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1 Executive Summary 

1.1 Self-Aware Operating and Runtime 
Systems 

Large-scale parallel simulations and data analysis 
drive scientifc discovery across many disciplines. To 
drive larger and more detailed simulations, and deal 
with larger data volumes, exascale machines capable 
of 1018 operations per second are expected within 
the next fve to ten years. However, the complexity of 
developing and adapting modern simulation codes for 
these architectures is increasing rapidly. Workloads 
on exascale machines will be billion-way parallel. 
Exploiting the full capability of the machine will 
require carefully assigning application tasks to cores, 
accelerators, deep memories, and other heterogeneous 
compute resources, while simultaneously optimizing for 
time to solution, data movement, power, and resilience. 
Optimizations that improve performance on one 
machine may slow down another. Worse, applications 
themselves are dauntingly complex. Production 
simulations comprise millions of lines of code and use 
sophisticated, adaptive algorithms whose performance 
is input-dependent. Complex workfows can couple 
multi-physics simulation with data preprocessing and 
post-processing modules. 

Without wholesale change, this complexity will become 

unmanageable, scientifc advancement will slow, and the cost of 

new scientifc discoveries will increase dramatically. Currently, 
human performance experts work with application 
teams to tune their codes. Through painstaking effort, 
repeated measurement, and manual parameter space 
exploration, they can wring performance out of 
benchmarks and simple codes. However, integrated 
production codes have multiple physics modules 
with distinct bottlenecks and scaling behaviors. 
Simultaneously optimizing all of these components 
together is too difficult even for performance experts, 
and the most sophisticated simulations often run at 
less than 10 percent of peak performance on today’s 
machines. If current trends continue, achieving even 1 percent 

of peak on an exascale machine may become an exceptional 

accomplishment. Similarly, it takes many months for 
vendors and system operators to stabilize new systems 
and have them run in a reasonable regime. As system 
complexity increases, time to full production will 
continue to increase. The unexpected side-effects 
of any software change result in increasing reluctance 
to evolve platforms, hence increasingly slow evolution 
of software. 

For scientifc discovery to continue unabated, high 
performance computing (HPC) optimization must be 
done much faster than is possible with humans in the 
loop. Exascale compute facilities must be self-aware, improving 

themselves over time without human intervention. To handle 
complexity at this scale, the system must accumulate 
knowledge and act on it to tune performance, power, 
and resilience parameters at runtime. Optimization 
concerns must be separated from application logic to 
hide complexity and allow computational scientists to 
focus on producing new scientifc insights. 

With this holistic approach, 
the SAOSR will enable 
performance portability to 
any machine, while increasing 
developer productivity and 
speeding the advance of 
science. 

The Self-Aware Operating System/Runtime (SAOSR) 
will provide the features needed to make exascale 
optimization tractable, and to allow applications to 
achieve high performance on any machine without 
human intervention. The SAOSR will monitor itself, 
leveraging machine learning techniques to increase 
the rate of scientifc discovery over time. The SAOSR 
will use learning techniques to understand expected 
performance and to build models of data-dependent 
adaptive codes. These models will be used to predict 
performance and resource usage, and also to make 
online optimization decisions. Most importantly, The 
SAOSR will handle global decisions, optimizing across 
coupled applications and operating system interfaces. 
With this holistic approach, the SAOSR will enable performance 

portability to any machine, while increasing developer 

productivity and speeding the advance of science. 
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1.2 Machine Learning 

The DOE charter includes broad support for scientifc 
innovation in the areas critical to the US national 
security and competitiveness. Progress in these areas 
is predicated on the ability to conduct simulations and 
computational experiments generating vast amounts 
of data, and subsequently processing that data into 
information. Signifcant DOE investments in state-
of-the-art experimental and computing facilities 
have resulted in scientifc data being generated in 
unprecedented volumes and velocities. Machine 
learning techniques have proven to be invaluable 
in the commercial world; and we believe that such 
techniques can be an indispensable tool for extracting 
insights from current and future scientifc datasets; 
thereby enhancing scientifc productivity and 
providing maximal science impact from existing DOE 
investments. 

Exascale-class systems will feature applications, 
operating system and runtime frameworks running 
at unprecedented concurrencies. At such scales, 
human supervision and control of faults will become 
impossible. Intelligent, dynamic, resilient runtime 
systems that are capable of predicting, detecting 
and recovering from faults will become the norm. We 
believe that machine learning (ML) methods will play 
a critical role in ushering in this new age of embedded 
intelligence. Such augmented systems will perform 
real-time allocation of power and other resources 
consistent with user-defned constraints and priorities. 
At the same time, it is important to design novel ML 
algorithms, which extract the best performance of 
many-core systems, while considering the pivotal 
issues of reliability and data movement—the primary 
impediments in designing exascale systems. 

We believe that sustained long-term investment in the 
feld of ML has the potential for a large payoff, both 
in the short and long-term. Resulting advances, both 
in the feld of machine learning, as well as science 
domains, can potentially catalyze and revolutionize 
new breakthroughs. We believe that the long-term 
impact of these investments will beneft the DOE and 
other federal and commercial organizations in the US. 

1.3 Resilience and Trust 

This report presents the case for a machine learning 
research program to ensure that the scientifc integrity 
and discovery from exascale computing and other DOE 
user facilities is signifcantly enhanced by dramatically 
improving the resiliency of scientifc data, applications, 
software, and hardware systems, as well as the 
trustworthiness of the scientifc results produced. We 
believe this goal can be achieved by: 

• Fault characterization: Characterize HPC faults 
using existing and extended machine learning 
techniques to analyze fault data that is produced 
by HPC systems. This fault data will require fusing 
disparate data from many different aspects of 
the computer systems, including environmental, 
hardware, software, and application performance. 
This data is produced at very high volumes, in very 
different time scales, and is currently not being 
fused today. Machine learning will be used to 
develop automated fault classifers based on this 
fused fault data. We expect this to be an offline 
process, where labeled and unlabeled fault data 
is used to develop fault classifers. For example, 
machine learning may show that when the 
temperature of one part of the HPC system is more 
than 3 degrees different from another part, there 
will be increased I/O faults. 

• In situ fault detection: Use classifer models developed 
offline to detect faults and learn new patterns 
in situ. There are several challenges with this 
approach, one is gaining access to data that can 
reasonably predict faults, which may require 
dynamically enabling log information, another 
challenge is the scale and speed which is required 
to analyze the data, which will likely require some 
means of high performance computing. If a fault is 
detected, then processing needs to be very quickly 
shifted to systems unaffected by the fault. This 
requires near real-time classifcation of potential 
faults, their locations, and the system affected, a 
capability that does not exist today. 

• Fault prediction: Predict faults before they actually 
occur so that the system can be repaired or 
faults avoided when running an application. 
This will require machine learning algorithms 
that can determine precursors of faults, similar 
to the way certain medical tests can predict 
the onset of diseases. Finding these precursors 
requires capturing large volumes of data over a 
long periods of time, and tracing back through 
a fault to fnd early warning signs of problems. 
Unsupervised machine learning methods combined 
with time-frequency representations of the data, 



 
  

 

 

 
 

 

 

 
 

 

  
 

 
 

 
 

such as wavelets, can be used to fnd common 
patterns that occur before a fault. A model can 
then be built to detect and act on these precursors 
before a fault occurs. 

• Trusted results: The frst three areas above focus on 
creating an HPC environment that is resilient to 
failure, which enables a scientist to have trust in 
an application’s results. However, there will always 
be a set of faults or combination of faults that do 
not produce fault data, yet the resulting output of 
an application is not correct. To ensure the output 
of an application is producing accurate results, 
the output of an application must be examined for 
accuracy. This is quite a challenging task, given the 
extremely large amounts of output data, the normal 
variability associated with stochastic simulations, 
and the computational expense of running these 
models. There may be a handful of reference output 
data from which to determine an accurate result. 
Quite likely, sections of a single run may need 
to be used as training data to determine normal 
variability across a range of simulated parameters. 
From this analysis, we will develop a measure of 
trustworthiness based on the similarity of previous 
or earlier results that needs to be reported back to 
the domain scientist, so that he or she can assess the 
trustworthiness of the results. 

Expanding on this, the trustworthiness of this type 
of output is not limited to exascale computing. Any 
of the DOE user facilities that produces scientifc 
data faces the potential of untrustworthy results for 
a wide variety of reasons ranging from equipment 
problem, to manual error, malicious intent, to even 
sabotage. Machine learning algorithms can be 
used to train on trustworthy data from a variety of 
user facilities, and help provide scientists a better 
understanding of the trustworthiness of their 
results. 

• Extensions to trust: Given the need to examine 
scientifc output using machine learning methods, 
the natural extension would be to help the 
domain scientist understand more than just 
the trustworthiness of the results. It would be 
valuable to use machine learning methods to train 
on interesting sections of output data, such as a 
severe storm in a climate simulation, to see if these 
methods can be used to detect similar phenomenon 
with new output results. In this way, a scientist 
can have the confdence that their scientifc data 
havw been reviewed computationally, and the most 
promising areas have been highlighted. 

Such a program will help 
ensure the scientifc integrity 
of these results produced 
from DOE user facilities 
and help further scientifc 
discovery from the wealth 
of data produced at these 
facilities. 

In summary, given the volume and complexity of 
data generated from DOE user facilities and exascale 
computing, we believe than an ASCR ML program 
focused on machine intelligence is needed to ensure 
the resiliency and trust of scientists in simulation and 
experimental results. Such a program will help ensure 
the scientifc integrity of these results produced from 
DOE user facilities and help further scientifc discovery 
from the wealth of data produced at these facilities. 

ASCR Machine Learning for Extreme Scale Computing Workshop Report 3 
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3 Introduction 

3.1 Self-Aware Operating and Runtime 
Systems 

Physical constraints are increasingly affecting 
scientists’ interactions with HPC systems. Scientifc 
researchers are no longer tasked with just maximizing 
performance, but now must deal with maximizing 
performance in the face of physical constraints. Scaling 
to deep sub-micron transistors is increasing hardware 
failure rates. Power consumption and heat dissipation 
limit the hardware resources that can be brought to 
bear at one time.Yet the increasing size of datasets 
demands ever increasing compute performance. These 
constraints create an environment where scientifc 
application programmers must reason about not just 
performance, but also power constraints and resilience 
to hardware failures. 

The problem is compounded due to the fact that 
computer systems are increasingly complex, dynamic, 
and highly nonlinear. The performance of an 
application is infuenced by the interaction of many 
different subsystems, each with its own feedback loops 
and control mechanisms. These include instruction 
scheduler, cache controller, memory controller, power 
controller, task scheduler and memory manager at the 
node level; and network routing and I/O services at the 
global level. Application programmers have limited 
knowledge on the behavior of these various subsystems, 
and even vendors seem be unable to understand the 
complex interactions between these subsystems. 
Furthermore, their behavior changes dynamically in 
response to temperature changes, faults, or changes in 
the environment, in ways that cannot be anticipated. 
Small changes (in temperature or in the behavior of a 
code) can lead to large changes in performance. 
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Application codes are also becoming more complex, 
often involving the tight coupling of modules that were 
developed independently. Even if the behavior of each 
module is well understood, the emergent behavior of 
the composed application may be hard to predict. 

Even if the behavior of computer systems were 
predictable, it would be unrealistic to expect 
application developers working at exascale to be both 
experts in their application domain and have the deep 
systems knowledge required to maximize performance 
under power and resilience constraints and react to 
dynamic fuctuations. 

Machine learning represents 
a broad class of techniques 
that can help provide well-
founded solutions to many of 
these exascale challenges. 

Instead, exascale systems should put more intelligence 
in the operating system and runtime (OS/R) to help 
alleviate the burden of programming these machines. 
Smarter operating systems could take on the challenge 
of constrained optimization, reacting to dynamic events 
and providing guarantees. 

The very nonlinear behavior of compute systems, 
and the complexity of the interactions, limit the 
applicability of classical control theory. Machine 
learning represents a broad class of techniques that can 
help provide well-founded solutions to many of these 
exascale challenges. In this report, we detail some of 
the ways in which ML techniques can address specifc 
challenges of exascale OS/R. 

3.2 Introduction to Machine Learning 

3.2.1 What is Machine Learning? 

Machine Learning 

Supervised 
Learning 

Unsupervised 
Learning 

Semi-supervised 
Learning 

Reinforcement 
Learning 

Classification Clustering Low-density 
Separation 

Monte Carlo 
Methods 

Regression Dimensionality 
Reduction 

Graph-based 
Methods 

Temporal 
Difference Methods 

Figure 1. Landscape of Machine Learning approaches and tasks 

Machine learning tasks are often grouped into several 
broad categories, depending on the nature of the 
data and information available to the algorithm. 
One categorization is based on what information is 
provided to the algorithm. 

• In supervised learning, the algorithm is presented with 
example inputs and “ground truth” outputs, and the 
goal is to learn a general rule that maps inputs to 
outputs. 

• In unsupervised learning, the algorithm is presented 
with example inputs with no “ground truth” 
labels, and the goal is to fnd structure, e.g., hidden 
patterns, in its input. 

• In reinforcement learning, the algorithm interacts with 
a dynamic environment, e.g., a robot interacting 
on its environment, and the task is to perform a 
certain goal, e.g., having the robot perform a given 
task, without explicit information on how close the 
algorithm has come to the goal. 

Of course, there are many variants. For example, 
between supervised and unsupervised learning there is 
semi-supervised learning. Here, only a small fraction of 
the inputs given to the algorithm are provided ground 
truth labels. Another categorization of ML tasks 
arises when one considers the desired output of an ML 
algorithm. For example, a support vector machine is a 
classifer that divides its input space into two regions, 
separated by a linear boundary. 
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• In classifcation, the input data is divided into two or 
more classes, with labels, and the machine learning 
algorithm outputs a model that assigns unseen 
inputs to one or more of these classes. 

• In regression, the setup is similar except that the 
outputs are continuous rather than discrete. 

• In clustering, one is typically not given labels for the 
input data, and the output consists of a grouping of 
the data. 

• In dimensionality reduction, one outputs a lower-
dimensional space that describes important 
properties of the data. 

Although machine learning grew out of the quest 
for artifcial intelligence, its scope and potential 
is much more general. For example, it has strong 
connections with statistical modeling and data 
analysis, and attempts to learn and apply concepts from 
neuroscience, or neuromorphic computing. While many 
view machine learning as focusing on prediction, based 
on known properties learned from the training data, 
related methods in data mining focus on the discovery 
of previously unknown properties in the data. Similarly, 
inference and learning are two extremely related topics 
that are referred to differently by researchers with 
different backgrounds. 

While the methods depend on areas of computer 
science and statistics out of which they grew (e.g., data 
mining uses many machine learning methods, but often 
with somewhat different goals in mind), many of these 
techniques are tools that could be used by downstream 
scientists in different ways, albeit in somewhat 
modifed ways or with somewhat modifed objectives. 
For example: quantitative prediction versus qualitative 
understanding. Most ML methods are developed 
for applications where one does not have a strong 
understanding of the data, and thus the models have to 
do more of the work, and the evaluation metric is 
some sort of prediction task. This is very different than 
using ML methods to obtain understanding of the 
data, and in general there is a big tradeoff between the 
two and the latter is probably more relevant for DOE 
scientifc applications. 

3.2.2 DOE-Relevant Challenges in Machine 
Learning 

In the exascale timeframe, scientifc progress will be 
predicated on our ability to process vast, complex 
datasets from extreme scale simulations, experiments 
and observational facilities. Even at present, scientifc 
data analysis is becoming a bottleneck in the discovery 
process; we can only assume that the problem will 
become intractable in a decade. At the moment, 
scientists are often forced to create their own ad hoc 
solutions where a lack of scalable analytic capabilities 
means that there are large-scale experimental and 
simulation results that cannot be fully and quickly 
utilized. Moreover, the scientists lack dynamic insight 
into their analyses, unable to modify the experiment 
or simulation on the fy. In this section, we comment 
on challenges that the DOE scientifc and research 
community will face in the area of machine learning. 

• New capabilities: Machine learning has a rich history, 
and a successful track record in the commercial 
world, but several challenges in DOE are unique 
and require novel methods. DOE needs to develop 
expertise in applying existing ML methods and 
focus research capabilities to develop, extend and 
customize methods and apply them successfully 
to scientifc problems relevant to DOE. Some 
of these problems are documented in Section 4.1 
and Table 1. 

• ML frameworks for HPC platforms: The feld of 
computational modeling and simulation has made 
major progress in the past decades due to robust 
scientifc software architectures developed by DOE 
(MPI, PETSc, Trilinos, etc.). Similarly, in order to 
make major advances in machine learning, and data 
analytics more broadly, we need to develop a robust, 
production framework for deployment on DOE’s 
extreme scale systems. The framework should 
support DOE computer architectures, fle systems, 
and data formats. Individual researchers and 
developers can utilize the framework for deploying 
their state-of-the-art research, and more effectively 
utilize large scale computational resources across 
the DOE complex. 

• Usability and out-of-the-box learning: In order for 
machine learning to have broad impact across the 
DOE complex, it is imperative that the methods 
work well out-of-the-box. In other words, we can’t 
expect domain scientists and interested users 
to become experts on various methods and how 
parameters associated with methods might impact 
the accuracy of the prediction. In order to address 
this challenge, we will need machine learning 
methods to incorporate meta-level heuristics 
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(such as cross-fold validation and auto-tuning) 
to provide good performance. 

• Scaling ML methods for exascale: In order to keep 
pace with the increasing volume of scientifc big 
data, novel scalable ML methods will need to 
be developed and implemented. It is likely that 
these implementations will run on portions of the 
exascale hardware, where considerations such as 
power consumption, cost of data movement across 
the memory hierarchy and resilience will become 
important to address. Current implementations are 
largely ignorant of such considerations; we will 
require ML research to be more closely connected 
with the exascale programs. 

3.2.3 NRC/NIST Big Data reports 

Prior to delving into the details of science drivers 
and resulting machine learning requirements unique 
to DOE, it is important to acknowledge two major 
efforts that have been conducted recently in the big 
data analytics space: the NRC Frontiers in Massive 
Data Analysis report [31] and the use cases gathered 
by NIST [2, 106]. These cover industry, government, and 
academic applications and illustrate many facets of big 
data systems. While not exhaustively comprehensive, 
these two studies give us a way to identify particular 
challenges and the overall context in which they sit. 

NRC studied in detail seven application areas: Earth 
and planetary observations, astronomy, biological 
and medical research, large numerical simulations, 
social network analysis, national security (command 
and control, cybersecurity, remote surveillance), and 
telecommunications and networking (managing a 
global network). NIST collected, at a fner granularity, 
51 specifc big data use cases covering (partially) 
the frst six of the NRC areas, as well as instruments 
(particle sources, light sources), commercial (search, 
commerce, fnance), government operations, science 
and commodity sensors, and energy. Both studies 
distilled general features with the NRC’s insightful 
Seven Computational Giants of Massive Data Analysis 
covering Basic Statistics, Generalized N-Body Problems, 
Graph-Theoretic Computations, Linear Algebraic 
Computations, Optimizations (e.g. Linear Programming), 
Integration, Alignment Problems. Aspects highlighted 
in Ogre analysis [51] of NIST use cases include 
categories such as pleasingly parallel (26), MapReduce 
(25), iterative MapReduce (23), graph (9), fusion (11), 

streaming/dynamic data-driven application systems 
(41), classifcation (30), search/query (12), collaborative 
fltering (4), local machine learning (36), global machine 
learning (23), workfow (51), geographic information 
systems (16), simulation results (5), and agents (2). The 
numbers in parentheses give an estimate of number of 
the 51 use cases exhibiting different features. 

3.2.4 Success and Limitations of Machine 
Learning in the Commercial World 

Machine learning is used extensively in the commercial 
world, for instance, to improve targeted advertisements 
(Google Ads), to predict user behavior (Twitter), to 
develop improved recommendation systems (Netfix, 
Amazon) and to suggest friends (Facebook/LinkedIn). 
Typically, the success of machine learning in the 
commercial world stems from the capability of 
gathering and processing a large amount of data in 
various forms in a timely manner. This has prompted 
the development of big data analytics tools such 
as Apache Hadoop MapReduce (Apache Big Data 
Stack) and more recently Apache Spark (Berkeley 
Data Analytics Stack). Also, many industry machine 
learning applications have considered supervised 
learning because they rely on data that mostly comes 
from system logs or user activity logs, which can be 
used to supply the label of each training sample in an 
automatic way. Originally, many industry applications 
of machine learning could be considered as data 
mining, or describing/representing data, which is in 
some sense a simpler task than inference. 

An open research challenge 
for the DOE machine 
learning community is 
whether common analytics 
frameworks can be developed 
that can be applicable to both 
environments. 
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Based upon the success in applying simpler data 
analysis and machine learning algorithms for 
relatively simple tasks, in recent years industry 
has begun more aggressively attempting to 
address more challenging tasks, e.g., fne-scale 
user modeling, recognizing faces in pictures, real 
time speech recognition, advertisement placement 
and optimization, and automatically generating 
descriptive captions in plain English for images. 

Some leading examples include Microsoft research 
on a deep learning system that demonstrated a top-1 
result that classifes 22,000 categories of pictures at 
29.8 percent of accuracy, (a random guess will result in 
1⁄22,000 = 0.004 percent). They also demonstrated real-
time speech translation between Mandarin Chinese and 
English [125]. Although this task involves relatively 
long training time compared with other ML algorithms, 
predicting a new instance based upon a trained model 
can be done in a real time with a relatively small 
amount of compute resources. For instance, the Siri 
application uses a deep learning trained model, and 
the voice recognition in the Google Android phone 
also uses a deep learning trained model. A recent 
study between Carnegie Mellon University and Google 
showed that the software system for deep learning 
can be exploited for other relatively computationally 
intensive machine learning algorithms such as Latent 
Dirichlet Allocation (LDA) for topic modeling. In this 
particular application, the training of deep learning 
requires thousands of CPU cores (Google, Microsoft 
Research studies) or requires a few tens of GPUs, 
for a few days. Industry researchers estimate that 
a petafop-class system will be required in order to 
complete training of deep learning networks within a 
reasonable amount of time. Industry data centers are 
throughput oriented, providing interactive response 
to accommodate a large number of users. This is in 
contrast to the performance-oriented nature of HPC 
facilities run by DOE. An open research challenge 
for the DOE machine learning community is whether 
common analytics frameworks can be developed that 
can be applicable to both environments. 

3.3 Resilience and Trust 

The current increase in speed of high performance 
computers from petafops to exafops is not driven 
by increases in processor speed, as it has been in the 
past, but instead by the combination of processors. 
The number of cores in an exascale computer will 
easily be in the tens of millions, as will the other 
components necessary to create such a large machine. 
The science produced from simulation and analysis 
on these machines will help guide worldwide climate 
policy, provide new understanding in quantum and 
astrophysics, provide breakthroughs in biology, and 
new ways of analyzing massive data. 

With the dramatic increase in the number of 
components in an exascale computer comes a dramatic 
increase in the potential amount of diagnostic data that 
these computers will produce. In the past, this data had 
been used to alert an operator to the failure of a given 
component; however, with the volume and speed with 
which fault data is produced, it will be impossible to 
process it manually [36, 22]. 

The scientists using these computers expect them 
to reliably run very large and complex applications 
producing trustworthy results. Numerous studies 
have shown this goal may be in jeopardy, as very 
rare component-level faults may produce frequent 
system-level faults as the number of components 
within an HPC system dramatically increases. The 
common methods of dealing with system faults, such 
as restarting from a known good state (checkpoint 
restart on fle system), or manual root cause analysis 
to fnd the cause of faults may no longer be effective 
or even doable at such scales and complexities. The 
trustworthiness of results may be compromised due 
to undetected or silent faults. Such faults give the 
impression that the application completed without 
issue, but with incorrect results, and potentially 
incorrect scientifc interpretation. At best, this is an 
unacceptable result for the scientifc community, at 
worst; this can result in a misinterpretation of climate 
projections or design faws in nuclear power systems. 
Given the scale and complexity of the computers and 
scientifc applications, determining a trustworthy result 
is an open question. 
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Trust 

We defne trust as a relationship between two entities 
and characterized by the confdence that an entity will 
work according to expectations, and that if a task 
is delegated to this entity, it will successfully perform 
the task. Trust is involved in a situation in which 
a system or agent is vulnerable or at risk based on the 
actions of another entity upon which it depends 
for a necessary service. We can represent components 
of the scientifc computing process as entities, 
including computation (or algorithms), users of these 
computations, and the system that executes them. Trust 
in an entity is context-dependent, that is the degree 
of trustworthiness of an entity is dependent on what we 
trust that agent to do. An entity’s trustworthiness may 
be computed based on performance history on similar 
tasks and its reputation based on information gathered 
from other entities, as well as knowledge of the 
characteristics of the entity. 

Resilience 

Resilience in HPC generally encompasses the 
collections of techniques and mechanisms that allow 
an application to complete despite the presence of 
faults which may manifest as incorrect/lost execution 
or system state. The faults and their associated errors 
and failures are dealt with by a number of techniques, 
including prevention, prediction, detection, diagnosis, 
and recovery (correction, tolerance). Lastly, these faults 
can occur at all levels of the HPC system, and thus 
these mechanisms may exist in the hardware, frmware, 
system/runtime levels, libraries, and application 
software. Therefore, coordination is typically required 
for effective and efficient resilience. 

The ultimate goal of enabling ML for trust and 
resilience of HPC systems is to support the scientifc 
computing user. The intent is to increase the degree of 
trustworthiness of the system to increase the quality 
of the results. This quality of results is dependent upon 
the trustworthiness of the entire HPC system and may 
be enabled by using two complementary approaches. 
First, we want to understand the trustworthiness of 
components in an intelligent HPC environment to 
enable the operating system to make dynamic, adaptive 
decisions. This intelligent operating system may reason 
about resource management, power usage, resource 
needs, and costs, while monitoring and controlling 

resources that can come from a variety of sources, for 
example logs and/or sensor data. Second, we want to 
use ML for verifcation of simulation data to ensure 
expected properties are guaranteed. This verifcation 
might be carried out through checking intermediate 
results as the simulation progresses. 

We further believe that the trustworthiness of results 
highlighted in HPC systems are also found in other 
DOE user facilities. The challenge of trusting the 
results of large-scale experiments, may well be found 
in sophisticated analysis of these results themselves. 
Additionally, this analysis of results may be valuable 
in helping scientists discover new phenomena within 
their dataset that may have been otherwise missed with 
manual methods. 

We believe that machine 
learning is a critical 
technology that will further 
the fourth paradigm of 
modern scientifc discovery, 
and complement and 
support other models of 
scientifc inquiry. 
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4 Motivating Science 

4.1 DOE Science Drivers 

DOE supports the four fundamental paradigms 
of scientifc discovery: we have made substantial 
investments in theoretical research; a large number of 
experimental facilities are shedding light on natural 
phenomena from the subatomic to the astronomical 
scale; computational modeling and simulation are 
providing us with valuable insights into scientifc 
phenomena and their impact on society; and fnally the 
paradigm of data-driven discovery is taking root across 
numerous domains. 

We believe that machine learning is a critical 
technology that will further the fourth paradigm of 
modern scientifc discovery, and complement and 
support other models of scientifc inquiry. In this 
section, we elaborate on a few sample applications, 
challenges, and the potential role of ML methods. 

4.1.1 Pattern Classifcation for HPC 
Climate Simulations 

Modern petascale and future exascale platforms will 
further the progress of computational science and 
support fundamental breakthroughs in a broad array of 
scientifc disciplines. As a leading example of the 

Figure 2: Examples of extreme 

weather phenomena observed 

through satellite and radar. 

Clockwise from bottom-left: 

extra-tropical cyclone, 

atmospheric river, derecho and 

tropical cyclone events. 

importance and success of computational modeling, 
climate simulations provide us with an unprecedented 
view of the state of the Earth’s present and potential 
future climate under global warming. Climate modeling 
faces a large number of fundamental challenges: 
scaling applied mathematical techniques to operate at 
kilometer-scale models, scaling code implementations 
to run efficiently on exascale platforms, representing 
improved physical and chemical processes both at the 
sub-grid and global scales, and accounting for various 
sources of uncertainty. Several of these challenges 
are being addressed by various programs in DOE. For 
the purpose of this report, we will comment on data 
analysis challenges resulting from the massive datasets 
generated by climate simulations. 

Contemporary climate codes, such as CAM5 [3], 
when run in 25-km spatial resolution with 6-hour data 
multi-variate dumps, produce over 100TB from a 
25-year integration period. The current CMIP-5 archive 
[4], consisting of international contributions from a 
number of climate modeling groups, consists of over 
5PB of data; this dataset was mined extensively for the 
IPCC AR5 report [5]. It is anticipated that CMIP-6 
dataset [7] will cross the exabyte threshold with 25-km 
model runs being the norm. Faced with this massive 
deluge of complex, spatio-temporal data, it is inevitable 
that the data analytics community will need to develop 
sophisticated pattern detection tools which can extract 
scientifcally meaningful information. One example of 
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the types of climate data analytics of societal relevance 
is the characterization of extreme weather. Figure 2 
illustrates the types of extreme weather observed in the 
natural climate system. Phenomena such as cyclones 
and atmospheric rivers can have widespread and long-
lasting impact on national economies. Understanding 
how extreme weather will change as a result of future 
climate changes is an important open question. 

Figure 3: Pattern detection tools can help in quantifying and assessing 

model performance. In this example, a highly scalable pattern detection 

tool TECA [105] was applied to CAM5 simulation output (top) to 

extract tropical cyclones tracks (bottom). 

Climate codes are now able to reproduce the initiation 
and development of such extreme weather phenomena. 
The challenge is fnding the phenomena of interest in 
petabytes of data! A limited class of extreme weather 
phenomena (such as tropical cyclones, Figure 3) has 
been studied extensively by meteorologists, and have 
a procedural defnition which can be implemented 
efficiently. However, a broad class of single events 
(e.g., extra-tropical cyclones, derechos, weather fronts, 
blocking events) and multiple interacting events (e.g., 
Hurricane Sandy system, teleconnections) do not have a 
clear statistical or quantitative description. 

We envision that ML techniques, which have been 
highly successful in pattern detection of for computer 
vision problems, can be adopted to fnd and localize 
spatio-temporal phenomena in climate datasets. We 

also note that climate model output is a surrogate for 
a broad class of HPC simulation output. The need to 
extract patterns in terabyte- or petabyte-sized datasets 
is a fairly generic and cross-cutting requirement, and is 
applicable to all major applied science programs with 
an HPC component (e.g., combustion, astrophysics, 
high-energy physics, plasma physics). Successful 
demonstration of ML techniques to fnd known and 
unknown patterns in climate simulations will go a long 
way in the adoption of such methods by the broader 
research community. 

4.1.2 Regression and Clustering for 
Material Science and Computational 
Chemistry 

Predicting the properties of new material/molecules. 
Historically, the methods for discovering new 
materials have been trial-and-error based. Signifcant 
effort is now being invested into the development 
of high-throughput approaches to quickly survey 
and focus work on a smaller pool of candidates. The 
Materials Genome Initiative, launched in 2011, strives 
to create broad and open databases of materials data 
generated both experimentally and computationally. 
These databases [75] are being designed to support 
data mining and to interface with workfow software 
that will enable rapid prototyping of new materials in 
silico. Thus the question “Can we predict the property 
of a material that has never been synthesized?” 
will remain important to supporting innovations in 
materials research. 

Using state-of-the-art frst-principle techniques (theory 
of quantum mechanics), many material properties 
can be approximated in silico, albeit at signifcant 
computational expense. Even small molecules can 
require hours to hundreds of hours of CPU time to 
compute chemical properties using quantum chemistry 
computational methods like density functional theory 
(DFT). One promising avenue of research exploits a 
database of already-calculated properties to substitute 
inexpensive ML-generated predictions for expensive 
frst-principles calculations for novel molecules [65, 96, 
111]. In theory, as illustrated in Figure 4, predicting the 
electronic properties of the billion possible molecules 
containing 13 heavy atoms could be accelerated by 3–4 
orders of magnitude by training a learning machine on 
a small fraction of the database. While initial work 
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shows this avenue of research to be very promising, 
many open questions remain, such as how to design 
good feature vectors to describe molecules and choose 
robust learning methods ,and how to extend methods 
to more complex molecules and to a broader set of 
molecular properties. However, massively expanding 
the predictive reach of frst-principles computations 
via ML techniques may well be the pivotal step for 
actually achieving a comprehensive molecular 
property database. 

classical approach (˜ hours/molecule) 
˜105 CPU years 

prediction 

Quantum 
Machine 

GDB-13 
(109 molecules) 

0.1% subset 

electronic 
properties 
database

labeling (1 sec/molecule) 
(˜102 CPU years) training 30 CPU years 

(˜ year) 

Figure 4: Using machine learning, the electronic properties of new 

molecules can be predicted from an existing database in a fraction of 

the time it would take to complete a frst-principles computation. (Used 

with permission from von Lillienfeld) 

Another important application is using ML to bridge 
the gap between atomistic and mesoscale simulations. 
Here, the exact details of how atoms interact with their 
nearest neighbors require, again, expensive quantum 
mechanics calculations that are computationally 
limited to tens to hundreds of atoms. In order to scale 
from thousands to millions of atoms, the scale at 
which many phenomena of interest occur, mesoscale 
simulations of materials using classical molecular 
dynamics rely on fast empirical interaction calculations 
that are typically 10,000 times more computationally 
efficient than their quantum counterparts. These fast 
functions are, in effect, predictions of the output of 
the expensive quantum calculations over a continuous 
high-dimensional space. In the past, these have 
been human-designed functions, based on physical 
principles and a small set of data. ML methods, in 
contrast, use an expansive training set of quantum-
accurate calculations to exceed human intuition 
in constructing a predicting function from a larger 
possible function space [15, 116, 124]. 

Even further along the nanoscale-mesoscale axis, 
many DOE-funded researchers are investigating how 
to design and control materials whose structure and 
behavior depend on mesoscale interactions, such as 
polymers, colloids, complex fuids, membranes, and 
granular materials. These materials, ubiquitous in 
nature, are found in many engineering applications. 
Generally speaking, the emergent mesoscale behaviors 
of these materials cannot be approached by frst-
principles atomistic calculations at all. For example, 
thermodynamically stable colloidal crystals can be 
self-assembled from nanoparticles, each of which is 
composed of thousands of atoms and the stress-strain 
relationship of granular materials is an aggregate 
behavior that is determined by the local structural 
details of macroscopic particles that are visible 
to the eye. Determining the aggregate behavior of 
such materials is determined largely by experiment 
or computationally expensive simulations, where 
researchers seek to identify the rules that determine 
how the properties of the sub-units of such a material 
determines the aggregate behavior [13, 61, 34, 91, 
16, 88]. The end goal is to be able to design new 
materials with engineered microstructures and desired 
properties. Finding the connection between the design 
of material sub-units and the aggregate behavior 
of the particles is still largely dependent on human 
cognition-based pattern detection, with some successes 
transcending human cognition by using evolutionary 
algorithms to fnd optimal solutions [94]. We identify 
this as an area that has yet to take advantage of ML 
techniques, but where ML may well be key to initiating 
the design era of mesoscale nanoengineered materials 
via self-assembly. 

For problems of material design ranging from 
molecular to mesoscale, the parameter space is 
very large, even combinatorially increasing, and the 
interaction between parameters can be complex. 
ML, thus, is a promising method for expanding the 
predictive power of experimental and computational 
datasets to predict the properties of novel materials 
and accelerate the material design. 
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4.1.3 Classifying Large Sets of Data 

In select areas of material science and chemistry, high-
throughput experimental and computational techniques 
are leading to the creation of massive databases. 
The defning characteristic of these high-throughput 
methods is that data is generated faster or exists in 
larger volumes than can be analyzed through traditional 
methods and new automated learning techniques are 
required [33, 82]. Figure 5 shows an illustration of how 
ML was applied [103] to computationally generated 
data to group noisy simulation data by the crystal type 
that self-assembled. Researchers had previously studied 
the dataset extensively by hand, but the automated 
learning technique was able to discover a new crystal 
structure for the frst time. Figure 6 shows an example 
of how ML was applied to experimentally generated 
high-throughput data. Researchers discovered a novel 
rare-earth-free permanent magnet by performing an 
unsupervised cluster analysis of the diffraction data 
from a composition spread wafer that provided a 
combinatorial library of ternary alloy compositions [82]. 

Figure 5: Illustration of unsupervised clustering algorithm fnding 

similar crystalline structures in a dataset. 

C
a) 

The need for better methods for learning from large 
datasets is especially applicable to computational 
material science where improving computational 
resources and algorithms are accelerating the rate at 
which data is generated. However, as the rate at which 
data can be amassed through both computational 
simulation and experiment continues to accelerate, new 
methods of automatically recognizing and cataloging 
patterns in data based on machine learning will be 
necessary to alleviate the analysis bottleneck. These 
problems can be addressed via robust unsupervised ML 
techniques that can discover the common patterns in a 
dataset [103]. 

Feature learning from large datasets: A common problem 
across the felds of computational material science, 
chemistry, and physics is the need for robust feature 
methods to encode the high-dimensional data of an 
N-body system into a minimal vector representation, 
or feature vector. In the examples above, [96, 127, 124, 
116, 65, 111, 45, 103], where ML has been successfully 
applied to a research area, the key to good performance 
was the selection of a good descriptor/feature vector. 
These feature vectors are used not just for ML, but 
also to support powerful metamodeling techniques 
that allow chemical and mechanical properties to be 
accurately quantifed. The effectiveness of any ML 
method depends frst on having a feature vector that 
captures the right invariances (rotational, translational, 
index permutations). Indeed, all successful application 
of ML to material systems discussed relies on careful 
initialization of the right feature vector. These feature 
vectors are referred to alternatively as collective 
variables, order parameters, and local or global 
descriptors. In general, the power of metamodeling 
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Initial research efforts have been applied to designing 
ML methods for taking a large volume of simulation 
data and extracting lower dimensional coordinates b) C 
[87, 101, 113] or learning the lower dimensional 
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A B algorithms, such as deep learning, that could take a 
Feature vector space Feature vector density Clustering results 

large body of data and automatically extract a minimal 
feature vector that separates ordered states from other 

Figure 6: A cluster analysis of a high-throughput X-ray diffraction ordered states as well as disordered states could have 
dataset is used to generate a structural phase distribution diagram [82]. an immense impact on the feld. 

Cluster 
Visualization 

manifold that the higher dimensional simulation data 
occupies [45]. In general these are numerically intensive 
calculations that have been successfully applied to 
only a handful of small systems. Machine learning 
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4.1.4 Pattern/Anomaly Detection for 
Light Sources 

Figure 7: An artist’s rendering depicts an experiment at SLAC that 

revealed how a protein from photosynthetic bacteria changes shape 

in response to light. Samples of the crystallized protein (right), called 

photoactive yellow protein or PYP, were sprayed into the path of 

SLAC’s LCLS X-ray laser beam (bottom left). Some of the crystallized 

proteins had been exposed to blue light (left) to trigger shape changes. 

Diffraction patterns created when the X-ray laser hit the crystals 

allowed scientists to re-create the 3-D structure of the protein (center) 

by light [69]. Figure 8 illustrates how LCLS captures 
X-ray diffraction patterns resulting from the laser 
colliding with injected nanoparticles. 

Deriving scientifc insights using LCLS is a complex 
process that is hampered by several challenges that 
ML can help overcome. First, the massive amounts of 
rapidly collected X-ray diffraction imagery data is 
beyond human ability to fully inspect, let alone 
annotate. Totaling 20 terabytes per day, the imagery 
acquisition rates can exceed 10 GB/second for 
experiments running at 120 Hz. By 2017, next-generation 
XFEL facilities like LCLS-II and the European XFEL 
will offer pulse rates at several of orders magnitude 
beyond that of LCLS (tens of kHz to several MHz), 
leading to dramatically increased data rates. Second, of 
the millions of images collected each day, only a small 
fraction are useful, i.e., very few images actually contain 
well-resolved diffraction patterns from the particles of 
interest. Finally, LCLS is an exquisite instrument with 
many sensitive settings that allow the laser to have 
properties ideal for probing different samples leading 
to better images. Controlling these settings in real time 
would improve the yield of good images and improve the 
scientifc productivity of LCLS. 

and determine how light exposure changes 

its shape. Image courtesy of SLAC National 

Accelerator Laboratory [119]. 

As new scientifc instruments and 
sensors are developed and used to 
collect an ever-increasing amount 
of data, ML techniques will play 
a critical role in helping scientists 
to triage and automatically fnd 
patterns of interest. The DOE 
Office of Science light sources: the 
National Synchrotron Light Source 
at BNL, the Stanford Synchrotron 
Radiation Lightsource at SLAC, the 
Advanced Light Source at LBNL, the 
Advanced Photon Source at ANL, 
and the Linac Coherent Light Source 
(LCLS) at SLAC, are all examples 
of powerful scientifc instruments that can generate 
large amounts of experimental data. LCLS, for 
example, has enabled scientists unlock the mysteries 
of materials at the atomic and molecular level. As 
depicted in Figure 7, using the LCLS’s X-ray Free 
Electron Laser’s (XFEL) unprecedented brightness, 
spatial and temporal resolution, scientists recently 
imaged the highest-resolution protein snapshots ever 
taken with an X-ray laser, revealing how a key protein 
in a photosynthetic bacterium changes shape when hit 

Figure 8: Nanoparticles are injected into the LCLS X-ray beam as 

an aerosol using a sample injector. Diffraction patterns are recorded 

with a pair of X-ray CCD detectors. Space between the CCD detectors 

allows the X-ray beam to pass through to a beam dump. (Rendering by 

Kwei-Yu Chu, LLNL.) 

Recent advances in ML, specifcally unsupervised 
feature learning with deep learning neural networks 
(UFLDL), hold the potential to overcome these 
aforementioned challenges and help accelerate the 
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scientifc discovery process on LCLS. Given the massive 
amounts of unlabeled imagery, UFLDL can be used to 
learn fundamental basis patterns of the images. UFLDL 
is able to effectively learn basis patterns or features 
that help the neural network to reconstruct the original 
imagery without any supervision. These features can 
then be used to build a classifer layer of the deep neural 
network for automatically partitioning the images into 
useful and not useful categories offering LCLS scientists 
the ability to automatically identify good images. 
Additionally, the UFLDL features can be used for 
clustering the imagery into sets of similar images, which 
can help scientists to automatically sort their data. An 
added beneft to this approach comes from the fast speed 
with which the evaluation of new imagery is performed 
by deep neural networks. Deep neural networks 
accelerated by GPU hardware will be able to keep up 
with the image acquisition rates of the next generation 
XFELs. Finally, deep learning has shown some successes 
in the feedback control of systems. In reference [95], a 
deep learning model successfully learned control policies 
directly from high-dimensional sensory input using 
reinforcement learning. This deep convolutional neural 
network was able to learn how to automatically play 
several video games, even beating a human expert on 
several of the games. Applied to the control of an LCLS 
experiment, this approach can be used to improve the 
yield of scientifcally valuable imagery. 

Pattern Detection in Images 

While the light sources present a range of daunting 
image processing challenges; there is a broader class of 
scientifc domains that involve processing of data from 
microscopes, telescopes, satellites and so on. Identifying 
objects (shapes of patterns) in the image (e.g., unsupervised 
classifcation of cells in multidimensional XFM datasets 
[127]); classifying objects into categories and associating 
labels and descriptions are important tasks. 

The computer vision community has made tremendous 
progress on related problems in object recognition 
and classifcation (CIFAR10 [80], ImageNet [112], 
Labeled Faces in the Wild [73]). Further research is 
needed into whether techniques applicable for fnding 
readily labeled object categories can be translated to 
fnding scientifc objects of interest. One of the unique 
challenges posed by scientifc datasets stems from the 
high dimensionality of data: a typical ImageNet dataset 
might be 256 x 256 x 3 in size; scientifc image data 
often includes higher spatial resolution (1000 x 1000) 
and frequency measures (1K–1M) [127]. In these cases, 
applying relatively simple ML techniques like principal 
component analysis can fail. 

(a) An example of scientifc image data from the Center for Nanophase 

Materials Sciences at ORNL. 

(b) An example from ImageNet. 

Figure 9: Sample image data analysis problems: In (a) we are tasked 

with detecting a subtle edge in the middle of fgures, while in (b) 

we need to detect a cat. Also (a) is a visualization of 256 × 256 × 16K 

dimensional data, while (b) is a 256 × 256 × 3 dimensional data. 
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4.1.5 Analysis of Text Data 

Scientifc articles have been one of the primary 
sources for text analysis. With text analysis, we can 
determine the most frequent terms in each text 
document and the most distinctive terms of a text 
document from other documents in a set. In such a way, 
we can classify documents such as web pages, news 
articles, and scientifc articles, with minimal human 
labors. Text analysis can help scientists to survey 
a huge amount of scientifc literature across domains. 
This will be more effective when we are able to 
perform interdisciplinary research. For instance, with 
text analysis, we can analyze scientifc articles from 
major outlets of each domain, without necessarily 
understanding all the backgrounds of each article. 
Thus, before creating a team of scientists on material 
science/chemistry/physics/ and pharmacy, we can 
set reasonable hypotheses on exploring new chemical 
compounds with certain pharmaceutical effects. 
After setting up hypotheses, scientists can organize 
a team to check if generated hypotheses can be 
meaningful or not. In that way, scientists can perform 
their studies in a less laborious and more timely 
manner. Or, perhaps, more unbiased and breakthrough 
hypotheses can be explored. 

For instance, as shown in Figure 10, a survey paper in 
1987 described a few factors associated with migraine 
and magnesium. Today, however, using a text analysis 
of the entire PubMed online library, we can identify 
133,193 connections between migraine and magnesium. 
Digesting the entire PubMed online library would be 
a time-consuming task, but if we can accurately 
index documents and connect relationships between 
documents, scientists can more easily determine what 
will be an interesting hypothesis to test or what would 
be a proper experimental setting. 

Figure 10: Comparison of the connections between migraine and 

magnesium. Eleven connections were found in 1987, while the present 

day count stands at 133,193. 

4.1.6 Embedded Intelligence for Exascale 
Systems 

In Topic 1, the distributed performance monitoring of 
the computer cluster itself was proposed as a streaming 
application to which online machine learning-based 
feedback methods could be used to tune the system. In 
a similar way, the distributed large-scale applications 
may themselves need to be treated as streaming 
applications. Here we propose that, in the future, to 
manage the I/O limitations relative to velocity of data 
produced, ML-based feedback methods will need to 
be applied locally to the data streams emitting from 
resources such as large-scale scientifc simulations, 
large-scale experimental apparatuses, and distributed 
sensor systems such as Smart Buildings to triage and 
prioritize data. 

It is already the case that limitation of I/O and data 
storage means that large-scale scientifc applications 
and experimental systems can only store a small 
fraction of the data that is produced. For exascale 
computing, the fraction that will be stored will be even 
smaller. This will drive the need for more dynamic I/O 
decision making by applications; that is, making choices 
on-the-fy to store data based on its importance or 
signifcance rather than using the more common static 
models for storing data at fxed frequencies. This model 
of triaging data may well be similar to how raw data is 
handled from the Large Hadron Collider, where data is 
fltered and compressed locally based on its predicted 
signifcance, so as not to overwhelm I/O resources. For 
example, in large multi-scale, multi-physics scientifc 
computations, there is often a desire to detect rare/ 
fast/local events in the simulation, such as a rare 
nucleation event in a simulated supercooled liquid, 
or a computational event, such as a numerical error 
caused by too large of a time step, or the numerical 
evidence of a soft error (e.g., bit fip) on a node. 
Identifying and capturing the details of these rare and 
distributed events, whether to record statistics, rollback 
calculations, or divert resources, is likely to be an 
important part of minimizing I/O, handling hardware 
or software failures, and managing extremely large 
calculations. Often the exact form of these anomalous 
events may not be known ahead of time. 

Machine learning-based methods that process 
streaming data from scientifc applications will be 
an essential part of detecting recordable events or 
anomalies in the data stream (e.g., symptoms that 
the application or experiment is not performing as 
expected due to hardware with soft errors, algorithms, 
or a bug in the calculation), to allow a real-time, 
vice post-processing, response from system or scientist. 
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Such sampling and detection will need to be performed 
locally, without signifcantly impacting the application 
performance, and only lightly using the communication 
network. The detection of anomalies from streaming 
data in such a distributed environment without 
signifcantly impacting the performance of the system 
represents an interesting open problem. 

4.1.8 Summary 

We have presented vignettes documenting requirements 
from some of the leading scientifc applications 
from simulations, large scale facilities, smaller scale 
instruments and HPC platforms. Table 1 presents a 
broader range of analytics tasks from all DOE applied 
offices, and how they map onto favors of machine 
learning methods. Clearly, investments made in core 
ML research and production tools for deploying novel 
capabilities will pay off across the board for DOE. We 
now elaborate on specifc challenges for the feld of 
machine learning when faced with DOE’s scientifc 
requirements. 

Table 1: Relevance of various ML techniques to a broad spectrum of 

DOE problems; Supervised Learning (SL), Unsupervised Learning 

DOE Science Domain Analytics Problem SL UL SSL 

Climate/BER Extreme Weather Detection X X X 

Astrophysics/HEP Halo Finding  X 

Plasma Physics/HEP+FES Tracking Magnetic Reconnections X 

Material Science/BES Predicting Synthetic Materials X 

Light Sources/BES Pattern/Anomaly Detection X X 

Particle Physics Detectors/HEP Pattern/Anomaly Detection X X 

Tokamaks/FES Pattern/Anomaly Detection X X 

Telescopes/HEP Transient Detection, Data Fusion X 

BioImaging/BER Clustering X 

Genome Sequencers/BER Sequencing, Assembly X 

Smart Buildings/ARRA X X 

HPC systems/ASCR Fault Detection, Perf. Prediction X X X 

(UL), Semi-supervised Learning (SSL) 
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4.2 Self-Aware Operating and Runtime 
Systems 

The traditional operating and runtime (OS/R) system 
runs in an open loop where the mapping phase is 
static, the system runs the application in the same 
way repeatedly, irrespective of the state of the system 
and other applications running in the system. The 
mapping decisions are performed in an ad-hoc manner 
at design time. In contrast, SAOSR is an empirical, 
evidence-based system that observes the system 
and running applications to understand, model, 
predict, and optimize application behavior by making 
model-informed decisions. A high-level overview of 
the differences is shown in Figure 11. In summary, 
traditional OS/Rs: 

1 Force the application programmer to optimize for 
the system; and 

2 Cannot respond to unpredictable runtime changes. 

A self-aware OS/R will: 

1 Optimize the system for the current application; and 

2 Flexibly adapt to runtime fuctuations. Where the 
traditional OS/R is rapidly becoming a barrier to 
scientifc discovery, the SAOSR will increase the 
rate and decrease the cost of future discoveries. 

The SAOSR will adapt at different spatial scales, 
including the node, machine, and facility level. At the 
node level, OS/R will use multi-metric performance 
models (e.g., for run time, power, energy, memory 

Traditional OS/R Self-aware OS/R 

When Decisions Made Design Time Runtime 

How Decisions Made Ad-hoc, based on 
guesses about future 

Evidence-based 

Understanding User Goals No Yes 

Optimizes For System Metrics 
(Utilization) 

Application Metrics 
(Science accomplished) 

Performance Static Improves without user 
action 

Decide Act 

Decide Act 

Observe 

footprint) based on the hardware/software/application 
knobs. At the machine level, OS/R will use models 
for communication, load balancing, and I/O. More 
importantly, it will try to understand how other 
applications are using the shared communication and 
I/O resources, how they affect the performance of 
the given application, and fnally fgure out the best 
way to run the given application. At the facility level, 
OS/R will use multi-metric performance models for 
facility-wide resource utilization, power constraints, 
user satisfaction, and time to solution to optimize job 
scheduling, staging phases of the application, and fle 
transfers. Model-informed decisions will be made at 
every level with multiple, coordinated feedback loops. 
In particular, the coordination will happen both bottom 
up (node to facility) and top down (facility to node). 
The decisions made at the node-level should propagate 
up to the facility level and vice versa via interfaces 
that allow decision-making components (actors) 
to communicate. 

The crucial component of the SAOSR is a closed 
loop and/or feedback loop that informs the SAOSR’s 
own decision-making process. The SAOSR will refne 
and update its own performance models to take into 
account dynamic changes in the system and model 
inaccuracies. This feedback loop will help the OS/R 
to constantly adapt itself (hence the “self” portion of 
self-aware OS/R) and improve the system’s overall 
effectiveness in aiding scientifc discovery. This use of 
feedback and self-monitoring is the key distinguishing 
feature of the self-aware OS/R. In summary, the 
responsibility of efficiently mapping the application 
to the extreme-scale system will be the responsibility 

of the self-aware OS/R 
through accumulation and 
use of knowledge gained 
from the application and 
underlying hardware. 

Figure 11: Comparison of a self-aware 

OS/R with a traditional approach. 
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4.3 Example of Future OS/R 

Almost all technical reports on exascale systems 
identify the power consumption of the computers as 
the single largest hardware research challenge [12, 
18, 37, 72]. This challenge increases when we couple 
simulations with each other or with in situ analysis. 
In this section we illustrate the benefts of a future 
SAOSR through an example which optimizes the 
energy consumption of a clustering application which 
would analyze the data from a scientifc simulation. 
Specifcally, we look at the K-means clustering 
benchmark from MineBench [98].* 

* We emphasize that this example shows what is possible. We do not 

intend to limit the scope of the self-aware OS/R to this application, 

techniques, or even the general power/performance optimization 

problem. 

4.3.1 Challenges 

Optimizing K-means clustering is difficult for several 
reasons. First, it will be coupled with a simulation. 
Optimizing a coupled application is a distinct 
challenge from traditional HPC optimization problems. 
Instead of making K-means run as fast as possible, our 
self-aware OS/R should make it run at the same speed 
as the application it is analyzing while minimizing its 
power consumption. Second, this optimization problem 
requires a great deal of knowledge to solve. More than 
knowledge of the single fastest or most energy-efficient 
system confguration, solving this problem requires 
knowledge of the power and performance available in 
all system confgurations and the extraction of those 
confgurations that represent Pareto-optimal tradeoffs. 
Acquiring this knowledge is additionally complicated 
by the fact that these power/performance tradeoffs are 
often application-dependent or even input-dependent. 

4.3.2 Approaches 

Machine learning techniques represent a promising 
approach to addressing this problem. Offline approaches 
collect profling data for known applications and use 
that to predict optimal behavior for unseen applications 
(example systems using offline approaches include [129, 
115, 85, 83, 26]). Online approaches use information 

collected while an application is running to quickly 
estimate the optimal confguration (example systems 
using online approaches include [86, 102, 117, 104, 
11, 84]). Offline methods require minimal runtime 
overhead, but cannot adapt to particulars of the current 
application. Online methods customize to the current 
application, but cannot leverage experience from 
other applications. In a sense, offline approaches are 
dependent on a rich training set that represents all 
possible behavior, while the online approaches generate 
a statistically weak estimator due to small sample size. 

The strength of this approach 
is that it quickly matches 
the behavior of the current 
application to a subset of 
the previously observed 
applications. 

We can combine the strengths of both offline and online 
learning using a Hierarchical Bayesian Model (HBM) 
model (the implementation is called LEO) to estimate 
power and performance tradeoffs [93].We assume that 
there is some set of applications for which the power and 
performance tradeoffs are gathered offline. HBM-based 
approaches use that set of known applications to form 
prior beliefs about the probability distributions of the 
power and performance achievable in different system 
confgurations. Given that information, the HBM takes 
a small number of observations of the given application 
and uses a hierarchical model to estimate the power 
and performance for that application in all the other 
confgurations.The strength of this approach is that it 
quickly matches the behavior of the current application 
to a subset of the previously observed applications. For 
example, if the HBM has previously seen an application 
that only scales to 8 cores, it can use that information 
to quickly determine if the current application will be 
similarly limited in its scaling. 
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4.3.3 Results 

For this example, we run on a 16-core Linux x86 server 
with hyperthreading (allowing up to 32 cores to be 
allocated). The system has 16 different clock speeds 
and 2 memory controllers. With these three parameters, 
there are 1,024 possible system confgurations. For any 
given speed of the simulation, we would like K-means 
to match it and minimize power consumption. If the 
self-aware OS/R can quickly estimate the power and 
performance tradeoffs for this application, it can 
determine the optimal performance confguration for 
any power limit. 

To illustrate the benefts of HBMs, we compare it with 
three other approaches: heuristic, offline learning, and 
online learning. The heuristic uses the well-known 
race-to-idle strategy—simply allocating all resources 
(cores, clock speed, etc.) to K-means and then idling 
the system once the application completes. The 
offline learning approach builds a statistical model of 
performance and power for each confguration based 
on prior measurements of other applications. The 
online approach uses quadratic regression to learn the 
tradeoffs for each confguration while K-means 
is running. 

The heuristic approach simply assumes that the most 
energy-efficient confguration is the one where all the 
system resources are in use, but that has been shown to 
be a poor assumption for this type of application [71, 
90]. The offline approach predicts average behavior for 
a range of applications, but it may be a poor predictor 
of specifc applications (K-means, in this case). The 
online approach will produce a good prediction if it 
takes a sufficient number of samples, but the required 
number of samples may be prohibitive. 

HBMs combine the best features of both the offline 
and online methods. At runtime, it changes system 
confgurations, observes the power and performance, 
and combines this data with that from previously 
seen applications to obtain the most probable 
estimates for other unobserved confgurations. The 
key advantage of the HBM approach is that it quickly 
fnds similarities between K-means and previously 
observed applications. It builds its estimation not from 
every previous application, but only those that exhibit 
similar performance and power responses to system 
resource usage. This exploitation of similarity is the 
key to quickly producing a more accurate estimate than 
either strictly online or offline approaches. 

(a) 

(c) 

(b) 

(d) 

Figure 12: Estimation for K-means clustering using LEO, an HBM 

implementation. LEO accurately estimates performance (a) and power 

(b) for 1024 possible system confgurations, allowing LEO to construct 

the Pareto-optimal frontier of power and performance tradeoffs (c). 

These frontiers are then used to determine minimal energy 

confgurations for various system utilizations (d). 

Figure 12 shows the results for this example. Figure 12 (a) 

shows LEO’s performance estimates as a function of 
system confguration, while Figure 12 (b) shows the 
power estimates. These runtime estimates are then used 
to reconstruct the Pareto-optimal frontier of the power/ 
performance tradeoff space shown in Figure 12 (c). This 
last fgure shows the estimates produced by the offline 
and online approaches as well. Finally, Figure 12 (d) 

shows the effects of using these estimates to determine 
optimal system confguration for various utilization 
levels. As can be seen in the fgures, LEO is the only 
estimation method that captures the true behavior of 
the application and this results in signifcant energy 
savings across the full range of utilizations. 

Learning the performance for K-means is difficult 
because the application scales well to 8 cores, but its 
performance degrades sharply after that. In addition, 
the consideration of clock speeds and memory 
controllers mean that performance is a non-linear 
function of the confguration. It is, in general, difficult 
to fnd the true optimal of a non-linear function 
without exploring every possible confguration. The 
offline learning method predicts the highest 
performance at 32 cores because that is the general 
trend over all applications. The online method predicts 
peak performance at 24 cores, so it learns that 
performance degrades, but would require many more 
samples to correctly place the peak. LEO, in contrast, 
leverages its prior knowledge of an application whose 
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performance peaks with 8 cores. Because LEO has 
previously seen an application with similar behavior, 
it is able to quickly realize that K-means follows this 
pattern and produce accurate estimates with just a 
small number of observations. Furthermore, using 
LEO to allocate for energy efficiency produces an 
energy consumption just 6 percent above optimal 
compared to 50 percent increased energy for the 
online approach, over 2× for offline and over 3.5× for 
the race-to-idle heuristic. 

We now outline three 
technical approaches key to 
developing the self-awareness 
necessary to accelerate 
scientifc fndings while 
decreasing cost per insight. 

While this example illustrates a few of the potential 
benefts of SAOSR and gives reason to believe that 
this is a promising area of research, there is much 
research to be done to explore such techniques in the 
context of exascale systems. This example was carried 
out for one application on a small-scale, homogeneous 
system. The research program for /sas will be done in 
the context of extreme-scale systems, a wider range 
of DOE applications, and multiple-user systems with 
heterogeneous hardware, where the dimensionality of 
the optimization problems is much larger. 

5 Machine Learning 

5.1 Machine Learning 

Enabling Approaches for a Self-aware OS/R 
Given the need for an extreme scale system that 
autonomously improves over time, we have described a 
SAOSR by illustrating its key properties and examples. 
We now outline three technical approaches key to 
developing the self-awareness necessary to accelerate 
scientifc fndings while decreasing cost per insight. 

Self-awareness sets up an extensive set of OS/R 
requirements: 

• The analytic models within the OS/R that we 
are accustomed to developing manually must be 
automated because they do not suffice. The SAOSR 
has more components and more interactions than 
are tractable for a human to manage. Therefore 
automated models are needed. Sometimes the 
parameters of these models will need to be 
adaptively tuned. Other times the parameters of the 
models themselves will need to be revealed from 
within large candidate sets. 

• Optimizations will be performed on behalf of an 
application or performance engineer. The objectives 
will be application-specifc and the SAOSR 
will need to respond to the “knob selections” of 
the performance engineer. For this, automated 
optimization is needed because this information has 
to be used at execution time. 

• The SAOSR will optimize resources, recognize 
patterns, load balance and re-adjust in multiple 
ways. Some of the logic for this re-adjustment 
is dependent on what applications will be 
executing–other parts of the logic are dependent 
upon information supplied by the application 
or performance engineer while yet others are 
architecturally specifc. Some tasks may call for a 
single strategy covering the use cases, others for 
different strategies for different ones, or the SAOSR 
may yet need to, on the fy, devise a strategy “online.” 

• For runtime decision making, the SAOSR should 
exploit multi-objective optimization, where 
the search algorithm should optimize multiple 
conficting objectives simultaneously, which yields 
a Pareto-optimal set of solutions for exploring 
potential tradeoffs among multiple objectives. 
For example, using the offline models, select the 
Pareto front for different runtime scenarios and 
metrics; identify the operating condition at runtime 
and choose the appropriate solution from the 
Pareto front; when the models require signifcant 
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calibration, use the offline Pareto front as a (warm) 
starting point to potentially refne the solution. 
Subsidiary methods need to be developed to address 
the variability and noise inherent in many of the 
metrics of interest. 

• In general, the SAOSR needs to gather and exploit 
measurements of the complex inter-relationships 
between its own components, among coupled 
applications and between the application and its 
components.This process requires automated system 
identifcation and variable sensitivity analysis. 

• With the help of instrumentation and interfaces 
that communicate key measurements and 
objectives, the SAOSR’s actors need support for the 
decisions that guide their actions. 

Machine learning offers a way to approach many of 
these requirements. Whereas some of them seem to 
require very explicit information about a system that 
is too complex to specify explicitly, machine learning 
allows experiments; i.e., proposed models, candidate 
optimizations of complex confgurations to be 
empirically tested. It uses the collected feedback (post 
hoc or immediately, with or without labeling) as its 
exemplars for inferring general solutions.Whereas some 
of the requirements demand information that doesn’t 
become available until execution, machine learning 
allows the SAOSR, at that point, to experiment with 
solutions that it can improve upon once their merit or 
the gradient of improvement is determined. 

Machine learning can also accommodate the 
requirements for awareness-based intelligence to be 
acquired on different temporal scales: offline, online, 
and in hybrid circumstances. For offline requirements, 
the SAOSR can collect experiential data in the 
aggregate and use machine learning to infer a model or 
actor logic that can then be transferred to the SAOSR. 
Here both supervised and unsupervised techniques can 
be exploited. For online requirements, the OS/R is faced 
with noisy, limited data and, because it is important 
to be sensitive to learning overhead, reinforcement 
learning techniques are appropriate. 

In general, machine learning allows the SAOSR 
to convert the empirical data of experiments into 
knowledge that it accumulates and uses to support 
continuous improvement. At the same time, it is 
important to recognize that machine learning 
will not solve every problem. The SAOSR requires 
advancements in the state-of-the-art machine learning 
algorithms from outside the system’s context so that it 
has a bigger and better set of general techniques at its 
disposal. We anticipate that many challenges will arise 

in the customization of techniques to the extreme scale 
or SAOSR context. Indeed, we anticipate that SAOSR 
will motivate and be the proving ground for DOE 
research generating advances in fundamental machine 
learning techniques. 

5.2 Data Collection, Management and 
Integration 

Self-aware operating systems and runtimes must 
sense the (software and hardware) environmental 
features that impact the performance and behavior 
of the platform and incident applications. Such 
environmental data includes static features, such 
as processor/core confgurations and network 
performance capabilities, and dynamic features, 
such as current system load and observed network 
performance. In the context of collecting and managing 
this data, we identify several research challenges: 

• Identifying what data to collect: machine learning 
components will facilitate feature extraction to 
identify what data is relevant to the various OS/Rs 
optimization challenges. Additionally, application 
users and system administrators should be able 
to specify user and system goals. For example, a 
user may specify behaviors or characteristics that 
denote application progress, such as loop indices. 
Accordingly, user and administrator input may also 
dictate what data should be collected. 

• Identifying data collection points: Once the desired 
set of data is established, we must identify the 
necessary (or perhaps best) data collection points. 
These points can occur anywhere along the runtime 
software stack from the application code to 
auxiliary libraries to the middleware and runtime 
to the operating system. 

• Instrumenting data collection points: Data collection 
points must be instrumented to collect desired data. 
Such instrumentation may be static (encoded 
a priori in the application or OS/R software, 
compile-time) or dynamic (online) during the 
system’s execution. 

• Controlling raw data: As a system executes, the amount 
of raw data needed may change over time. It is 
important to consider mechanisms that can throttle 
data collection rates and data fltration mechanisms 
that can sift collected raw data. 

• Managing data volumes: data aggregation mechanisms 
can be useful for reducing data volume often without 
loss of information. Aggregation mechanisms should 
be fexible and customizable since they may target 
different types of data or different usage scenarios. 
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• Establishing holistic views: In order to gain system-wide 
awareness and make holistic adaptation decisions, 
the SAOSR must either harness distributedly 
collected data to singleton learning and decision 
processing elements or the system should allow 
individual elements to use local data to make local 
decisions that meet global constraints and goals. The 
former is conceptually easier but requires efficient 
and highly scalable data propagation mechanisms. 
The latter does not require data movement, but is 
conceptually more difficult to realize. 

Additionally, to establish holistic views, data collected 
from different elements (different levels of the software 
stack or different scopes with the same level of the 
stack) may need to be integrated and reconciled. For 
instance, it may be necessary to align or correlate 
performance-counter data collected within the OS 
kernel with functions at the application level. Another 
example may be correlating the observed application 
performance data with a particular confguration of 
the SAOSR. 

5.2.1 Interfaces 

One of the key approaches to building a self-aware 
OS/R will be defning and implementing the interfaces 
that enable different components to transfer relevant 
information. We identify three main components that 
will be present in any self-aware OS/R implementation. 
The frst is a sensor that can be used to monitor the 
current state of the system and application. The second 
is an actuator which can be confgured to change the 
behavior of the system. The third is an actor, or an 
individual self-aware component which monitors the 
sensors and determines actuator settings. 

Given these components, a self-aware OS/R should 
include the following interfaces: one to communicate 
monitoring information from sensors to actors, one to 
communicate settings from actors to actuators, and one 
to communicate between independent actors. Each is 
discussed in more detail below. 

• Actor to Actor: A large exascale system will not 
be managed by one monolithic actor because of 
the scale of the system and because of the need 
to accommodate separately developed resource 
managers that manage different resources. This 
leads to two problems. The lesser one is to avoid 
duplication in the collection of data from the same 
sensors. The more signifcant problem is to ensure 
that different actors do not act at counter purpose: 
Even if two actors, in isolation, manage resources 
in an efficient manner, their coupled action may 
result in a system that is unstable and operates far 

from optimum. To avoid this problem we need a 
good theory on the composition of feedback loops 
and interfaces that support such a composition. 
We expect that actor-to-actor communication 
will support the hierarchical and distributed 
management of resources, their coordination, 
as well as composition of strongly interaction 
feedback loops at the same level. 

• Sensor to Actor: We envision that sensor to actor 
will manage the communication and will have 
additional intelligence for handling noise, sensor 
failure detection, and data aggregation. 

• Actor to Actuator: Controller for actor to actuator needs 
methodologies for distributed communication settings. 

5.3 Metrics 

In order to motivate research on a SAOSR, we need to 
establish high-level metrics. Our intent is to establish 
metrics that can be used to establish the value of the 
research, but some of these metrics may also be thought 
of as objectives of the run-time system. The overarching 
metric is that the self-aware OS/R should optimize 
application progress that matters to scientists. We 
focus on application-level progress because traditional 
system utilization metrics can be misleading. For 
example, a system may be highly utilized doing “busy 
work” that is less productive than an alternative. We 
also recognize that this application progress must be 
determined in the context of constraints, which could 
be either fxed or negotiable. Relevant constraints 
include power consumption and hardware resources 
used. This single overall goal can be broken into 
sub-goals that address performance, performance 
portability, and productivity and cost issues. 

Performance portability will become a frst-order goal 
for exascale systems because of the extreme complexity 
of these systems. In the past, performance portability has 
been a second-order goal because scientifc application 
owners were often willing to invest the time required to 
get the necessary performance for an application on a 
specifc system. For exascale systems, it will be infeasible 
for application owners or even performance engineers or 
programmers to meaningfully optimize an application for 
a system of that complexity. 

An envisioned SAOSR will do this performance 
optimization automatically and will do the 
optimization better over time, so that programmers 
will not have to. As a side effect, the application will 
have performance portability and will be expected 
to achieve good performance on any system that 

https://alternative.We
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implements the SAOSR. The performance portability 
applies to an application running on a single system 
with different resources available over time (for 
example, as other applications are run or more 
resources become available or as resources fail or are 
taken away). Performance portability also applies to 
running an application on different instantiations 
of a given architecture, potentially with different 
numbers of nodes or different mixes of heterogeneous 
resources. Performance portability potentially applies 
to completely different architectures too, as long as the 
system implements the SAOSR interfaces. A potential 
secondary metric is to characterize how stable 
application performance is across different systems, 
where stability may be defned as a function of system 
resources (which may be complicated to defne). 

We have also considered a number of cost metrics, 
where cost is defned broadly to include metrics that 
should be reduced to minimize the cost of producing 
scientifc discovery. These cost metrics include 
application programmer time, system administrator 
time, performance engineering time (which may or 
may not overlap with application programmer and 
system administrator time), and operating costs (such 
as power consumption). Measuring the productivity 
of programmers and engineers is notoriously difficult. 
Nevertheless, we believe it is important that we 
recognize these metrics and the improvement in these 
areas that a SAOSR would bring, and the problems 
in these areas that the DOE will have if a SAOSR 
is not developed. Since a SAOSR will optimize the 
performance of applications automatically, the 
application programmer will not be expected to consider 
performance in the specifcation of the application 
program, so this will reduce the programmer’s time, and 
the metric of application programmer time will capture 
that savings.With today’s systems, system administrators 
must manually examine log fles to try to determine the 
root cause of performance issues. With a SAOSR, this 
functionality will also be performed automatically, so 
the metric of time that system administrators use to 
investigate performance issues will also be reduced. 
Finally, there is a whole class of programmers and 
engineers that work on optimizing performance of 
applications. We hope that a SAOSR will allow us to 
repurpose those programming and engineering cycles 
more directly toward scientifc discovery. 

5.4 Motivating Science from Topic 3 

The research results supported by DOE’s scientifc user 
facilities will shape national and worldwide policy in 
climate change and energy production and usage. These 
scientifc results must be accurate and trustworthy for 
science to drive these policies. 

Much of the scientifc discovery will be done with 
exascale computing, with the main scientifc areas 
driving the need for improved resilience and highly 
trustworthy results being: 

• Combustion science: Creating a fundamental 
understanding of combustion to increase efficiency 
by 25–50 percent and lower emissions from internal 
combustion engines using advanced fuels and new, 
low-temperature combustion concepts. 

• Climate change science: Understanding the dynamic 
ecological and chemical evolution of the climate 
system with uncertainty quantifcation of impacts 
on regional and decadal scales. 

• Energy storage: Gaining a fundamental 
understanding of chemical reaction processes at the 
atomic and molecular level required for predictive 
design of new materials for energy storage and 
predictive engineering of safe, large-format, 
durable, rechargeable batteries. 

• Nuclear power: Enabling reactor-scale simulations to 
allow safe, increased nuclear fuel burn times, power 
upgrades, and reactor lifetime extensions, and in 
doing so reduce the volume of spent fuel. 

Very sophisticated data analysis methods are needed 
to ensure that an HPC system is running correctly, 
despite faults, and that the output of an application 
is accurate, reproducible, and trustworthy. There are 
a wide variety of data analysis methods ranging from 
statistical to sampling to machine learning approaches. 
While all can be very effective for understanding a 
dataset, statistical and sampling approaches typically 
are driven by hypothesis, while machine learning 
approaches are driven by data. Since only a small 
percentage of faults in an HPC system are clearly 
understood, data-driven machine learning appears to 
be the best approach. Machine learning approaches 
have been highly effective in understanding high-
dimensional data, and discovering hidden associations 
and higher-order effects within the data. 
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Beyond exascale computing, there is the question of 
the trustworthiness of scientifc results from DOE user 
facilities. There are a number of potential problems 
when running a scientifc experiment, from instrument 
errors to recording errors to analysis errors. A major 
challenge to the scientifc community is the ability to 
reproduce published results. This drives the need 
for methods that can quickly and accurately determine 
if scientifc results are self-consistent, and consistent 
across experiments. Unsupervised machine learning 
methods have been shown to be effective in comparing 
results and show promise in addressing these types 
of problems. 

The fnal motivation is for scientifc discovery; the vast 
majority of scientifc results are never analyzed due 
to the sheer volume of data. Supervised and semi-
supervised machine learning methods can be used by 
creating training sets from desired simulation and 
experimental results, and use these training sets to 
automatically fnd desired results within new results. 
This will give scientists confdence that the entire result 
sets have been reviewed, and that interesting data have 
been highlighted. 

6 Challenges of Machine 
Understanding and 
Learning 

6.1 Challenges of ML for Scientifc 
Discovery from Topic 2 

6.1.1 Four V’s of Scientifc Big Data: 
Volume, Variety, Velocity, and 
Veracity 

DOE science application areas listed in the previous 
section require research into a range of ML methods. 
Table 2 summarizes the unique challenges pertaining 
to these applications. This is important to appreciate, 
especially in the context of commercial big data 
analytics, wherein active research and software 
development is being conducted, albeit for applications 
of a different favor. As Table 2 indicates, the volume 
aspects of scientifc big data is substantial. Single 
simulation runs or experimental acquisitions may 
result in datasets in the range of O (100GB–100TB). 
We only expect this number to increase with the 
availability of exascale-class systems. Thanks to 
a Moore’s Law-like improvement in electronic 
fabrication, we expect experimental devices to also 
increase their pace of data acquisition. The variety 
challenges in scientifc big data is tremendous: 
simulation output is typically multi-variate and spatio-
temporal in nature. The phenomena of interest might 

DOE Application ML Challenge Volume Velocity Variety Veracity 

Telescopes/HEP Pattern Detection O(100)TB 10GB/s MM, MI Sensor noise, 
acquisition 
artifacts 

Table 2: Characterization of scientifc big data problems along volume, velocity, variety and veracity dimensions. Size/velocity 

estimates are for problem sizes and confgurations circa 2014; multi-variate (MV), spatio-temporal (ST), multi-modal (MM), 

multi-instrument (MI), hardware counters (HC), and environmental monitors (EM). 

HPC systems/ASCR Log Analysis, Fault 
Detection 

O(1)TB 100 GB/s HC, EM Missing data 

Climate/BER Pattern Detection O(100)TB N/A MV, ST Simulation 
accuracy 

Material Science/BER Prediction, 
Regression 

O(100)GB N/A 

Light Sources/BES Pattern Detection O(10)TB 100 GB/s MM Noisy sensors, 
missing data 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

be multi-scale, spanning a range of temporal durations. 
For experimental acquisitions, procedures requiring 
inference across multiple instruments might require 
data fusion across multiple devices with varying 
characteristics. Finally, the veracity challenges in 
scientifc data are worth highlighting. Any reasonable 
statistical inference procedure needs to account for 
the quality of the dataset, the properties of the noise 
inherent in the sampling process, and any missing data. 
While simulation datasets typically do not suffer from 
quality issues; these concerns become paramount when 
processing observational products. 

Scarcity of Labeled Training Data 

Scientifc analytics faces the recurring challenge 
of relative scarcity of annotated data available for 
supervised learning. There is, however, a nearly infnite 
supply of unlabeled data that is constantly being 
collected, and with the proliferation of new sensors 
and the growth of inexpensive data storage, the rate 
of data collection is likely to continue to outpace that 
of human hand-annotation. The commercial world, 
buoyed by the success of purely supervised training 
models like Google’s deep convolutional network [81] 
for image classifcation and Baidu’s deep recurrent 
network for speech recognition [64], has chosen the 
approach of collecting more annotated training data 
to improve ML performance. Utilizing crowd-labeling 
tools like Amazon Mechanical Turk, companies can 
obtain plenty of hand-annotated data for supervised 
learning. Crowd-labeling, however, is often not a viable 
approach for many DOE mission-relevant datasets 
which require more advanced understanding of the 
data for accurate annotation. Additionally, budgetary 
and policy considerations may make crowd-labeling 
infeasible due to monetary or data sharing constraints. 
For these reasons, it is important to continue research 
on improving purely unsupervised or semi-supervised 
machine learning algorithms that can learn with none 
or few annotated training data. 

6.1.2 Broad Applicability to Multiple 
Science Domains 

Feature Engineering 

For the vast majority of machine learning techniques, 
data is not fed to the algorithm in a raw form for the 
analysis. Rather, data is fed to the algorithm in a pre-
processed form known as a feature vector, which is a 
lower-dimensional representation of the data. While 
there are some techniques to assist in reducing the 
dimensionality of complex data, generally speaking, 
the best feature vectors are handcrafted, that is based 
on expert knowledge of what variables are likely to be 
important. In many types of complex data, it remains to 
be seen whether automated techniques can recover the 
same powerful expert handcrafted features. 

While ML techniques may have broad applicability 
across domains, how to generate robust feature vectors 
does not. Generally, the predictive power of an ML 
technique is directly dependent on how well the feature 
vector has been constructed (e.g., Are there too many 
or too few features? Are they invariant to details of 
the problem that are irrelevant?). Therefore, often, the 
majority of the work in generating good predictions 
from machine learning lies in engineering the best 
vector of features for a given problem. Determining 
how to dimensionally reduce the complex domain data 
so that ML techniques can be used is an open research 
problem in every scientifc domain and, by far, the 
largest research obstacle. 

Interpretability 

One difference between developing predictive models in 
industry versus by scientists is the latter have a vested 
fundamental interest in understanding why X predicts 
Y. While sometimes a robust predictive ML model is 
sufficient, generally scientists are more interested in 
extracting insight from the output of data analysis 
algorithms. Standard ML methods are designed to do 
the former over the latter. Thus a major challenge in 
extending existing machine learning tools for scientifc 
applications is to develop them into more interpretable 
data analysis methods. 

We point out that improved interpretability is 
a problem common to many powerful abstract 
mathematical techniques, where advances in 
interpretability directly lead to better and wider 
application to scientifc domains. For example, in 
contrast with Principal Component Analysis and 
SVD-based data analysis methods, CX/CUR matrix 
decomposition [89, 100], are low-rank matrix 
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decompositions that are explicitly constructed from 
actual data elements and thus are interpretable in 
terms of quantities that domain scientists understand. 
These methods have been applied to large-scale 
data problems in genetics, astronomy, and mass 
spectrometry imaging [89, 100]. 

Usability 

Machine learning is rapidly becoming a critical tool 
for performing science, moreover a tool that will be 
wielded increasingly widely by non-experts. By 
out-of-the-box applicability, we mean that the degree 
of ML-specifc expertise that a domain scientist should 
need to master to successfully apply ML should be 
minimal. Here we describe the common obstacles 
faced by a domain scientist in successfully deploying 
ML techniques. 

• Since many machine learning algorithms offer 
similar capabilities, choosing the best algorithms to 
induce the appropriate model requires an expertise 
in individual algorithms. Which ML algorithm or 
set of algorithms should be selected? 

• Each ML algorithm has parameters that need 
to be tuned to achieve best performance. Often 
choosing these parameters is more art than science, 
and involves trial-and-error selection or a deep 
knowledge of the workings of the algorithm. 

• Ultimately, choosing the right volume of training 
data, combination of features, algorithm, and 
parameters is determined by the complexity and 
details of the underlying model, which is in turn, 
what the scientist is seeking to discover. Thus, 
successfully implementing a ML model is inherently 
an iterative process. 

A robust machine learning framework should: 

• Allow different algorithms to be easily interchanged 
for rapid experimentation; 

• Provide tools designed for scientifc applications; 

• Provide diagnostic tools to aid the selection of 
tuning parameters; 

• Provide tools to assist with cross-validation of 
model choices; 

• Provide scalable versions of algorithms; and 

• Be provided in a library that can be easily 
implemented in an HPC environment. 

This defnition of usability highlights the dual and 
sometimes conficting goals: develop high-performance 
methods; and develop methods that are more consistent 
with user productivity. For example, computing even 
basic statistical regression diagnostics, such as the 
diagonal elements of the hat matrix, on a terabyte- 
or petabyte-sized matrix is currently not possible in 
general. Interactive analytics tools need not be the 
highest performance, but integrating them in a high-
performance environment such as is supported by DOE 
labs is an important challenge. 

6.1.3 Deep Learning Frameworks for 
Science 

It is well understood that successfully applying the 
most proven and robust ML algorithms to a dataset 
involves frst crafting the best low-dimensional 
representation of the data for applying the ML 
algorithm to, or feature engineering. Part of the 
attraction of deep learning algorithms (versus shallow 
learning algorithms) is that they promise to avoid the 
need to handcraft a feature set. This is a powerful claim 
that, in theory, could revolutionize the application of 
ML to new problems. 

First, however, this capability has yet to be 
demonstrated outside of a handful of problems 
more related to industry applications than science 
applications. Second, deep neural networks have an 
especially large number of tuning parameters for 
controlling model complexity, which ultimately affect 
how well the model fts the data. Finding the best 
parameter set via a cross-validation optimization 
procedure is a computationally intense effort. 

Here we see a signifcant opportunity for the DOE to 
make a unique contribution to the feld of machine 
learning where the contribution could have a 
signifcant impact on DOE scientifc applications and 
where we cannot count on industry to take the lead. 
What especially differentiates the DOE from other 
science-funding organizations with respect to this are 
DOE’s extensive HPC resources. An HPC environment 
may be highly suitable and even necessary for applying 
and tuning deep learning methods, frst for accelerating 
the core neural network learning process, and, second 
for parallelizing the training of models with different 
parameter settings. 



28 ASCR Machine Learning for Extreme Scale Computing Workshop Report

 

 

 

 

 

 
 
 

  
 

 

 

  

 

6.2 Challenges of ML for High 
Performance Computing 

We now review the current state of production 
analytics stacks in the commercial world and comment 
on requirements for developing and deploying ML 
software on extreme-scale systems. 

6.2.1 Production ML Software Frameworks 
for HPC systems 

We consider the challenges of creating an HPC ML 
software framework in the context of the current 
HPC-ABDS (High Performance Computing - Apache 
Big Data Stack) software stack. ABDS-Stack [50] 
presents a comprehensive list of 289 data processing 
software from either HPC or commercial sources. Many 
critical components of the commodity stack (such as 
Hadoop and HBase) come from Apache projects. We 
note that data systems constructed from this software 
can run inter-operate on virtualized or non-virtualized 
environments aimed at key scientifc data analysis 
problems. In Figure 13 we further layer some of the 
HPC-ABDS subsystems and contrast HPC and ABDS. 
We believe there are many opportunities for DOE 
to leverage the rich ABDS software ecosystem by 
evaluating the software on the left side of Figure 13 
and selectively incorporating capabilities, for instance. 

In some cases like orchestration, there are new 
approaches like Apache Crunch that should be 
compared with the mature HPC solutions. In areas like 
streaming, there is no well-established HPC approach 
and direct adaptation of ABDS to DOE’s requirements 
is appealing. An in-depth investigation needs to be 
conducted for various layers in the complete ABDS 
stack [50] and Figure 13. 

More generally, since linear algebra methods are at the 
heart of many machine learning algorithms, there is an 
important need—and one to which DOE capabilities 
synergize very well—to develop novel linear algebra 
theories and frameworks that go beyond optimizing 
gigaglops and wall-clock time to considering metrics 
such as implicit regularization, computing to different 
levels of precision, considering power and performance 
in conjunction with other metrics, developing tools as 
uniformly as possible in extreme scale applications, 
and developing tools for ill-structured sparse matrices. 

We list the following specifc challenges: 

• Providing high performance in the context of ABDS software: 

Since most of ABDS emphasizes scalability 
over performance, an important objective is to 
determine how to also produce high performance 
environments. This requires addressing better node 
performance and support of accelerators like Xeon 
Phi and GPUs. 

Orchestration 
Libraries 

High-Level Programming 
Platform as a Service 

Languages 
Streaming Parallel Runtime 

Coordination 
Caching 

Data Management 
Data Transfer 

Scheduling 
File Systems 

Formats 
Virualization 

Infrastructure 

Big Data ABDS 
Crunch, Tez, Cloud Dataflow 
MLlib/Mahout, R, Python 
Pig, Hive, Drill 
App Engine, BlueMix, 
Elastic Beanstalk 
Java, Erlang, SQL, SparQL 
Storm, Kafka, Kinesis 
MapReduce 
Memcached 
Hbase, Neo4J, MySQL 
Sqoop 
Yarn 
HDFS, Object Stores 
Thrift, Protobuf 
Openstack 

CLOUDS 

HPC-ABDS 
Integrated 
Software 

HPC, Cluster 
Kepler, Pegasus 
Matlab, Eclipse, Apps 
Domain-specific Languages 
XSEDE Software Stack 

Fortran, C/C++ 

MPI/OpnMP/OpenCL 

iRODS 
GridFTP 
Slurm 
Lustre 
FITS, HDF 
Docker, SR-IOV 

SUPERCOMPUTERS 

Figure 13: Comparison of current data analytics stack for cloud and HPC infrastructure. 
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• Data movement and resilience: Most commercial ML 
software is geared towards throughput-oriented 
performance on commodity clusters, which are at 
a different design point compared to HPC systems. 
Considerations such as extreme concurrency, data 
movement, and resilience will become important on 
exascale-class platforms and need to be considered. 

• Storage and data management: Currently, most scientifc 
data analysis is centered on fles. However, we 
expect that in the future, scientifc data analysis 
will expand to integrate approaches of Object 
stores, SQL and NoSQL. HPC distributed and 
parallel storage environments need to be reconciled 
with the data parallel storage seen in HDFS in 
many ABDS systems. 

• Communication, (high level or basic) programming, analytics 

and orchestration: These areas have seen rapid 
commodity/commercial innovation. Reconciling 
these layers with an HPC environment will 
be challenging, although there is substantial 
development here to leverage off. 

6.2.2 ML Algorithms at Exascale 

State-of-the-art research and software for scalable 
machine learning has focused on scaling the 
algorithms for multi-core systems and clusters 
with commercial off-the-shelf processors. However, 
with exascale systems on the horizon, power 
consumption of individual components and cost 
of data movement are expected to be the primary 
deciding factors in achieving sustained performance. 
Thus, power consumption has resulted in the advent 
of revolutionary architectures, which are expected to 
execute at near threshold voltage (NTV). This includes 
several many-core architectures (NVIDIA GPUs, Intel 
Xeon Phi, AMD APUs), in addition to several more 
on the horizon. Much of the existing ML software has 
focused on using multi-core systems, but is not suitable 
for lightweight many-core architectures. As a frst step, 
there is a need to design programming frameworks and 
candidate algorithms which can seamlessly leverage a 
combination of multi-core and many-core systems. 

An undesirable impact of NTV execution is the 
tremendous increase in soft errors, which can possibly 
result in silent data corruption (SDC). A few case 
base studies exist on the impact of soft errors on the 
accuracy of respective applications. In many cases, 
iterative applications—which should self-correct 
themselves—have been shown to converge incorrectly. 
It is imperative to study the effect of soft errors on ML 
algorithms, and to design fault-tolerant algorithms. In 
addition to silent errors, permanent faults are expected 
to increase sharply due to combining individual 

components at massive scales. A performance-only 
optimization of machine learning algorithms de facto 
in the machine learning community is insufficient in 
solving the big data challenge on exascale systems 
using machine learning. As a result, it is critical to 
understand and address the delicate balance of power, 
performance, and reliability in designing machine 
learning algorithms, which has been largely ignored in 
the machine learning community. 

There are several complementary efforts in DOE 
(X-Stack2, Co-Design centers, FastForward2) 
addressing the triage of power, performance, and 
reliability. However, these efforts are necessary, 
but insufficient in addressing the challenges imposed 
by ML algorithms. Machine learning algorithms 
feature a richer variety of data structures and 
communication patterns. 

Resilience is an open issue for machine learning 
algorithms, while it is being addressed for legacy 
algorithms such as PDEs. Similar to PDEs, machine 
learning algorithm data structures are susceptible 
to soft errors, possibly resulting in SDC. Hence, it is 
critical to design algorithms, which are resilient to soft 
errors. Similarly, little to no research has been done 
in addressing the cost of data movement in machine 
learning algorithms. Novel algorithms for machine 
learning, which would provide bounds on accuracy loss, 
to address the data movement challenges are critical in 
tackling the primary impediments for exascale. 

6.2.3 Specialized Hardware for Machine 
Learning—Neuromorphic Computing 

The ending of Dennard scaling [35] is causing on-chip 
power densities to increase as transistor dimensions 
shrink. This is expected to lead to a phenomenon 
known as “dark silicon,” [44] where different parts 
of a chip will need to be turned off in order limit 
temperatures and ensure data integrity. Thus, in future 
multi-core processors, all the processing cores may not 
available at time. It is expected that heterogeneous 
processing architectures with specialized processing 
cores will become more common to counter this 
problem. The specialized cores can process their 
specifc classes of applications very efficiently, thus 
consuming much lower power. In order to warrant their 
use, specialized cores need to be reprogrammable to 
ensure a sufficiently large application base. At present, 
specialized processing is already in use with systems 
having GPUs in addition to CPUs. 

Reprogrammable specialized neuromorphic computing 
hardware for ML would have signifcant applications in 
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exascale systems if they can signifcantly accelerate the 
algorithms and reduce the power consumed.The scope 
of applications would be particularly broad if in situ 
training can be carried out directly in the hardware. 
In situ analysis of system sensor data using conventional 
computing systems can be have a heavy overhead, thus 
this analysis is typically done either offline or with very 
simple online learning algorithms. Specialized hardware 
for machine learning would be able to aid in this analysis 
with little performance and power overheads. Other 
applications include fnding patterns in large datasets 
and the other applications outlined in this report. 

Research is needed in the design of specialized 
neuromorphic computing hardware and software for 
ML algorithms as this can have a transformative effect 
on exascale systems and applications. Processing 
systems that can learn in situ are especially important 
to examine. New classes of ML algorithms that 
are better suited to this hardware should also be 
investigated to make the best use of the specialized 
hardware. In particular, neuromorphic computing 
and biologically inspired algorithms that build on the 
collective behavior of a group of neurons can have 
strong information processing capabilities. 

Several new classes of ML circuits promise signifcantly 
lower area and power overheads. In particular, memristor-
based processing systems have been shown to reduce 
power consumption by over 100,000 times and chip area 
by over 1,000 times compared to existing mainstream 
computing systems [1].Within a neuromorphic computing 
architecture, memristor devices can inherently mimic the 
behavior of biological synapses [120]. 

Figure 14: Two layer network for learning three-input, odd-parity 

function [1]. 

The basic neuromorphic computing architecture 
involves memristor devices arranged into 
programmable arrays (crossbars) to model a large 
set of neurons in a low area footprint (see Figure 14). 
In this type of circuit, a pair of memristors models a 
synapse (see Figure 15) based on the conductance of 
the memristors. Inputs to the synapse in a neuron are 
modulated by the memristor conductance resulting in 
current fows that are added to generate the neuron 
outputs. Thus, the memristors are not only storing 
data, but also computing a multiply-add operation in 
the analog domain. This leads to their signifcant low 
area and power consumption. One particular beneft 
of memristive systems is their capability for high-
performance in situ learning using parallel, high-speed 
circuits [67]. The low-power, high-performance, and 
in situ learning capability of memristor-based neural 
network processing, or neuromorphic computing, 
systems make them highly attractive for extreme 
acceleration of ML algorithms. 

Figure 15: Circuit diagram for a single memristor-based neuron [1]. 

Several recent studies have proposed using 
neuromorphic processors to approximate applications 
at very low power consumption [118]. Chen et al. have 
examined the mapping of several applications from 
the PARSEC benchmark suite into neural form [27], 
while St. Amant et al. have shown that by mapping 
applications to neuromorphic form, energy savings 
of up to 30 times can be seen for general purpose 
applications [118]. 
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6.3 Challenges at Exascale from Topic 3 

First, hardware will see more frequent faults due to 
increased scale. With the stagnation of CPU clock 
rates, a system 1,000× more powerful than today’s 
petascale systems will likely need 1,000× more 
components to deliver this increased performance 
[23]. This 1,000-fold increase in component count 
will likely lead to a 1,000-fold increase in the failure 
rate. This is compounded by the fact that shrinking 
transistor feature sizes and near-threshold voltage 
logic needed to address energy concerns may further 
increase the hardware failure rates. 

Second, software errors at each level of the system will 
likely be more frequent due to increased complexity of 
the software stack. At the application level, dramatic 
increases in concurrency, emerging programming 
models, and increasingly complex workfows are likely 
to lead to increased errors. At the system and runtime 
levels, the diverse hardware technologies expected on 
future systems (heterogeneous architectures, deeper 
memory hierarchies, etc.), will demand richer and 
more complex sets of system services than observed on 
today’s systems, further increasing failure potential. 

Resilience is a crosscutting concern for exascale 
systems as these systems must be capable of predicting, 
detecting, informing, and isolating errors and failures 
at all levels of the system, from low-level hardware to 
application-level software. Each of these hardware and 
software levels are expected to exhibit higher fault 
rates than observed on current systems for reasons 
outlined below. 

• Quantifying trust 
 worthiness 
• Deep learning 

6.4 Challenges for ML towards 
Resilience and Trust from Topic 3 

The goal of machine learning is to be able to use data 
or expert experience to create a computer model to 
solve a specifc problem potentially as illustrated in 
Figure 16. Problems where machine learning has been 
successfully used include predicting future searches 
based on past searches, clustering documents by 
content, answering questions, automatically translating 
documents to other languages, recognizing faces from 
images, recommending products and services, and 
recognizing objects within videos, to name a few. 

A type of problem that machine learning is ideally used 
for is to classify data into groups based on the features 
or known aspects of the data. Unsupervised learning 
relies solely on the data and not on prior information; 
supervised learning relies on training examples 
or previously known information. An example of 
unsupervised learning is document clustering, where 
a collection of documents is converted to term-weight 
vectors, then document similarity vectors, then a 
cluster showing the similarity relationship among the 
documents [110]. An example of supervised learning 
is recognizing handwritten letters. Training examples 
from handwritten letters are used to train machine 
learning classifers to recognize specifc letters of the 
alphabet. Once trained, these classifcation models can 
then be used to classify previously unseen data. 

Traditionally, the major challenges in machine learning 
algorithms have been the lack of ability to scale to 
large datasets given the computational complexity 

of many of the algorithms, the need for 
impractically large numbers of training 
examples, and the need to retrain the model 

• In-situ fault detection • Model adaptation • Adaptive sampling if the domain changes. These three areas 
• Higher-order techniques 

• Integration with • Data fusion are being addressed with highly efficient 
• Manifold learning and parallel algorithms, semi-supervised • Streaming analysis 

methods that require a  fraction of the 
• Failure models 

Figure 16: An overview of the different aspect of 

resilience for extreme-scale systems and the associated 

machine learning tasks. 

• Anomaly detection 
• Prediction of faults 
• Pattern recognition 
• Failure models 
• Decision trees 

• Hidden Markov Models • Fault prediction models 

Post-fault: Reconfiguration Pre-fault: Robustness 

Evolve 

Recover Withstand 

Reconfigure Anticipate 

• Sample bias 

real-time environments 
• Deep learning 
• Supervised and 

unsupervised learning 

• Learning models 
• Decision trees 
• Deep learning methods 
• Feature selection 
• Dynamic Bayesian nets 
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number of training sets, and online learning methods 2 Science of trust and resilience in HPC computations—the 
that adapt to the data in near-real time. However, understanding of the event logs (What is collected 
several challenges still remain, such as: and how useful is it for predicting failures and 

• Sample bias—where data sampling methods cause 
models to be skewed; 

• Anomalies detection—misclassifcation of faults and 
anomalies; 

• Domain changes—given the wide range of HPC 
applications, can a generalized model be developed 
to work across applications; 

• Adaptive sampling—how to gather more information 
when it is needed; 

• Streaming analysis—given the volume and speed of 
the data, how to predict outcomes without offline 
storage and analysis of the data; 

• Tight integration with real-time environments—how 
to efficiently run models on HPC platforms to 
enhance resilience and trust, but without impacting 
applications; and 

• Quantify the trust worthiness of the HPC application— 
what is an appropriate measure of trust for a 
scientifc application and data? What are the 
dimensions of trust which will be incorporated into 
this measure (is this measure a vector of values 
rather than a single number)? What are the sources 
of information upon which to base our reasoning 
about the trustworthiness? 

We believe that recent advances in scalable ML, when 
combined with the understanding and subject matter 
expertise from HPC operations and HPC event-log 
datasets, can enable the development of proactive 
failure management methods. Until recently, the 
application of machine learning algorithms on HPC 
event logs faced three major challenges in the iterative 
process of pattern discovery and pattern recognition 
to predict occurrence, coverage and extent of failures 
at the leadership computing facilities. The three 
challenges were: 

Data science—do we need another supercomputer to 
analyze the terabytes of event-log data generated 
by leadership computing infrastructure? Are data 
analysis algorithms going to be fast enough to 
crunch terabytes for HPC operations personnel to 
be proactive; 

provenance?), and understanding applications 
with respect to hardware interactions, the inter-
application dependencies, etc.; and 

3 Library of models—that learn and infer from 
increasing data size, more data sources (logs, 
sensors, users, etc.), fewer examples of failures and 
interdependent relationships. 

Machine learning algorithms need to be designed to 
operate online and at scale. There are two reasons 
why online learning is necessary: the confguration 
of executions in HPC systems is never the same and 
different applications are executed concurrently and 
the state of the different system software is evolving 
with time. So information needs to be acquired in a 
permanent regime. Since there is not enough storage 
space to store all events coming from all sources, 
fltering is necessary before storage. Outliers need to 
be detected from the fow of apparently normal events. 
Only a selected subset of all events will be stored. 

As mentioned in Section 9, many sources of errors (we 
use this term in a generic way. It could be replaced 
by disruption, corruptions, etc.) can reduce the level 
of trust that we have in simulation results. Applied 
mathematics already offer techniques to mitigate errors 
coming from several sources. Others sources like bugs, 
malicious attacks, and silent data corruptions still 
need to be mitigated. Trust and resilience raise similar 
questions: what is the cost that a user is ready to pay 
for them (What is an acceptable overhead in terms of 
execution time and additional hardware resources, 
energy?). Trust also raises new questions: since trust 
is not necessarily binary, can we provide at the end of 
the execution a trust level (or confdence level) of the 
simulation results? Conversely, could users express a 
requirement in level of trust before the execution, in 
order to guide the execution toward this objective? This 
could be seen as the level of risk that a user is ready 
to accept. Another question concerns the coverage for 
trust: does trust need to cover all sources of errors or 
can we consider levels of trust with respect to each 
source of errors. 
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7 Machine Learning-built Models to Understand Current and Future 
Research Directions 

7.1 Research Directions in ML from 
Topic 2 

In this section, we will identify the major research 
directions of the feld of machine learning in industry 
and academia. Figure 17 provides the taxonomy for the 
traditional high-level ML areas and provides examples 
of the well-known techniques that fall into the various 
categories. Much research still lies in improving the 
generality and robustness of the techniques in these areas. 
However, we also would point out that some of the most 
interesting and applicable research directions in ML do 
not neatly ft into the traditional taxonomy.These research 
areas are noted in the box at the bottom of Figure 17. 

Figure 17: Taxonomy of various ML approaches and methods. 

the Past and to Predict the Future 

For example, one would like to understand how the 
data was generated and to use that knowledge to 
make predictions.When labeled data is not available, 
the process of creating this understanding is often 
referred to as unsupervised learning. If multiple types of 
variables are available, one of which may be interpreted 
as providing labels, then the task of building a 
prediction model, which allows one to predict the future 
value of a target variable as a function of the other 
variables, is often referred to as supervised learning. 
There are many variations. For example, one may have 
only a small number of labels, one may receive labels 
iteratively, etc. These are often called semi-supervised 
learning or reinforcement learning. Important to the 
use of all of these is the famous observation from the 
late George Box that all models are wrong, but some are 
useful. While the model-building literature presents a 
vast array of approaches and spans many disciplines, 

Machine Learning 

Supervised 
Learning 

Unsupervised 
Learning 

Classification 

Instance based (k-NN, LVQ) 

Bayesian (Naive Bayes, BBN) 

Kernel Methods (SVM, RBF, LOA) 

Decision Trees (CART, 
Random Forest, MARS) 

Artificial Neural Nets (Perceptron, 
Hopfield network, SOM, Black Prop) 

Ensemble Methods (Boosting, 
Bagging, AdabBoost) 

Clustering Regression Dimensionality 
Reduction 

Linear Algebra, Graph Theory, Optimization, Statistical Learning Theory 

OLS, Logistic, Mars, 
LOESS, Ridge, LASSO, 

Elastic Net 

K-means, hierarchical, 
EM, GMM, DBSCAN, 

OPTICS 

PCA, ICA, MDS, 
NMF, CCA, Isomap, 

LLE, CX/CUR 

Deep Learning (RBM, 
DBN, CNN) 
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model building with massive data is relatively 
uncharted territory. For example, most complex 
models are computationally intensive and algorithms 
that work perfectly well with megabytes of data may 
become infeasible with terabytes or petabytes of data, 
regardless of the computational power that is available. 
Thus, for large-scale problems and in different types 
of applications such as scientifc applications, one 
must re-think the trade-offs between complexity 
and computational efficiency. Many approaches are 
used to address many of these questions, but many 
challenges remain. There are two types of challenges 
here. The frst is scaling up existing algorithms. In 
some cases, this means scaling up on architectures not 
optimized for ML. The second challenge is identifying 
objectives and algorithms that are more appropriate 
for particular applications. In this case, the goals of the 
user of machine learning might be very different if one 
is interested in high-quality quantitative prediction 
versus obtaining qualitative understanding of the data. 

Unsupervised Learning 

Unsupervised learning or data analysis aims to fnd 
patterns in the data. This can include the following: 

• Clustering. This is partitioning data into groups so 
that data items within each group are similar to 
each other and items across different groups are 
not similar. For example, K-means, hierarchical 
clustering, and mixture models are popular 
algorithmic approaches. 

• Dimension reduction. This represents high-dimensional 
data points by points in a lower-dimensional space 
so that some properties of the data can be preserved. 
For example, one approach might be to preserve 
enough information to fully reconstruct the data, and 
another may be to preserve only enough information 
to recover distances among data points. 

• Anomaly detection. This is determining whether a data 
point is an outlier (e.g., is very different from other 
typical data points). One general approach is to use 
a statistical model to characterize the data, and an 
outlier is then an unlikely point. 

• Characterizing the data through basic statistics, such as 
mean, variance, the frequency distribution of node 
degrees in a graph, etc. Although simple, a challenge 
here is to fnd computational algorithms that can 
efficiently work with massive data. 

• Testing whether a probability model of the data is consistent 

with the observed statistics, e.g., whether the data 
can be generated from a Gaussian distribution, or 
whether a certain statistical model of a random 
graph will produce a graph with observed 
characteristics. 

Existing approaches to address these questions include 
probabilistic modeling approaches, non-probabilistic 
approaches based on optimization, and procedures that 
try to fnd desired structures. For example, a mixture 
model can be used as a statistical model for addressing 
the clustering problem, while an optimization model 
does not. There are also clustering procedures that 
are not based on optimization or statistical models. 
For example, in hierarchical agglomerative clustering, 
one starts with each single data point as a cluster, 
and then iteratively groups the two closest clusters to 
form a larger cluster; this process is repeated until all 
data is grouped into a single cluster. In a loose sense, it 
also builds a useful model for the data that describes 
similarity relationship among observations; but the 
model is not detailed enough to generate the data in a 
probabilistic sense. 

Supervised Learning 

Supervised learning is sometimes called predictive 
modeling. In this case, one typically has a response 
or output variable Y, and the goal is to build a 
function f(X) of the inputs X for predicting Y. Basic 
prediction problems involving simple outputs include 
classifcation (Y is a discrete categorical variable) and 
regression (Y is a real-valued variable). 
Statistical approaches to predictive modeling can be 
generally divided into either generative models or 
discriminative models. In a generative model, the joint 
probability of X and Y is modeled; that is, P(X|Y). 
The predictive distribution P(Y|X) is then obtained 
via Bayes’ theorem. In a discriminative model, the 
conditional probability P(X|Y) is directly modeled 
without assuming any specifc probability model for 
X. An example of generative model for classifcation is 
linear discriminant analysis. Its discriminative model 
counterpart is linear logistic regression, which is also 
widely used in practice. The maximum likelihood 
estimation (MLE) is a common parameter estimation 
method in these cases, but one can defne other criteria 
to optimize. For example, one may consider a geometric 
concept such as a margin and use it to defne an 
optimization criterion for classifcation that measures 
how well classes are separated by the underlying 
classifer (which leads to support vector machines). 

Another issue with high-dimensional data is that there 
are a large number of variables that are observed that 
are difficult to handle using traditional methods such 
as MLE. Regularization approaches are often used 
in these cases. Examples of such methods include 
ridge regression and the Lasso method for least-
squares ftting. Often, nonlinear prediction methods 
can achieve better performance than linear methods 
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and an important research topic in massive data 
analysis is to investigate nonlinear prediction models 
that can perform efficiently in high dimensions. In 
many cases, this requires primitive scalable methods 
for least-squares regression and low-rank matrix 
approximation. Developing improved algorithms for 
these problems is a continuing challenge and in recent 
years the use of randomization as a resource has led 
to qualitatively improved algorithms for regression 
and low-rank matrix approximation problems in very 
large-scale settings. 

An important challenge is to see how these types of 
approaches can fruitfully be combined with online 
prediction methods (which can be regarded both as 
modeling for sequential prediction and as optimization 
over massive data) such as stochastic gradient methods. 
Online algorithms do not require all data to be stored 
in memory, since each time they are invoked, they look 
at one or a small batch of observations. One popular 
approach is stochastic gradient descent. 

7.2 Current and Future Research 
Directions from Topic 3 

Over the last few years, resilience has become a major 
issue for HPC systems, especially, in the context of 
DOE’s vision for exascale computing [22, 36, 42]. State-
of-the-practice methods (i.e., checkpoint-restart [43], 
event-correlations [52], replication [47, 40] and failure 
prediction [57]) have become operationally infeasible 
or do not scale for millions of cores; accommodate 
heterogeneity in architectures (CPU, GPU, etc.); 
account for different failure modes (hardware, software, 
application, etc.); and, different hierarchies (input-
output, memory, disk, network, etc.) of possible failures. 
The outstanding challenge is fnding new proactive 
methodologies that will reduce the instability of 
exascale systems while allowing users’ applications to 
run without interruption. 

Major challenges in applying machine learning to 
resilience and trust in supercomputing are the multiple 
types of heterogeneities in the log data (i.e., including 
hardware faults, network-faults, soft errors, etc.). This 
requires machine learning algorithms to include: 

• A suite of methods to handle different aspects 
of variations (as in multi-task learning, science 
domain-specifc adaptation); 

• View-based learning (as in multi-view learning— 
different codes at different times), instance 
variations (i.e., multi-instance learning—same code 
run at different times); 

• Label variations (i.e., multi-label learning—scaling 
to increasing types of faults); and, 

• Oracle discrepancies (as in labeling method— 
manual, sensed, automatic), etc. 

While novel methodologies, applications, and theories 
for effectively leveraging these heterogeneities are 
being developed, the work is still in nascent stages. 

There are multiple challenges: 

1 How can we effectively exploit the label/ 
example structure to improve the classifcation 
performance?; 

2 How can we handle the class imbalance problem 
when facing one or more types of heterogeneities?; 

3 How can we improve the effectiveness and 
efficiency of existing learning techniques for large-
scale problems, especially when both the data 
dimensionality and the number of labels/examples 
(different types of failures) are large?; 

4 How can we jointly model multiple types of 
heterogeneities to maximally improve the 
classifcation performance?; and 

5 How do the underlying assumptions associated with 
multiple types of heterogeneities affect the learning 
methods? 

7.2.1 General Failure Model 

Most existing resilience solutions are application-
specifc and difficult to adapt into other applications. 
Although few application blind solutions are reported, 
since they need to consider unnecessarily large 
amounts of application elements with no failure models 
being known, they inevitably incur large overhead. 
Machine learning-based general failure models will 
mitigate both limitations; they are based on abstract 
signatures, not by features specifc to an application, 
and thus are easy to apply to other applications and 
lightweight in footprint. 

Machine learning-based failure models for resilience 
are broadly categorized into two areas: failure 
detection and failure prediction. Although the latter 
is a more rigorous and proactive form than the other, 
they are both based on data analytics. In general, 
log data such as syslog or resilience, availability, 
and serviceability (RAS) outputs and synthetically 
injected failure data are considered essential for this 
end. However, data analytics on this data imposes 
challenges. Data is voluminous, complex, and 
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heterogeneous (i.e., structured or unstructured, textual 
description or numeric readings). 

In order to enable applications to make decisions 
based on the trustworthiness of resources, multiple 
hybrid learning techniques will be applied in an 
ensemble learning approach using a metareasoner 
to select from or combine solutions provided by 
multiple learning modules. The approach for learning 
and reasoning about trust in a large network of 
nodes uses an iterative, multi-step hybrid reasoning 
algorithm consisting of causal models represented as 
Bayes nets, being fed by information retrieved from 
network probes or logs. The models capture causality 
among variables that represent precursors to trust 
outcomes, and produce data for use by other machine 
learning methods. These methods include knowledge-
based approaches, including case-based learning and 
reasoning, and statistical approaches. There are many 
machine learning approaches that both separately 
and in combination could be applied to provide 
insight, both quantitative and qualitative, into the 
trustworthiness of entities. These approaches will be 
investigated. 

7.2.2 Fault Characterization 

Characterize HPC faults using existing and extended 
ML and deep learning techniques to analyze fault data 
that is produced by HPC systems. 

Building Resilient Scientifc Applications via 
Generalized Machine Learning Models 

Resilience—coping with runtime faults—has been 
identifed as a top challenge to achieving exascale. As 
new generations of microprocessors are created, soft-
error rates increase as a consequence of technology 
scaling and the need to reduce energy consumption. 
In addition, a signifcantly larger number of software/ 
hardware components are expected at exascale, which 
will further increase failure frequencies. Applications 
must survive in unreliable environments, thus we need 
to design efficient resilience mechanisms. 

Application B 

Application C 

Application D 

Fault, Error & 
Failure Data 

Protect 
Applications 

Learning 

System 

Models 

Figure 18: Workfow to protect applications by learned models. 

We propose a novel, automatic approach to protect 
scientifc applications from faults by leveraging 
application-independent ML models. Most existing 
resilience solutions are algorithm-specifc (and only 
suitable for a subset of applications) [20, 38, 74]. 
While others are algorithm-independent, they incur 
high overhead by over-protecting the application 
(since application failure models are unknown, they 
tend to protect unnecessary application elements or 
state) [17, 30, 29, 53]. By building general algorithm-
independent failure models via ML, our solution is 
the frst to automatically protect specifc application 
components to reduce fault detection and recovery 
overhead. Developers will no longer spend time 
adapting resilience techniques to their algorithms or 
face unnecessary slowdown due to fault detection code. 

Application Resilience Data 

Fault injection into applications is the most common 
approach to study resilience properties and a huge 
amount of fault data can be obtained in this way. To 
have a sense of this data space, a single serial kernel 
can be injected with faults in different machine 
instructions on the order of 500 billion (depending on 
code size and runtime). With a more complex parallel 
code, this number can easily reach up to quadrillions 
(1015) of fault data points that need to be analyzed just 
for a single application. 

Building General Failure Models 

By analyzing fault data, we can build a failure model 
for an application. A failure model explains how 
and when faults make different components of an 
application fail. Our research questions are: Can we 
use the failure model of an application to develop 
protection mechanisms for another application? 

Further, can we use a small set of application kernels 
to build failure models that generalize to a larger set 
of applications? If this is possible, we would spend less 
time protecting new applications (by avoiding long 
fault injection campaigns) while maintaining efficiency. 

We argue that it is possible to generate application-
independent failure models by using hardware- and 
system-specifc features rather than algorithm-specifc 
features. Examples of algorithm-specifc features 
include the number of particles in a simulation 
or the size of a matrix. System- and hardware-
specifc features might include the type of executed 
instructions or the number of bytes in a memory region. 
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The reasons behind our argument are twofold: 
1 An algorithm-specifc feature from application A 

may not exist in application B; and 

2 Faults originate from the hardware and propagate 
to the system, thus hardware- and system-specifc 
features are likely to capture failure characteristics 
in a general way. 

The next section casts the problem of generating 
a failure model as an ML problem and presents a 
case study using our approach to efficiently protect 
applications against silent errors. 

We can express the generation of a failure model 
as a pattern classifcation problem in supervised or 
unsupervised learning as follows (see Figure 18). Let 
S denote the state of an application or a system. S can 
take one state from a set, for example {faulty, non-
faulty} or, if we want to predict future states, {will-
fail,will-not-fail}. Let \vec{v}. V⃗  denote a vector of 
values for n collected metrics [m0,...,mn]. These metrics 
can be any features of the system or application. A 
pattern classifcation problem would be to induce or 
learn a classifer function F mapping the universe of 
possible values for V⃗  to the range of states S. Given a 
vector V⃗  , we can then use this function to predict if the 
application is (or will be) in a faulty state or not. 

Case Study 

Silent errors are some of the most catastrophic errors 
because they may affect numerical results—applications 
show no fault symptoms, although their fnal output 
may be incorrect. Our goal is to detect silent errors 
and to make them visible, thus users can take remedial 
actions promptly. A common approach to detect silent 
errors is to duplicate computations and to compare 

them; if they differ, an error is detected. A widely 
accepted approach is the one proposed by Chang, et al 
[25], which duplicates computation at the granularity 
of instructions. However, this method incurs a high 
overhead because almost all instructions are duplicated 
in all applications. We can improve the efficiency 
of Chang’s method using our model-generalization 
approach as follows.We train an ML classifer (decision-
tree) where feature vectors comprise characteristics of 
an instruction, such as its type and the instructions it 
infuences (all hardware- and system-level features). 
To train the classifer, we use labeled data from 
instruction-level fault injection in a molecular dynamics 
code (CoMD) using LLVM. For each instruction, we 
obtain a feature vector V⃗, and, by observing whether 
the application crashed or not, we label each vector 
with non-silent or silent. Out of 365 injections, 233 
(63.8 percent) result in non-silent errors and 132 (36.2 
percent) result in silent errors. If our model is general 
enough (see Figure 19), we hypothesize it can be used 
to protect new applications, or different versions of the 
same application, using a simple algorithm: 

1 Check every instruction in the code of the new 
application; 

2 Ask the classifer if an error in this instruction 
would cause a silent error; and if so, 

3 Protect that instruction. 

With a perfect classifer, our approach would incur a 
slowdown of only 1.36 (since we would protect only 
instructions in which a silent error can occur), whereas 
the traditional approach [25] of naively protecting all 
instructions would have a slowdown of at least 2. Thus, 
our approach would be 2 ⁄ 1.36 = 1.47 × faster than [25]. 

CRASH = 107 
SE = 64 

Yes No 

CRASH = 3 
SE = 15 

CRASH = 1 
SE = 23 

Yes No 

CRASH = 8 
SE = 16 

Is a STORE 
instruction? (189) 

Yes No 

Is number of 
function calls ≤ 7.5? (48) 

CRASH = 2 
SE = 8 

Yes No 

CRASH = 5 
SE = 2 

CRASH = 0 
SE = 75 

Yes No 

CRASH = 6 
SE = 30 

Remaining instructions in 
basic block ≤ 7.5? (17) 

Yes No 

Is number of future 
function calls ≤ 12.5? (111) 

Are there pointers in the 
forward slice? (237) 

Yes No 

Remaining instructions in 
function ≤ 15.5? (128) 

Is a pointer instruction? (365) 

Figure 19: Decision tree of fault injection results in molecular dynamics code (SE = silent error, CRASH = application aborted) 

https://follows.We
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Feature Selection 

Hardware and systems provide a wide range of features 
to model a resilience problem. Selecting the right 
features (or fltering out those that do not provide much 
information) is critical. Key research questions are: 

1 What features should be measured to model the 
type of faults that we want to detect? (some features 
may be fault specifc); and 

2 How to sample measurements effectively at runtime 
without incurring high overhead? 

Model Adaptation 

What if a model from application A is not general 
enough to be used in application B? Can model A be 
adapted (perhaps automatically) for B, and, if so, how? 
Can we form equivalence classes of similar failure 
behavior? What makes an application similar to 
another application in terms of resilience? Answering 
these valid research questions will require extensive 
experimentation, analyzing useful features, and 
developing practical algorithms to compare code 
structures and fault propagation properties. 

Leveraging Proxy Applications 

Proxy applications—used by DOE national labs in 
co-design efforts—are small, tractable codebases 
that represent some functionality of larger, more 
complex applications (their parents). Protecting a 
full application from faults requires spending a large 
amount of time in fault injections. In a large-scale 
application, it may be prohibitively expensive to collect 
sufficient training data. However, if a proxy application 
resembles its parent in terms of resilience, we can train 
models from that proxy application and can use it to 
protect its parent in less time. 

We propose to improve the efficiency and applicability 
of resilience techniques using generalized failure 
models that can be built via ML. This work will spawn 
novel resilience solutions for exascale. 

7.2.3 In Situ Fault Detection 

Use classifer models developed offline to detect faults 
and learn new patterns in situ. 

Using Machine Learning to Optimize 
Uncoordinated Checkpointing Performance 

In response to alarming projections of high failure rates 
due to increasing scale and complexity of HPC systems 
[19], many researchers have focused on methods and 
techniques for resilient extreme-scale HPC systems 
and applications. Considering non-algorithm-specifc 
resilience approaches, researchers have studied 
both coordinated checkpoint/restart (cCR) and 
uncoordinated checkpoint/restart (uCR) protocols, with 
cCR having emerged as the de facto standard. 

cCR protocols preempt all application processes to 
record a snapshot of the application’s global state. cCR 
is attractive for several reasons. Its coordination protocol 
guarantees that the most recent global checkpoint 
captures a consistent global view, removing the need 
to store multiple checkpoints, sent messages, or other 
additional state information and thereby minimizing 
storage requirements. cCR also admits a relatively 
simple recovery procedure that does not suffer from 
rollback propagation, a scenario in which the most 
recent checkpoints from each application process do not 
comprise a consistent global state [41]. cCR does suffer 
from I/O contention issues since all processes checkpoint 
simultaneously, and with cCR protocols, upon a failure, 
even the surviving processes are perturbed as they 
must rollback to their most recent checkpoint.The 
rework executed by surviving processes also results 
in potentially unnecessary energy expenditures. uCR 
protocols, in which each process in an application makes 
independent decisions about when to checkpoint, can 
mitigate cCR’s I/O contention problem since processes 
are not forced to take checkpoints simultaneously. 
Additionally, when uCR is coupled with message 
logging, when failures occur, surviving processes are not 
forced to rollback to their most recent checkpoint and 
therefore can run ahead in their execution—unless and 
until they depend on a message from a failed process. 

Though uCR protocols show promise, recent results 
show that the communication of an application and 
its associated dependencies can signifcantly impact 
the performance of uCR [49]. This impact can be so 
great that, at certain scales, cCR to a shared parallel 
flesystem can outperform uCR to local non-volatile 
storage [49]. 
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Figure 20: Propagation of uncoordinated checkpointing delay through application communication dependencies. The processes p0, p1, and p2 

exchange two messages m1 and m2 in each of the three scenarios. The black regions denote coordinated (b) and uncoordinated (c) checkpoint delays 
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The possibility of uCR protocol activities inducing 
delays amongst processes, including processes that 
do not communicate directly with each other, is 
analogous to the manner in which operating system 
noise can affect HPC applications [48, 70]. Figure 
20 illustrates this phenomenon. Figure 20 (a) shows 
a simple application running across three processes 
(p0, p1, and p2). These three processes exchange two 
messages, m1 and m2. We assume here that these 
messages represent strict dependencies: any delay 
in the arrival of a message requires the recipient to 
stall until the message is received. Figure 20 (b) shows 
the impact of coordinated checkpoint/restart (cCR). 
Because all of the checkpointing activity is coordinated 
across processes, the relative progress of the processes 
is unperturbed and all of the dependencies are satisfed 
at the appropriate time. Figure 20 (c) illustrates 
the potential impact of relaxing the coordination 
requirement in uCR. If p0 initiates a checkpoint at the 
instant before it would have otherwise sent m1, then p1 

is forced to wait (the waiting period is shown in grey) 
until the message arrives. If p1 subsequently initiates a 
checkpoint before sending m2, then p2 is forced to wait. 
Part of the time that p2 spends waiting is due to a delay 
that was originated by p0.The key point is that without 
coordination, checkpointing delays can propagate based 
on communication dependencies in the application. 

Our position is that machine learning can be used 
to increase the performance of uCR by determining 
when local checkpoints can be taken such that they 
do not amplify the overheads as illustrated in Figure 
20. Standard methods are incapable of effectively 
determining the proper time to take a checkpoint 
as a local cannot determine a priori if it is currently 
involved in a communication dependency chain. In 
addition, system- and platform-level algorithms can 
create dependencies with nodes the application does 
not directly communicate with. 

Prompt Failure Detection through Integrating 
Disparate and Heterogeneous Offine and 
Online HPC Instrumentation Data 

The Advanced Scientifc Computing Research (ASCR) 
program and the HPC community have invested in a 
number of resilience technologies, including checkpoint/ 
restart [66], containment domains [30], and resilient 
solvers [30, 68]. However, we still lack more fundamental 
capabilities that can assist proactive decisions in using 
these technologies: prompt detection of faults or 
abnormal status of the system. HPC systems are heavily 
instrumented for monitoring system health, producing 
voluminous data that can be used to disclose insight in 
this regard. However, no systematic approach to 
integrating diverse datasets exists today, which restricts 
primary use of the data to monitoring of mere occurrences 
of some known patterns in each data separately. The 
main challenge resides in discrepancy between different 
data sources. These data sources, collected at different 
locations and layers of the system, are inherently 
heterogeneous and disparate; some data includes 
numeric readings while other data includes textual 
content or both. Furthermore, despite their enormous 
practical importance, certain types of instrumentation 
data are never logged due to insurmountable overheads 
to collect and populate them into a designated database 
or repository. For example, real-time CPU status, 
memory utilization levels, or congestion status of the 
high speed interconnect between routers (or switches) 
are produced not only at a high-speed rate, but also at 
an embarrassingly large number of locations. Since 
compiling a full collection of these instrumentation data 
without inficting the rest of the system is currently 
impossible, the data ia used either to capture a statistical 
synopsis or simply discarded. Therefore, while learning 
and correlating logged data sources is a large-scale 
offline data analytic problem by itself, incorporating 
such online data into the holistic learning framework 
opens up another set of algorithmic and architectural 
challenges. 
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For the offline analysis, in addition to heterogeneous 
nature of the data, the fact that very few failure cases 
are typically reported in logs should be considered. 
Since this constitutes a weakly supervised setting where 
data for the target concept is scarce but other related 
data ia abundant, relation extraction [10, 92] methods in 
conjunction with semi-supervised learning such as multi 
task learning [9] to disclose semantic associations among 
word terms from the textual logs are adequate to apply. 
Likewise, mappings between multi-dimensional spaces 
constructed from numerical instrumentation data can be 
learned using regression-based learning techniques, such 
as smoothing kernel-based regressors to learn non-linear 
relationships in the data or deep learning approaches. 
More importantly, mappings between groups of relations 
from textual and a set of features from numeric data 
should also be examined to establish comprehensive 
characterizations of a fault model. Such a model should 
include causal relations, occurrences of the identifed 
relations and associated numerical readings over time. 
Statistical Markov models, such as Hidden Markov 
Models (HMMs) or Dynamic Bayesian Networks (DBNs), 
where different compositions of relations possibly 
constitute latent variables or different states, are good 
candidates to apply. 

For the online analysis, a distributed online machine 
learning approach seems to be an excellent choice. 
In particular, we propose to create a distributed 
streamlined data cube that, at a conceptual level, 
follows a conventional Online Analytic Processing 
(OLAP) cube, i.e., (a) different instrumentation data 
readings constitute one set of dimensions, (b) locations 
or layers in a hierarchy another set of dimensions, 
and (c) time the third type of dimension. Each cell 
of the cube represents a reading measured from an 
instrumentation point at a particular timestamp. The 
challenge is then to apply analytic algorithms over the 
cube while keeping it at its minimal footprint. Whereas 
we can dynamically compress the time dimension by 
adopting a tilted time frame [60] that produces fner 
resolutions for recent data and coarser resolutions 
for distant data, reduction of the cube in the other 
dimensions without much compromising analytic 
quality is a bigger challenge. More specifcally, the cube 
should be abstracted in a hierarchy where information 
minimally necessary for the analytic algorithms are 
represented as layers that aggregate data from lower 
layers which do not need to be stored. Since the cube 
will be inherently distributed over the underlying 
network, it is important to construct a topology-aware 
hierarchy. This will pose an interesting optimization 
problem with respect to an allowable error bound and 
different network topologies. Even preliminary results 
on this research will provide valuable feedback to 

vendors for their next data instrumentation design. In 
parallel, a set of distributed, streamlined algorithms 
that together construct failure models from the cube 
should be developed. 

Online Data-driven Statistical Inference Tools 
for Fingerprinting and Improving Resilience of 
High-Performance Computing Application 

HPC applications are undergoing a dramatic shift in 
their overall design and architecture as a consequence 
of the availability of heterogeneous computing 
resources. Instead of having to scale HPC applications 
exclusively based on CPUs, modern compute 
architectures are imposing on developers to scale their 
applications across CPUs, graphics processing units 
(GPUs) and other emerging architectures such as co-
processors. The combination of heterogeneous resources 
within emerging exascale architectures promises 
to provide unprecedented compute capabilities for 
scientifc applications. However, one of the pitfalls of 
heterogeneous architectures is that it is difficult to 
predict how and when different components will fail. 
Additionally, future exascale applications will have to 
make efficient use of inter- and intra-node parallelism 
(i.e., concurrency), memory footprint, data footprint 
and locality, as well as be reliable to node-level or 
component-level failures. HPC applications typically 
generate vast amounts of data about the processes 
they run on supercomputing systems in the form of 
“event logs.”As heterogeneous compute resources 
become more prevalent, these event logs have become 
more complex and represent examples of big data, 
consisting of both structured and unstructured data. 
Apart from recording the status of current progress of 
jobs/processes, these event logs record rich information 
about the status of hardware and software, data, 
memory and network resource usage. This information 
represents multi-modal spatial and temporal data that 
has immediate value in not only profling applications 
but also in learning to predict where applications 
may fail when resource failures occur. We propose a 
scalable framework that uses event logs and other 
performance information collected from other sources 
(e.g., fle systems logs, performance management logs, 
network logs, etc.) to perform near-real time analysis 
of HPC applications to develop novel statistical 
fngerprinting of resource usage, predict failure 
modes, and provide novel capabilities to recover from 
hardware/application failures. The framework utilizes 
a novel multi-modal representation of event logs where 
by these datasets are modeled as three-dimensional 
tensors [79]. For example, tracking network logs can 
provide information on the time point (t), the source 
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(s) and destination (d) ports. The entry within each (t) 
can indicate how many packets were routed on these 
(s) to (d) ports. Similar tensor representations can be 
built for other types of event logs that capture the 
state of the application/HPC resource. However, these 
tensors can be represented as independent streams of 
data that need to be analyzed in tandem to fngerprint 
applications or resources. 

Our approach to fngerprint HPC resources and 
applications is based on dynamic and streaming tensor 
analysis algorithms [122, 14, 107, 109] that specifcally 
capture time-evolving patterns of the aforementioned 
tensors. Using extensions to target multiple data 
streams [99] simultaneously, we will develop linear 
and hybrid ML models [28,108] that can provide 
quantitative insights into the resource utilization 
profles of HPC resources. Further tensor analysis 
models can track application resource use profles 
across multiple data streams to identify anomalous 
behaviors and provide insights into failure modes of 
these applications. The tensor analysis models can be 
summarized using higher-order techniques to obtain 
generative profles of how applications use HPC 
resources. These quantitative insights can be integrated 
with existing integrated performance management tools 
to provide a seamless end-user experience that can: 

1 Aid system administrators to prioritize resource 
utilization for specifc applications; 

2 Inform end-users about potential failures based on 
past/previous runs; and 

3 Aid optimization of applications for HPC 
deployment. 

The failure modes detected from application runs 
(using dynamic and streaming tensor analysis 
algorithms) will also aid in improving resilience of 
HPC applications. In particular, based on temporal 
profles generated from multiple data streams, we 
build resource utilization maps that forecast how 
applications perform with only CPUs, or with CPU-
GPU hybrid environments [8]. The utilization profles 
can then be tailored to specifc application contexts 
and made available to both end-users and system 
administrators to better aid recovery from failures. 
We will discuss our framework in the context of our 
experience in running long time scale molecular 
dynamics (MD) simulations. As MD simulations take up 
nearly 35 percent of supercomputing time allocations, 
the ability to address resiliency and trust issues from 
application specifc contexts can be critical for their 
success at exascale. 

7.2.4 Fault Prediction 

Predict faults before they actually occur so that the 
system can be repaired or faults avoided when running 
an application. 

Machine Learning for Failure Prediction 

Understanding the behavior of failures in HPC systems 
is very important in order to address their reliability 
problems. Event logs are often a source of information 
for analyzing the cause of failures in cluster systems. 
However, the size of these fles has continued to 
increase. Current systems can generate up to tens 
of GB of data per day, making any manual analysis 
unrealistic. Research in this feld has turned to data 
mining and ML techniques to characterize events 
generated by current HPC systems. Machine learning 
is a powerful tool that efficiently extracts patterns in 
high-dimensionality sets and can provide accurate 
correlations between defned behaviors. We combined 
ML with signal processing techniques that are best 
suited to characterize the behavior of events affecting 
the system, highlighting the differences between 
failures [54, 55, 56]. Different system components 
exhibit different types of syndromes, both during 
normal operation and as they approach failure. In 
general, errors are often predicted by changes in the 
frequency or regularity of various events. Moreover, ML 
techniques become much more efficient when applied 
to the derived markers rather than to the original 
signal. Specifcally, we adapted the sequential GRITE 
algorithm to work with our signals. By merging it with 
a fast signal analysis module we were able to guide 
the extraction process toward the fnal result, thereby 
reducing the complexity of the original data-mining 
algorithm. The correlations extracted with the ML 
algorithm are used online to predict future occurrences 
of failures. This step uses a novel methodology for 
online failure prediction based on a pattern-extraction 
algorithm specifcally designed for streams of data 
with multiple dimensions. The method updates the 
correlations live as new events are generated in the 
system, in parallel with triggering predictions. A 
modifed PCA algorithm extracts the most specifc 
multidimensional items, then an alternative online 
PrefxSpan algorithm mines sequences of events. 
We have made multiple experiments on different past 
and current production HPC systems, from BlueGene 
systems, to NCSA’s Mercury and Blue Waters. For 
BlueGene/L the results show that we can accurately 
predict almost 50 percent of total failures with high 
precision (90 percent). The Blue Waters has one order 
of magnitude more events generated that contain 
complex correlations. However, we showed that when 
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analyzing only a specifc type of failures, the predictor 
can obtain over 60 percent recall and a precision of 
over 85 percent. These results are very promising. 
There are multiple directions to extend this research 
area. First, the prediction methodology can be easily 
extended to any other data gathered from the system, 
such as performance metrics and information about the 
application behavior. Second, instead of generalizing 
the existing predictors in order to capture all failure 
types and their varying behaviors, this direction focuses 
on developing specifc predictors for each unpredicted 
failure type, starting with fle system failures. Finally 
these techniques could be extended for performance 
degradation prediction. 

7.2.5 Trusted Results 

The frst three areas above focus on creating an HPC 
environment that is resilient to failure, which enables a 
scientist to have trust in an applications results. 

Machine Learning for SDC Detection 

Machine learning provides a promising, effective, 
and efficient direction to detect SDC during runtime 
in scientifc applications [62]. A strategy based on 
data analytics has many advantages over classic 
detection techniques. In particular, a lightweight data-
monitoring technique can impose a low overhead on the 
application compared to expensive techniques such as 
replication. Also, data monitoring and outlier detection 
can be offered by the runtime transparently to the user. 
The principle is to analyze the application datasets and 
its evolution in order to detect outliers. Here, we take 
the example of a computational fuid dynamics (CFD) 
application simulating a turbulent fow and we analyze 
the velocity felds. In Figure 21(a) below, we show a 
multi-dimensional clustering of velocity feld variable 
gradients. The same cluster in Figure 21(b) is plotted 
in the presence of data corruption, where the color 
denotes the magnitude (bit position) of the corruption. 
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(b) Data Corruption 

Figure 21: A multi-dimensional clustering of velocity feld variable 

gradients with (a) and without (b) data corruption. 

From the results shown in the fgure, we can observe 
how the corrupted data immediately stands out as clear 
outliers within the cluster. A point that should be taken 
into account while measuring the detection capabilities 
of these detectors is that not all the bits in the IEEE 
foating-point representation need to be protected. For 
instance, a corruption in the most signifcant bits is 
likely to generate a numerical instability, inducing the 
application to crash. Such soft errors might be silent to 
the hardware but not to the application. On the other 
hand, corruption happening in the least signifcant 
bits of the mantissa might be negligible because they 
produce deviations that are lower than the allowed error 
of the application. Coming back to the CFD example, if 
we neglected the four most signifcant bits (numerical 
instability) and the four least signifcant bits (negligible 
error), we could say that data analytics based detectors, 
provide a coverage of 83 percent in this example. 
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Using data analytics solutions for SDC detection 
opens a whole new feld of research. The community 
is just at the beginning of this exploration. The 
frst results are extremely encouraging in terms of 
detection performance and overhead on execution time. 
Advanced ML techniques combining multiple data 
analytics approaches need to be investigated to achieve 
a lightweight, transparent, accurate, and very portable 
SDC detection techniques. 

Expanding on this, the trustworthiness of this type of 
output is not limited to exascale computing. 

7.2.6 Representation of Trust: Supporting 
Resilient Decision-Making in the 
Context of Large-Scale Sensor 
Networks 

Researchers are exploring the characterization, roles, 
and representation of trust in support of resilient 
decision-making in the context of a widely connected 
network of nodes such as the Internet of Things, 
networks of sensors, or data and sensor fusion in 
intelligence, surveillance, and reconnaissance 
applications. In this abstract we will explore concepts 
and approaches to develop the trust framework 
needed to support decision-making in a large-scale 
network of sensors, such as a smart power grid. 

Our defnition of trust should be framed in the context 
of the set of decisions that will be enabled by reasoning 
about the level of trust that the decision-making module 
has in individual nodes, sets of related nodes or types 
of nodes, providing information to the system or using 
or supplying services.The representation and reasoning 
approaches must be scalable, and this scalability is 
enabled by a distributed collaborative agent-based 
approach to machine learning and decision-making to 
evaluate the trust of nodes and to use that information 
for intelligent decisions. 

A smart power grid will reason about resource 
management, power usage, resource needs and costs, 
while monitoring and controlling resources. Being 
able to reason about the level of trust in given nodes 
is important because decisions depend upon an 
accurate situation awareness (based on the knowledge 
aggregated and inferred from the sensor data) and on 
the reliability of appropriate resources assigned for 
services. The cognitive reasoning modules providing 
decisions will be able to query or probe nodes for 
features related to assessing a level of trust in the node. 
This probing can be used to increase confdence in the 
trust level being calculated by the system. 

The features upon which the trust level of a node is 
based include: 

• Uncertainty levels of measurements associated with 
the information coming from the node; 

• Provenance—where does the information about this 
node come from?; 

• Perishability—how current is the information that 
we have about this node and how quickly does the 
information change?; and 

• Past performance and reliability. 

Many of the features that we will use to represent the 
trust of a node will be predefned for us from the data 
existing in data logs. We will also have an opportunity 
to derive features from combinations of features. 
In addition, active learning techniques allow us to 
probe or query for pieces of information that would 
help to characterize the trust level of a node. These 
probes will be guided by a value-of-information (VOI) 
calculation produced by a Bayesian network used to 
model the causal relationships among trust-related 
variables in the network of nodes. A representation 
that characterizes different aspects of behaviors and 
behavior patterns for each node or node type will need 
to be developed so that behavioral features can be 
extracted and used as attributes in data analysis. 

Nodes will inherit trust features based on their node 
type or characteristics enabling a calculation of trust 
for new nodes as they become part of the network. A 
confdence level will be associated with the trust value 
assigned to a node and a level of risk will be assigned 
to any decision involving a node. The level of risk is 
based on the consequences or cost of misjudging the 
trust level of a node. Trust is dynamic and dependent 
on the decision which will be based upon that trust. 

We propose to use multiple hybrid ML techniques in 
an ensemble learning approach based on an approach 
used by the DARPA Integrated Learning Project (GTRI 
provided a case-based learning module) which used 
a metareasoner to select from or combine solutions 
provided by multiple learning modules. The approach 
for learning and reasoning about trust in a large 
network of nodes uses an iterative multi-step hybrid 
reasoning algorithm consisting of causal models of 
observable domain variables and their relationships to 
domain activities and outcomes, network structures, 
performance patterns and other domain concepts 
represented as Bayes nets being fed by information 
retrieved from network probes. The models capture 
causality among variables that enable precursors to 
trust outcomes. The information feeding the models 
comes from the massive data retrieved and analyzed 
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by the domain clustering and classifcation using 
multiple machine learning techniques that perform 
continually on streaming inputs and will be analyzed 
and exploited. These machine learning methods utilize 
dimension reduction, classifcation, and clustering 
as underlying methods for data analytics of high-
dimensional data and will include both knowledge-
based (case-based learning and reasoning) and 
statistical approaches. There are many machine 
learning approaches that both separately and in 
combination might provide insight (both quantitative 
and qualitative) into the trust indicators of individual 
nodes and of collections of nodes of a particular type or 
which share a common set of characteristics. 

A similarity metric must be defned to represent 
the distance between any two instances in the trust 
feature space. The development of a similarity metric 
will include an analysis of the distance between sets 
of given values features with non-numeric values. 
There are a number of similarity approaches. The 
most common are based on variations of Euclidean 
distance (the square root of the sum of the squares of 
the differences in feature values). A similarity metric 
allows for the features to be weighted to represent 
their importance to the particular characteristic that 
we are interested in. These feature weightings can be 
learned (by regression analysis for example, or learned 
incrementally using the least mean squares algorithm) 
or weights can be given by a subject matter expert. 
A confdence calculation will be associated with 
each trust calculation to enable the decision-making 
algorithms to assess risk associated with trusting a 
particular node. The framework described here would 
support an evaluation of trust levels of nodes in a 
large network for the purpose of supporting intelligent 
resilient decision-making. 

7.2.7 Extensions to Trust 

Given the need to examine scientifc output using 
machine learning methods, the natural extension would 
be to help the domain scientist understand more than 
just the trustworthiness of the results. 

Application of Modern Machine Learning 
Methods for Self-Aware and Resilient 
Leadership High-Performance Computing 

Over the last few years, resilience has become a major 
issue for HPC systems—especially in the context of 
DOE’s vision for exascale computing [22, 36, 42]. State-
of-the-practice methods such as checkpoint-restarting 

[43], event correlation [43], replication [40, 47] and 
failure prediction [57] become operationally infeasible 
or do not scale for millions of cores, accommodate 
heterogeneity in architectures (CPU, GPU, etc.) or 
account for different modes (hardware, software, 
application, etc.) and different hierarchies (input-
output, memory, disk, network, etc.) of possible failures. 
The outstanding challenge is that of fnding new 
proactive methodologies that will reduce the instability 
of exascale systems while allowing application runs of 
scientifc user interest without interruption. 

We posit that recent advances in scalable machine 
learning, when combined with the understanding and 
subject matter expertise from HPC operations and 
HPC event-log datasets, can enable the development of 
proactive failure management methods. Until recently, 
the application of machine learning algorithms on HPC 
event logs faced three major challenges in the iterative 
process of pattern discovery and pattern recognition 
to predict occurrence, coverage, and extent of failures 
at the leadership computing facilities. The three 
challenges were: 

1 The data science—do we need another supercomputer 
to analyze the terabytes of event-log data generated 
by leadership computing infrastructure? Are data 
analysis algorithms going to be fast enough to 
crunch terabytes for HPC operations personnel to 
be proactive?; 

2 The science of data—the understanding of the event 
logs (what is collected and how useful is it for 
predicting failures), understanding applications 
with respect to hardware interactions, the inter-
application dependencies, etc.; and 

3 The scalable predictive functions—the ability to construct, 
learn, infer from increasing data size, more data 
sources (logs, sensors, users, etc.), fewer examples of 
failures, and inter-dependent relationships hidden as 
hierarchies and cascades of events. 

Today, based on experiments and benchmarks, we 
have learned that machine learning algorithms can be 
deployed at scale on terabytes of streaming data for 
real-time predictive analytics. One such benchmark 
study to understand algorithms and their dependencies 
to different scalable compute architectures (shared 
memory, shared storage, and shared nothing, etc.) was 
conducted at ORNL. The study showed that it is indeed 
possible to analyze event-log data (sizes as big as two 
years of archived data) fast enough to be proactive both 
with pattern discovery and recognition. 
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With the goal of addressing the science-of-data 
challenge and the design of predictive functions at 
scale, ORNL has invested in a scalable predictive 
analytics toolbox consisting of the following: 

1 Deep learning algorithms [76] that automate the 
feature engineering process by learning to create and 
sift through data-driven feature representations; 

2 Learning algorithms in associative-memory 
architectures [121] that can seamlessly adapt and 
include future data samples and data sources; 

3 Faceted learning that can learn hierarchical 
structural relationships in the data; and 

4 Multi-task learning frameworks that can learn several 
inter-related predictive functions in parallel [123]. 

We will showcase the opportunity to unleash these 
scalable machine learning tools and present the vision 
as a roadmap that includes: 

1 Identifcation of data sources relevant to HPC 
resiliency; 

2 Collection, integration, and staging of a variety of 
data sources (spatial arrangement of components, 
sensor information, event logs, etc.); 

3 Automated and manual sifting of potential 
predictive indicators; and 

4 Building, deploying, and validating those predictive 
models at scale for fault diagnosis and maintenance. 

ML Techniques for Resiliency, Trust and 
Effcient Operating Systems 

Consider large workfows with interrelated tasks 
that are common to numerous scientifc computing 
applications of interest to ASCR. A key challenge 
of executing such workfows on extreme-scale 
systems with complex interconnection networks is 
mapping and scheduling the tasks to compute nodes 
in the most optimal manner possible. Attempting 
traditional optimization techniques on an extreme-
scale system with 105 to 107 compute nodes would be 
computationally infeasible. Further, mapping may need 
to be done without explicitly building task graphs, and 
within certain time bounds on computation. 

To address these challenges, novel methods need to 
be developed. Machine learning techniques based 
on dimensionality reduction and manifold learning 
are good candidates. For example, task graphs can 
potentially have complex interdependency structures. 
However, if there exists a low-dimensional manifold 
in this complex structure, then identifying such 
a structure will enable efficient mapping on the 

Figure 22: An illustration for manifold learning. Source: https://sites. 

google.com/site/nips2012topology/ 

underlying system to minimize data movement. For 
example, two tasks (nodes in the task graph) can be 
further apart in the task graph, but can be closely 
interrelated and might be closer in a low-dimensional 
manifold of the task graph (illustrated in Figure 22). 
Thus, mapping them on two compute nodes closer 
on the network would minimize data movement. 
Further, identifying low-dimensional manifolds of 
communication networks is also important. The 
problem can then be formulated as alignment of 
two networks—task graph to computer network—to 
minimize data movement, and consequently energy 
consumption, costs [77]. 

There are several approaches to manifold learning, 
however they pose additional challenges at extreme 
scale. Graph-based techniques play an important role, 
but are not necessarily amenable to implementation on 
large-scale distributed architectures. Construction of 
k-nearest-neighbor graphs involve compute intensive 
O (N2) similarity comparisons for N elements and could 
result in imbalanced graphs. Further, (semi-) supervised 
learning algorithms on these graphs that are based on 
graph techniques such as random walks or eigenpair 
computation of the graph Laplacian are not ideal 
when applied to extreme-scale systems [63]. Potential 
research directions include development of scalable 
graph-based algorithms, randomized matrix algorithms 
that allow tradeoff between accuracy and performance, 
and novel distributed algorithms for computing 
eigenpairs of the graph Laplacian. Scalable techniques 
in the computation of k-nearest-neighbor graphs using 
approximate b-matching is also a potential research 
area with large impact on the quality of solutions 
[24, 77]. 

Identifying frequent patterns in extreme-scale 
computing can appear in several forms. For example, 
frequent task patterns (or kernels) can be highly 
optimized in the form of low-level implementations 
(assembly or hardware). Further, identifcation of code 
patterns can be used in auto-tuning of large-scale 
applications, especially running on heterogeneous 
architectures envisioned for extreme-scale systems. 

https://google.com/site/nips2012topology
https://sites


46 ASCR Machine Learning for Extreme Scale Computing Workshop Report

  

 

 

 

 

 

 

 

 

 

 

Using machine learning techniques to identify frequent 
patterns in hardware or software failures will lead to 
improvements in the resilient design or confguration of 
a system. Given that domain experts can annotate part 
of the data, efficient supervised learning techniques 
would be especially informative. Existing ASCR 
HPC systems can be instrumented and studied to 
identify common failure points which can be used as 
design criteria for building trustworthy and resilient 
components in exascale systems. As stated earlier, 
several graph-based techniques can be employed, but 
they will need re-evaluation and re-implementation 
for extreme-scale architectures. In some cases, it is 
not always possible to introduce parallelism without 
a direct impact on the convergence properties of the 
algorithm. For example, it has been shown that the 
amount of parallelism is limited by the structure of the 
input expressed via its algebraic connectivity [114]. In 
this case, alternative scalable approaches need to be 
explored as well. 

The cost and benefts of 
moving the data and 
processing modules around 
for purposes of computational 
locality and system resilience 
remain largely unexplored. 

Classifcation and Optimization of Processing 
and Data Layouts for Resilience 

The next generation of HPC infrastructures will evolve 
from being scientifc data creation instruments to 
data-creating-and-analyzing instruments. This will 
lead to new system reliability profles and constraints 
that applications and operating systems will need 
to operate within. A well-known recent example 
of a changing application usage and fault profle 
infuencing the system software stack is the Google 
File System [59]—the use of extremely large-scale 
arrays of fle storage devices and the accompanying 
proportional failure increase gave rise to the inherently 
redundant fle-system design. Understanding failure 
characteristics and the predictive responses to fault 
events is a frst discovery step. Analyzing system logs 
and failure characteristics with analytic techniques 
is a natural approach [39, 56, 97, 130] with several 
analytic methods discussed in the literature [128]. Here 
we discuss and explore the learning required to enable 
applications to dynamically employ combinations 
of redundancy-based techniques and algorithmic 
techniques to achieve trustworthy computing. While 
methods such as triple modular redundancy may be 
cost- and resource-prohibitive in general, the nature of 
the new data generating and analyzing paradigm can 
allow redundancy to be increasingly a complementary 
tool in reliability. The cost and benefts of moving the 
data and processing modules around for purposes of 
computational locality and system resilience remain 
largely unexplored. 

The algorithmic approach for failure tolerance in 
combination with data and software replication can 
ensure resilience and trust in the results by using a 
priori execution plans together with dynamic run-time 
system performance predictions. These predictions 
would fuse information from machine hardware 
sensors and log records in order to predict both 
hard failures, as well as soft failures (e.g., resource 
bottlenecks) that may lead to irrecoverable failures 
or severe degrading of the system requiring different 
forms of rollbacks. The learning challenge we propose 
is to dynamically classify and compare the access and 
execution patterns with online, existing (or known) 
traces, and optimize their ft with the dynamically 
developed execution plans for the collection of active 
processes. The run-time optimization of the cost-
benefts of replication will include a combination of 
access patterns prediction and classifcation on the fy, 
and co-scheduling the data and compute layouts. 
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8 Interdependencies with 
Other Efforts 

8.1 Interdependencies with Other Efforts 
from Topic 2 

As identifed in Topic 1, machine learning can 
potentially enhance analytical methods with data-
driven methods that learn in the operating environment 
to overcome noise while avoiding unnecessary detail in 
the performance, scheduling, and I/O models. Below we 
roughly map some of the specifc exascale challenges 
that were called out to the challenges and advances in 
ML that are identifed in this document. 

Making More Effective Use of System Logs 

System data is highly specialized, semi-structured and 
often nuanced by proprietary factors outside of the 
system owner’s control. Even system experts often have 
a hard time determining why and where issues arise. 
Areas of machine learning that appear particularly 
relevant to this problem include: 

• Anomaly and change detection—Recent ML advances 
have put these traditionally hard-to-defne 
problems on frm mathematical footings and these 
advances could be used to identify low probability 
patterns in log data that may otherwise go 
unnoticed. 

• Interactive analysis tools—While automated event 
detection and diagnosis for automated tuning 
is the eventual goal, machine learning may be 
able to provide productivity gains in the shorter 
term by simply making the system engineer’s job 
easier through a combination of visualization and 
interactive anomaly and change detection tools. 

• Statistical relational learning—ML methods that 
use relational representations may be able help 
anomaly and change detection methods better 
handle the semi-structured and highly specialized 
nature of log data. 

ML for Control and Decision Problems 

Topic 1 identifed a number of scheduling and control 
problems that need to be automated, e.g., memory 
staging decisions, resource allocation and scheduling. 
Many of the challenging problems in reinforcement 
learning, decision making and control are being 
addressed by fnding mappings (or reductions) to 
simpler problems (such as classifcation) where mature 
ML theory and methods can be applied. 

9 Interdependencies with 
Other Efforts from Topic 3 

The level of trust that a scientist has in simulation 
results depends on many potential sources of errors, 
vulnerabilities, and techniques to detect, potentially 
quantify, and mitigate these errors. On one hand, there 
are many sources of errors: 

1 The mathematical model representing the physics; 

2 The discretization, stochasticity, truncation, and 
iterative process involved in numerical methods; 

3 Limited precision operators; 

4 Bugs at any level between the application and the 
hardware; 

5 Silent data corruptions from external 
uncoordinated causes; 

6 Malicious potentially coordinated attacks; and 

7 Input data. 

On the other hand, there are domains, particularly 
in applied mathematics, developing research to 
mitigate some these errors: validation and verifcation, 
uncertainty quantifcation, and data assimilation. 
However, it is clear that existing efforts do not cover 
all sources of errors and this opens up wide research 
opportunities. In particular, we believe that machine 
learning has a role to play as a complement to existing 
applied mathematics approaches. 

A machine learning resilience and trust program will 
need to work closely with efforts in exascale resilience, 
operating system resilience, deep learning, and 
scientifc data analysis. 
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10 Common Themes, 
Findings, and 
Recommendations 

10.1 Common Themes, Findings and 
Recommendations from Topic 2 

• Topic 1 (Smart OS/R) and Topic 3 (Resilience 
and Trust) are important capabilities that will 
be critical to the execution of O(Billion)-way 
concurrent tasks on the exascale platform. 
Human control and intervention at that scale are 
impossible; we will need smart machine learning 
methods to enable a highly productive exascale 
environment. 

• Scientifc discovery in the DOE complex will 
be advanced by exascale simulations, as well as 
a range of scientifc instruments. The scientist 
is increasingly becoming the bottleneck in the 
scientifc discovery process. We believe that machine 
learning will be a central technology that will 
enable the scientist to overcome the big data deluge 
and further scientifc progress. 

• DOE needs to invest in a robust machine 
learning program that will make key advances in 
developing new capabilities, creating a production 
infrastructure for big data analytics and tackling 
complex modern scientifc datasets. This program 
will enable dynamic, intelligent runtime systems to 
further productivity on exascale systems. 

10.2 Common Themes, Findings, and 
Recommendations from Topic 3 

The move to exascale computing will dramatically 
increase the number of components in the HPC system. 
The increase in computational power will enable 
new scientifc discovery, but will also lead to shorter 
application mean time between failures as the number 
of hardware components increase. There will also be 
an unprecedented volume of system data available 
from these computers. In the past this data has been 
manually analyzed to improve the overall operation of 
the computer, which given the volume and complexity 
of exascale data, will no longer be feasible. 

This data includes information about the facility 
where the computer is located, the various hardware 
components, the software systems, and the scientifc 
applications. Data about the application development, 
the application users, and the data sources, to name 

a few, can contain highly relevant information to the 
operations of an exascale computer. The challenge 
comes in deriving valuable information from this 
massive collection of disparate data. Experts clearly 
understand the frst-order performance effect on these 
computers, but this understanding does not account for 
all or even most of the faults observed. This data will 
be at a volume and complexity that makes it impossible 
to manually analyze—there needs to be a new way to 
analyze this data. 

We believe that machine learning methods can help 
uncover second- and third-order effects, as well as 
previously unknown effects within this data. Not 
only does this provide a much greater insight into the 
operations of an exascale computer, but it also provides 
a fast and automated way to assess the reliability of 
the system and the trustworthiness of the scientifc 
application results. 

We believe these discoveries can lead to: 

• Scientifc applications that very rarely fail or 
perform poorly due to HPC system failures; and 

• Scientifc applications on HPC systems will 
have a quantifable trustworthiness which will 
dramatically improve the scientifc integrity of 
exascale computing. 

There is clear evidence that such an approach will 
be successful. Machine learning techniques including 
clustering, feature extraction, and correlation analysis 
were applied successfully for failure prediction 
from system logs is some specifc cases, like for the 
BlueGene/L systems and several of the LANL systems. 
However, failure prediction on recent systems like 
Blue Waters is more challenging due to the dramatic 
increases in both the system log size and system 
event categories. Blue Waters has about two orders of 
magnitude more event categories than systems where 
failure prediction was obtaining good results. These 
experiences suggest that more research is needed 
to apply machine learning techniques for failure 
prediction in current petascale systems and for even 
more complex future exascale systems. 

These results point to the need for new and stronger 
methods for analyzing large, diverse, and complex 
data. Among the challenges are how to fuse, represent, 
and analyze environmental, hardware, software, and 
application data arriving at very high volumes, in 
different time scales, and often text-based.Various 
machine learning methods can be used to characterizing 
faults within this data, but new methods are needed to 
deal with the limited amount of labeled fault data. 
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Another valuable aspect of machine learning is the 
ability to work in situ on data streams so that data does 
not need to be stored and analyzed offline. This requires 
new methods to perform near-real time classifcation 
of potential faults, their locations, and systems affected 
with minimal impact to the application. 

The ultimate goal is to be able to accurately predict 
and anticipate faults based on machine learning 
methods. This requires assessing faults based on time 
and location, and determining precursors for the faults. 
This will require a new understanding and machine 
learning experimentation on fnding fault precursors, 
adaptive sampling, and innovative compression 
algorithms. 

Exascale computing has the promise of spurring new 
scientifc discovery, but runs the risk of jeopardizing 
scientifc integrity if the mean time between failures 
is not maximized. Machine learning provides a way of 
understanding the system data in new deeper ways, 
and can provide dramatic improvements in resilience 
and the trust scientists put into application results. 
Therefore, we recommend that ASCR establish a 
machine learning program to ensure the resiliency of 
exascale systems and trust in the generated output, 
which ultimately determines the scientifc integrity of 
such systems. 
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