introduced at different levels of the programming stack, resulting in different
trade-offs. Consider, for example, the issue of providing more advanced functionality for data dis-
tribution and communication control and for co-locating of data and computation, in environment
where nodes come and go, and where both data structures and computations change dynamically.

ASCR Ezascale Programming Challenges Workshop 52

This issue is critically important for reducing energy consumption and providing resilience. It can
be handled (a) transparently, in a run-time; (b) as part of the programming language, as done by
Chapel and X10; or, (c), as part of a framework for distributed data management that sits above a
programming language such as C++ and a communication library such as MPI (Heroux’ model).
Each of the choices has advantages and disadvantages: a pure run-time approach would be ideal for
the viewpoint of the application programmer, but might not be feasible. A language approach fa-
cilitates optimizations, and is likely to be more elegant. However, it requires significant investments
in solution that has a high threshold for adoption and is less flexible. A framework approach may
impose a bigger burden on the library developers and may limit possible optimizations, but is much
easier to ingest in the existing infrastructure; it can evolve, over time, from a simple framework
implemented in C+4 and MPI into an embedded domain-specific language, supported by its own
run-time and optimization framework. Such trade-offs must be carefully considered when assessing
research projects.

Several high-level compiler projects have demonstrated that it is possible to automatically gen-
erate good OpenMP from high-level specifications of application kernels, including complex hierar-
chical nestings of doalls and complex tilings. It may be that OpenMP and MPI will naturally evolve
to being good target languages for higher level programming tools, rather than the applications
programming layer.

An example: For illustration, consider a potential “revolutionary” project that would develop
a new programming language that can be used to manage parallelism and communication both
intra-node and inter-node, thus replacing both MPI and “X”.

Replacing both MPI and “X” has a good potential for improving productivity, so that such a
research direction is certainly worth considering; such technology is unlikely to come from another
market.

But this is not sufficient: Such a new language will have to provide performance comparable
to MPI+X at scale, provide good control for locality, handle heterogeneity, enhance asynchrony
and provide a solution to resilience. The new language should interoperate with an MPI+X model
and tools should be provided for migrating MPI4+X code to the new language. One will need to
provide robust optimizing compilers and debugging and performance tools for the new language
on multiple platforms. It should be clear how vendors could support such a new language in a
time frame that is consistent with the exascale deployment goals. Finally, the new language should
offer clear advantages over alternative ways to support a similar programming model, e.g., through
extensions to C++.

It is unlikely that all these issues can be addressed in an initial research projects. On the
other hand, such an initial research project should be able to outline a rationale why the proposed
approach would be able to handle these issues, and a path toward the deployment of the proposed
technology.

A research plan in exascale cannot be judged only by the quality of each of the components;
one also needs to assess the overall research portfolio for its consistency and complementarity.

In particular, one needs to pay attention to the following issues

Is the portfolio sufficient? Do we cover all the bottlenecks to exascale computing?

Are efforts complementary? The DOE exascale program will be under budget pressure; there-
fore, it is essential to ensure that efforts in different areas are complementary — optimizing the whole

ASCR Ezascale Programming Challenges Workshop 53

more than the individual projects. For example, research in run-time, compilers, debuggers and
performance tools should be complementary to research on new programming models.

One important way to ensure complementarity is to invest in infrastructure that can serve
multiple projects, e.g., a run-time that can support multiple programming models, or an auto-
tuning infrastructure that can be used with many programming models.

Does the portfolio properly balance risks and returns? A good research portfolio has to
mix low-risk low-return work with high-risk, high-return research. Investments should not only be
guided by the intrinsic merit of each project, but by the need to achieve a proper balance. Also,
the portfolio has to provide more coverage to those areas that are seen as more problematic, and
less to those where the base plan is clearly adequate.

7.5 Cross-Cutting Issues

Research in new programming models will face a set of organizational issues that are cross-cutting
across of components of such research:

7.5.1 Internal Collaborations

The research will involve DOE Science labs, NNSA and academic partners. These different partners
have different missions, different environments, different skills and different funding models. It is
important to organize the research so as to leverage the advantages of each of these partners.

7.5.2 External Collaborations

Research in programming models will need to collaborate with research in other areas, such as
applications or architecture. The interactions have to be though both in terms of needed flow of
information, needed coordination, and scheduling constraints. For example, research that impacts
architecture should become available in 2015 or so. New programming models will not be used to
code for exascale, unless they are ready and well supported on existing platforms by 2015, or if
code porting is made painless by the use of advanced tools.

7.5.3 Vendor Interaction

Vendors should be involved at an early stage as partners to ensure research technologies match
their constraints and can be easily moved to industry. It is necessary that the same programming
models be supported by all vendors, so as to provide code portability. This will require research
teams to work with multiple competing vendors — leading to complex IP problems. Note, however,
that there are many successful precedents of multi-vendor research partnerships.

DOE has a rich history in interactions with computer vendors. But little recent language,
compiler or run-time research has made its way back from DOE to the system and independent
software vendors. Similarly, there might be cases in which DOE, due to implicit and explicit policy
constraints at headquarters or in the labs, has duplicated technology that could have been obtained
COTS.

7.54 1IP

DOE has a strong preference for open source software; open source software also is the environment
of choice for research. On the other hand, many of the components of the software stack provided

ASCR Ezascale Programming Challenges Workshop 54

by vendors — in particular, compilers — are proprietary. If research is to include areas such as
compilers, one will need to carefully manage the IP issues this situation raises.

One possible approach would be to focus on open-source technology for exascale systems, e.g.,
request that the compiler infrastructure be based on open source compiler software such as LLVM
or Open64. The use of LLVM by vendors such as Apple and Cray increases the plausibility of such
an approach.

An alternative is to develop research technology using open source in the expectation that
it will be adopted and ported to vendor products. For example, compiler transformations could
be first developed within DOE closer to the application groups and then migrated back to the
vendor compiler groups. Open source and source-to-source compilers are an open and plausible
vehicle to communicate both analysis and transformations that are important to support both
applications and whole application domains on emerging computer hardware. This approach could
automate and raise the levels of abstraction for application groups while still addressing the detailed
requirements of vendor solutions. This bridging could be an important basis for interactions with
vendors in the co-design process. Such an approach is viable only if research uses non-viral open
source licenses. Furthermore, this approach is cost effective only if a means can be found for DOE
compiler development to be performed in a context where optimization baselines comparable to
the significant capabilities of commercial tools (the products of significant commercial investment)
are used; typically open source tools are not on par with commercial tools. Alternatively, another
mode for DOE to work on tools development is in the context of commercial source bases.

This issue is is of major importance to vendors. Restrictive and short-sighted DOE policies
that mandate open source, and DOE laboratory implicit policies of only taking in open source,
may well be one of the causes of neglect of these technologies for solving DOE HPC software
challenges, and duplication within DOE of capabilities available elsewhere. While commercial
software may involve some licensing costs for DOE, those costs are without question lower than
recapitulating the technology as open source. Using government resource to duplicate software as
open source also undermines vendors. It is very difficult for open source to attract and sustain
capital investment because ROI on open source software is significantly lower than closed source
software. Finally, developing critical technologies - and the programmign system for exascale is
clearly a strategic technology - as open source hands technologies to our national competitors in
high performance computing, in some cases further undermining US vendors by seeding offshore
low-wage competitors®.

It will be important to develop models for collaboration with US vendors that can avoid all of
these pitfalls.

The role of open source vs. proprietary technology in the HPC stack has been an item of
intense discussion in DOE for many years, and this report will not resolve the issue. Different
vendors have different strategies with respect to open source software and a different willingness to
use open source software in their products. Vendors that differentiate their products in hardware
may be more willing to adapt open source, as compared to vendors that differentiate themselves in
software.

The DOE exascale program will need to interact with such different vendors, further compli-
cating the decision process.

415 is hard to imagine DOE mandating that commercial hardware vendors publish their schematics and fabrication
process specifications; strategic software technology should be treated equally carefully.

ASCR Ezascale Programming Challenges Workshop 55

7.5.5 Common vs. Vendor Specific Technology

Hardware vendors and and independent software companies have large established and experienced
teams in technology specific to their platform, in particular, compiler development, and deep port-
folios of advanced technology; not just in node-specific software, but also in parallel and HPC
software such as parallelizers, libraries, programming models, debuggers, profilers, threading sys-
tems, messaging systems, and thread checkers. In some cases, these technologies have been partly
or even fully funded by the government. But they are typically not open source, so that the vendors
can preserve some competitive advantage and achieve a fair return on investment.

Part of the exascale software stack will be developed by the hardware vendors that will focus
on their specific hardware, and will have internal road-maps for the details about features that can
be leveraged. This is especially true for “back-end” compilers, node scientific libraries and other
node-architecture specific software.

At the other end, part of the software stack has to be developed in close interaction with
application developers. This is especially true for high level programming models, frameworks and
libraries. Hardware and software vendors could be encouraged to have greater interaction with
application developers.

Finally, programming models should be common across systems, in order to support portability.
Such a commonality should go beyond the semantic of the programming model used, and also
include performance portability (a code that is efficient on one platform does not need to be
rewritten to run with reasonable efficiency on another platform). It is highly desirable to have a
common set of tools and a common integrated development environment that can be used for code
development on either platform, so that programmers need no learn how to use different tools and
environments.

These forces are pulling in different directions and will need to be carefully managed. They
possibly indicate that DOE research should focus on the higher levels of the stacks where com-
monality across platforms and strong interaction with applications is most important. However,
such a research cannot ignore the lower levels of the stack, and collaboration with vendors will be
essential. Such a collaboration should be aimed at influencing vendors so that they provide at the
lower layers those interfaces and services that are required for building efficient higher layers; and
at defining proper interfaces between layers. For example, one can imaging that higher level DSLs
and programming models are supported by a parallel run-time and by a source-to-source compiler,
such as ROSE, PGI, or R-Stream. The parallel run-time has to be supported by a node run-time
that could be partly provided by the vendor, while the target source code is further compiled by
a vendor “back-end” compiler. Such an approach suffers from a lack of integration (it is harder to
design debuggers or performance tools) but provide a logical division of labor. For it to work, one
needs to define rich interfaces that enable to move across layers as much information as possible.

7.5.6 The Vendor Ecosystem

Vendor contributions to exascale programming models can come from a variety of vendors: Micro-
processor vendors, such as Intel or NVIDIA are developing compilers and integrated development
environments for their hardware: The Intel Parallel Studio and the NVIDIA CUDA technology.
Intel is developing several systems also supporting advanced parallel programming concepts such
as Array Building Blocks, Cilk++, and Concurrent Collections. Independent software companies
can provide significant technologies for exascale. The Portland Group Compiler offers highly tuned
and robust Fortran and C++ compilers, and has demonstrated the ability to rapidly innovate in
programming models with their CUDA Fortran products. The R-Stream compiler, developed with

ASCR Ezascale Programming Challenges Workshop 56

government funding and available to the government under common FAR and DFARS source rights,
offers unique capabilities for automatic parallelization and scheduling using polyhedral methods.
Platform vendors such as Cray or IBM are developing their own libraries, compilers and program-
ming environments, both for node programming (e.g., OpenMP and thread tools), and for global
programming (e.g., Chapel, X10, UPC, CAF and parallel performance tools). This landscape is
continuously evolving, and could significantly change by 2020.

Since collaboration with vendors is important, it is important for the research teams to col-
laborate with those companies that are most likely to use their research. Similarly DOE should
take advantage of and sponsor commercial researchers, who can have significant unique proprietary
assets to increase research effectiveness. A better definition of the expected role of various vendors
in exascale will facilitate such interaction.

7.5.7 Common Research Infrastructure

Projects that are likely to coexist in the long run will benefit from using a common infrastructure.
Such an infrastructure should also facilitate research and the exchange of code components.

7.5.8 Integration vs. Specialization

Research in each area (architecture, run-time, compilers, programming tools, libraries) has strong
dependencies on research in the other areas. Such interactions are better handled by collaborative
research of larger teams of researchers that represent these various areas and work together towards
a common goal. At the same time, small and focused groups are sometimes better positioned to
provide best-of-breed individual pieces of technology, so the underlying approach must facilitate
composing separately-developed technology through common interfaces.

7.5.9 Work replication

The limited research budget for exascale dictates that replications be avoided, while not stifling
the natural competition that leads to better outcomes. It is also important to minimize the waste
of resources through duplication effort recreating technologies already available. One may want to
push for more commonality and less replication in infrastructure that is not a proper part of the
research

7.5.10 Pedagogical Role

Research in academia and in DOE research labs creates not only new technology, but also new
educated researchers that can move this technology to vendors or other labs. It is important that
the research funding models encourage the involvement of students and contribute to the education
of the generation of exascale developers and users.

7.6 Programmatic Challenges
7.6.1 Programming models

The uncertainty about future architectures, and the limited budgets devoted to exascale computing
means that it is essential to have a lean, agile infrastructure for constructing layered systems of
programming models — e.g., developing DSL’s or frameworks. The infrastructure must support
their efficient implementation and must support the creation of “reverse engineering tools”, i.e.,
debuggers and performance tools that present information to the programmer at the level of the

ASCR Ezascale Programming Challenges Workshop 57

programming model she uses. It must guarantee semantic preservation across layers: a lower layer
either correctly implements a higher layer or throws an exception. It must also preserve performance
semantics: a lower layer either provides the performance expected at the higher level, or indicates
why it cannot do so.

7.6.2 Rapid Prototyping of New Language Concepts

Novel production quality languages have to be built using tried and proven concepts and features
as a single bad feature can break the language. One of the biggest barriers for research on new
language features is the current inability to get quality feedback from programmers. The dominant
reason for a success of a language is that large number of programmers find it to be productive
for their requirements and start using it. As many of the early adopters will be already using a
language they are familiar with, the advantage need to be significant enough to justify the learning
curve. Thus, programmer experience is perhaps the primary reason for a success of a language.
Unfortunately there is a chicken-and-an-egg issue when it comes to novel languages. It is hard to
get programmers to use something new and without programmer feedback it is harder to evolve a
language. It is not easy to evaluate a language for multiple reasons:

1. Tt is hard to get a programmer to invest their time onto a research language. With a short
term perspective, there is nothing in it for them. The language/compiler will be buggy; has
very little supporting infrastructure (libraries, debugging); it keeps changing rapidly making
it necessary to update/port the program; and it may not have the longevity thus requiring
the programmer to redo the program using a different language.

2. There is a difference between evaluating a language feature(s) and building a full featured
language. A full featured language has to get everything right (one ill-conceived construct
can kill a language). Thus, you need to use proven features. The issue is how to get a novel
feature to a stage where it can be adopted into a full featured language.

3. Even with a full featured language, market forces will not drive for evaluation and evolution.
There is a herd mentality in programmers. In order to get a programming language adopted, it
already have to be successful and stable. This works against evolution (example: programmer
resistance in moving to Python 3.0)

4. Novel language features need time to evolve. It is hard to get it right the first time. Un-
fortunately, evolution makes programs obsolete, making evolution extremely difficult. The
more success a language has, more difficult this becomes (design by committee, programmer
resistance etc.)

5. Need to understand the productivity of an expert programmer. A language that is similar to
existing languages are easy to learn, but may not provide too much benefits in the long run.
A totally novel programming construct may take time to learn, but once perfected can be
very beneficial (or not). Thus getting good feedback requires long term commitment from the
programmers. A one-week experiment will not do it (for example, multiple inheritance looks
like a great idea at first, until you try to write a complex program with multiple inheritance.)

6. All programmers are not the same, thus need many programmers to use a language before
getting a representative view.

In many cases, a successful new language have to provide a functionality not available in existing
languages in order to gain adoption — it has to be essentially the only viable way to achieve some

ASCR Ezascale Programming Challenges Workshop 58

goal, e.g., while Java has many good features, it’s adoption was largely due to its support for
applets. It is possible that the same will happen for exascale — with a new language being the only
effective way of handling resilience or locality. This necessity can be used to achieve other desirable
goals that, by themselves, would not cause a paradigm shift.

7.7 Application Engagement

The work on programming models has to be closely coordinated with the work in applications. The
application teams are working to provide compact applications, mini-applications and application
skeletons that can be used to validate programming model work “in the small”. It is less clear
how the work on programming models and supporting technologies can impact the development
of exascale applications, because of the short run-way; and how one can test issues related to
“programming in the large”: e.g., how easy it is to express large multi-physics and multi-scale
codes and manage the complexities of such codes.

7.8 Strategies for Validation and Metrics

The ultimate measure of success for a new programming model is its adoption by the user commu-
nity. The design of a language or framework is an important contributor to its success, but still
is one of many success factors: does the new model fill a known gap, is it well supported, does
it provide the required performance, is it likely to persist — those are factors that may have more
importance that the elegance of the design. Furthermore, one important goal for a new program-
ming model, namely programmer productivity, is extremely hard to measure: Productivity on toy
codes is different than productivity on large codes; productivity of a novice is different than the
productivity of an expert programmer; productivity does not correlate much with simple measures,
such as lines of code; and productivity is highly dependent on the programming environment, not
only the programming model. Therefore, it will be hard to provide simple, intrinsic measures of
success for work on programming models, and it will be hard to evaluate work in this area in its
early stages.

This does not mean that evaluation has to be avoided — it means that an objective evalua-
tion using quantitative metrics will necessarily be incomplete, and has to be complemented by a
qualitative evaluation.

Quantitative evaluation should include measures such as performance on existing compact ap-
plications: measured performance on existing systems, and extrapolated performance on exascale
systems, taking into account failure rates, and measuring performance both by time to solution
and energy consumption.

Qualitative evaluation should include a measure of the expressiveness of the proposed model.
One possible approach is to consider the main parallel programming patterns used in HPC codes
(such as captured by Berkeley motifs and other similar work [2]) and explain how these patterns
can be expressed in the proposed programming model. Equivalently, one could ensure that the
mini-apps used to evaluate the proposed programming models be representative of all these motifs.

It is important that the insistence on metrics does not undermine the healthy DOE investment in
novel or revolutionary research approaches. Typically any innovative technology cannot match the
performance of established technologies. However, what is important, in the medium and long term,
is the rate of improvement. Established technologies typically flatten their rate of improvement,
as ever greater spending is required to make progress against their intrinsic limits. Innovative
technologies without these limitations can escape the bounds of the established technologies, and
can be on a much steeper rate of improvement. This is the McKinsey S-curve argument [20]. While

ASCR Ezascale Programming Challenges Workshop 59

this business literature makes these cases in colorful stories such as the triumph of steam over
sail, an example of this in our own field of high peformance computing is the infamous “Attack
of the Killer Micros” [14] that overturned the vector supercomputing establishment. It is certain
that several of the so called “toy” programming systems that our academics are working on today
will provide the answers to some of our most vexing programming challenges, provide they are
kept alive. They must be nurtured, even if they seem weak and barely threaten our venerated
programming approaches that are serving us so well now. Consequently, any regimen of metrics
for comparing programming approaches must not be so restrictive as to overlook consideration of
the scalability, rate of improvements, intrinsic limits, and the changing hardware and applications
landscape.

ASCR Ezascale Programming Challenges Workshop 60

8

Bibliography

References

1]

2]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

S. Amarasinghe. Why have compilers failed to help parallel programmers. Presentation given
at DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, E. Lee, N. Mor-
gan, G. Necula, D. Patterson, et al. The parallel computing laboratory at uc berkeley: A
research agenda based on the berkeley view. EECS Department, University of California,
Berkeley, Tech. Rep, 2008.

A. Avritzer, F. P. Duarte, R. M. M. Leao, E. de Souza e Silva, M. Cohen, and D. Costello.
Reliability estimation for large distributed software systems. In Conference of the Center for
Advanced Studies on Collaborative Research, 2008.

L. Bairavasundaram, R. Goodson, B. Schroeder, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.
An Analysis of Data Corruptions in the Storage Stack. In USENIX Conference on File and
Storage Technologies, (FAST), 2008.

P. Balaji. Evolutionary support for revolutionary programming models and runtime systems.
Presentation given at DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

J. Balfour and W. Dally. Design tradeoffs for tiled CMP on-chip networks. In International
Conference on Supercomputing, 2006.

R. Barrett. Preparing multi-physics, multi-scale codes for exascale hpc. Presentation given at
DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

R. Barriuso and A. Knies. Shmem user’s guide for ¢. Technical report, Technical report, Cray
Research Inc, 1994.

G. Belter, E. Jessup, I. Karlin, T. Nelson, B. Norris, and J. Siek. Exploring the optimization
space for build to order matrix algebra. Technical Report ANL/MCS-P1890-0511, Argonne
National Laboratory, May 2011.

G. Blelloch. Nested parallelism and hierarchical locality. Presentation given at DOE 2011
Workshop on Exascale Programming Challenges, July 2011.

R. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing. J.
ACM, 46(5):720-748, 1999.

D. Bonachea. GASNet specification. Technical Report CSD-02-1207, University of California,
Berkeley, October 2002.

S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23-29, 1999.
E. D. Brooks. Attack of the killer micros, 1990.

S.-E. Choi. Five things about hpc programming models that i can live without. Presentation
given at DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

A. Duran, J. Perez, E. Ayguadé, R. Badia, and J. Labarta. Extending the openmp tasking
model to allow dependent tasks. OpenMP in a New Era of Parallelism, pages 111-122, 2008.

ASCR Ezascale Programming Challenges Workshop 61

[17]

[18]
[19]

[20]
[21]

22]

V. Eijkhout, P. Bientinesi, and R. van de Geijn. Towards mechanical derivation of krylov solver
libraries. Procedia Computer Science, 1(1):1799 — 1807, 2010. proceedings of ICCS 2010, http:
//www.sciencedirect.com/science/publication?issn=18770509&volume=1&issue=1.

T. El-Ghazawi, W. Carlson, and J. Draper. Upc language specifications v1. 1.1, 2003.

P. K. et al. Exascale computing study: Technology challenges in achieving exascale
systems. http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/
exascale_final_report_100208.pdf, 2008.

R. N. Foster. Innovation: The Attacker’s Advantage. Summit Books, 1986.

M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the cilk-5 multithreaded
language. SIGPLAN Not., 33(5):212-223, 1998.

Y. Guo. A Scalable Locality-aware Adaptive Work-stealing Scheduler for Multi-core Task Par-
allelism. PhD thesis, Rice University, Aug 2010.

Y. Guo, J. Zhao, V. Cavé, and V. Sarkar. SLAW: a Scalable Locality-aware Adaptive Work-
stealing Scheduler. In IPDPS ’10: Proceedings of the 2010 IEEE International Symposium on
ParallelédDistributed Processing, pages 1-12, Washington, DC, USA, Apr 2010. IEEE Com-
puter Society.

W. Harrod and S. R. Sachs. Introduction to the ascr exascale programming challenges work-
shop. Presentation given at DOE 2011 Workshop on Exascale Programming Challenges, July
2011.

M. Heroux. Next generation programming environments: What we need and do not need.
Presentation given at DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

C. Huang, O. Lawlor, and L. Kale. Adaptive mpi. Languages and Compilers for Parallel
Computing, pages 306-322, 2004.

The international technology roadmap for semiconductors (ITRS). http://www.itrs.net.

C. Jansen. Pushing back the point of diminishing returns for parallel performance. Presentation
given at DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

S. Kale. Composable and modular exascale programming models with intelligent runtime
systems. Presentation given at DOE 2011 Workshop on Exascale Programming Challenges,
July 2011.

R. C. Kirby and A. Logg. A compiler for variational forms. ACM Trans. Math. Software,
32:417-444, 2006.

P. Kogge. ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems.
CSE Dept. Tech. Report TR-2008-13, 2008.

A. Koniges. Challenges and application gems on the path to exascale. Presentation given at
DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

S. Krishnamoorthy. (de)composable abstractions for a changing architectural landscape. Pre-
sentation given at DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

ASCR Ezascale Programming Challenges Workshop 62

http://www.sciencedirect.com/science/publication? issn=18770509&volume=1&issue=1
http://www.sciencedirect.com/science/publication? issn=18770509&volume=1&issue=1
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf

[34]

[35]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

R. Lethin. Reconceptualizing to unshackle programmers from the burden of exascale hardware
issues. Presentation given at DOE 2011 Workshop on Exascale Programming Challenges, July
2011.

R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri, and V. Sarkar. Delegated Isolation. In
Proceedings of OOPSLA 2011, 2011.

B. Lucas. Exascale: Can my code get from here to there? Presentation given at DOE 2011
Workshop on Exascale Programming Challenges, July 2011.

T. Mattson. Unintelligent design for asynchronous exascale systems. Presentation given at
DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

J. Mellor-Crummey. Lessons from the past, challenges ahead, and a path forward. Presentation
given at DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

S. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S. A. Wender. Predicting
the Number of Fatal Soft Errors in Los Alamos National Laboratory’s ASC Q Supercomputer.
IEEE Tran. on Device and Materials Reliability, 5(3), September 2005.

D. A. B. Miller. Rationale and challenges for optical interconnects to electronic chips. In Proc.
IEFEE, pages 728-749, 2000.

D. A. B. Miller and H. M. Ozaktas. Limit to the bit-rate capacity of electrical interconnects
from the aspect ratio of the system architecture. J. Parallel Distrib. Comput., 41(1):42-52,
1997.

J. Misra. The challenge of exascale. Presentation given at DOE 2011 Workshop on Exascale
Programming Challenges, July 2011.

G. A. Moore. Crossing the Chasm. Harper, 2nd edition edition, 1999.

J. Nieplocha and B. Carpenter. Armci: A portable remote memory copy libray for ditributed
array libraries and compiler run-time systems. In IPDPS’99, pages 533-546, 1999.

J. Nieplocha, R. Harrison, and R. Littlefield. Global arrays: A nonuniform memory access pro-
gramming model for high-performance computers. The Journal of Supercomputing, 10(2):169—
189, 1996.

K. Pingali. Why compilers have failed and what we can do about it. Presentation given at
DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

I. C. Plus. http://software.intel.com/en-us/articles/intel-cilk-plus/.

D. Quinlan. Challenges for compiler support for exascale computing. Presentation given at
DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

J. Reid and R. Numrich. Co-arrays in the next fortran standard. Scientific Programming,
15(1):9-26, 2007.

V. L. Rideout, F. H. Gaensslen, and A. LeBlanc. Device design considerations for ion implanted
n-channel mosfets. IBM J. Res. Dev., 19(1):50-59, 1975.

ASCR Ezascale Programming Challenges Workshop 63

[51]

[52]

[53]

[54]

[55]

[62]

[63]

[64]

[65]

V. Saraswat. The return of logic. Presentation given at DOE 2011 Workshop on Exascale
Programming Challenges, July 2011.

V. Sarkar. Programming constructs for exascale systems and their implementation challenges.
Presentation given at DOE 2011 Workshop on Exascale Programming Challenges, July 2011.

J. Shalf. Functional vs. imperative languages (dataflow 2.0). Presentation given at DOE 2011
Workshop on Exascale Programming Challenges, July 2011.

J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing technology challenges. VECPAR,
pages 1-25, 2010.

J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers: a unified deadlock-
free construct for collective and point-to-point synchronization. In ICS ’08: Proceedings of

the 22nd annual international conference on Supercomputing, pages 277-288, New York, NY,
USA, 2008. ACM.

J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phaser accumulators: A new reduc-
tion construct for dynamic parallelism. In Proceedings of the 2009 IEEE International Sym-
posium on ParalleléDistributed Processing, pages 1-12, Washington, DC, USA, 2009. IEEE
Computer Society.

J. Shirako and V. Sarkar. Hierarchical Phasers for Scalable Synchronization and Reduction. In
IPDPS ’10: Proceedings of the 2010 IEEE International Symposium on ParallelédDistributed
Processing, pages 1-12, Washington, DC, USA, 2010. IEEE Computer Society.

H. Simon, R. Stevens, and T. Zacharia. Modeling and simulation at the exascale for energy
and the environment town hall meetings. http://www.er.doe.gov/ascr/ProgramDocuments/
Docs/TownHall.pdf, 2008.

H. Simon, R. Stevens, and T. Zacharia. A platform strategy for the advanced simulation and
computing program, 2008.

T. Sterling. Future Directions in High-End Computing, April 1999. Invited Presentation at
the University of Vienna.

R. Stevens and A. W. et al. Scientific grand challenges: Architectures and tech-
nologies for extreme scale computing. http://science.energy.gov/~/media/ascr/pdf/
program-documents/docs/Arch_tech_grand_challenges_report.pdf, 2010.

B. V. Straalen, J. Shalf, T. Ligocki, N. Keen, and W.-S. Yang. Scalability challenges for mas-
sively parallel amr application. In In IFEFE International Parallel and Distributed Processing
Symposium (IPDPS), 2009.

J. Sukha. Brief announcement: a lower bound for depth-restricted work stealing. In SPAA

’09: Proceedings of the twenty-first annual symposium on Parallelism in algorithms and archi-
tectures, pages 124-126, New York, NY, USA, 2009. ACM.

S. Swaminarayan. Exaflops, petabytes, and gigathreads... oh my! Presentation given at DOE
2011 Workshop on Exascale Programming Challenges, July 2011.

S. Tasirlar and V. Sarkar. Data-driven tasks and their implementation. In Proceedings of
International Conference on Parallel Processing (ICPP), 2011.

ASCR Ezascale Programming Challenges Workshop 64

http://www.er.doe.gov/ascr/ProgramDocuments/Docs/TownHall.pdf
http://www.er.doe.gov/ascr/ProgramDocuments/Docs/TownHall.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Arch_tech_grand_challenges_report.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Arch_tech_grand_challenges_report.pdf

[66] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. The potential of the Cell
processor for scientific computing. In CF ’06: Proceedings of the 3rd conference on Computing
frontiers, pages 920, New York, NY, USA, 2006. ACM Press.

[67] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick. Scientific computing
kernels on the Cell processor. International Journal of Parallel Programming, 35(3):263-298,
2007.

[68] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. Hierarchical Place Trees: A Portable Abstraction for
Task Parallelism and Data Movement. In Languages and Compilers for Parallel Computing,
22nd International Workshop, LCPC 2009, volume 5898 of Lecture Notes in Computer Science.
Springer, 2009.

ASCR Ezascale Programming Challenges Workshop 65

	22711_Exascale_Cover_for_Web
	Programming Challenges Final Report
	Table of Contents
	Executive Summary
	Introduction
	Application Requirements
	Advanced programming models and languages
	Language constructs, compiler and runtime engines

	Hardware Challenges
	Power as a Leading Design Constraint
	Parallelism
	Locality
	New Communication and Synchronization Mechanisms
	Heterogeneity
	Asynchrony
	Fault Tolerance
	Disruptive Changes are Already Underway

	Application Requirements
	The Extreme-fidelity Science Challenge
	The Exascale Execution Model Challenge
	Programmatic Challenges

	Programming Models: Challenges, and Strategies
	Programming Models Stack
	Major Implementation Challenges
	Exploiting properties of the problem domain
	Unified Abstract Machine Model
	Challenges Particular to Exascale

	Objective Criteria to Assess Programming Models
	Objective Criteria to Assess Programming Notations

	Compiler: challenges and strategies
	Compiler Organization
	Reconceptualizing and broadening the role of the compiler
	Managing fine-grain parallelism, locality and heterogeneity
	Increasing resiliency
	Managing energy and power
	Support for Domain Specific Languages and Constructs

	Runtime Systems: challenges and strategies
	Runtime Support for Exascale Execution Models
	Intra-node Runtime Support for Multicore Processors: Current Trends
	Integration of Intra-node and Inter-node Run-time Systems
	Runtime Interoperability
	Decentralized Monitoring, Data Aggregation, Data Analysis, Data Mining, and Introspection
	Fault Tolerance: Detection and Recovery
	Compiler/Runtime/User Interface
	Runtime/Architecture Interface
	Interaction between OS and Runtime

	Path Forward
	Introduction
	Evolutionary Path
	Considerations

	Revolutionary Path
	Global Considerations
	Cross-Cutting Issues
	Internal Collaborations
	External Collaborations
	Vendor Interaction
	IP
	Common vs. Vendor Specific Technology
	The Vendor Ecosystem
	Common Research Infrastructure
	Integration vs. Specialization
	Work replication
	Pedagogical Role

	Programmatic Challenges
	Programming models
	Rapid Prototyping of New Language Concepts

	Application Engagement
	Strategies for Validation and Metrics

	Bibliography
	References

