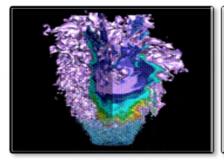


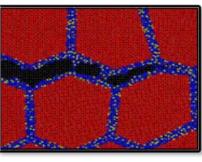
FY 2012 Budget Request to Congress for DOE's Office of Science Advanced Scientific Computing Research

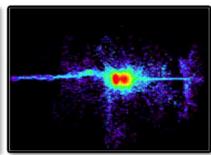
March 30, 2011

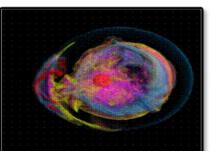
Dr. Daniel Hitchcock Acting Associate Director of the Office of Science for Advanced Scientific Computing Research U.S. Department of Energy science.energy.gov/ascr

Advanced Scientific Computing Research


Delivering world leading computational and networking capabilities to extend the frontiers of science and technology


The Scientific Challenges:


- Deliver next-generation scientific applications using today's petascale computers.
- Discover, develop and deploy tomorrow's exascale computing and networking capabilities.
- Develop, in partnership with U.S. industry, next generation computing hardware and tools for science.
- Discover new applied mathematics and computer science for the ultra-low power, multicore-computing future.
- Provide technological innovations for U.S. leadership in Information Technology to advance competitiveness.

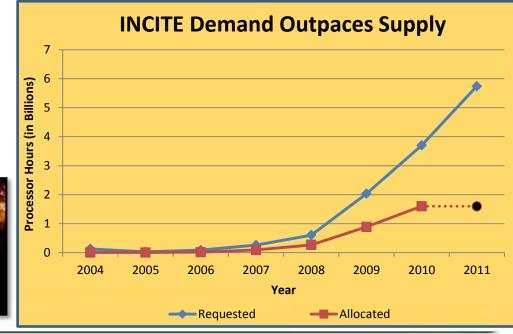

FY 2012 Highlights:

- Research in uncertainty quantification for drawing predictive results from simulation
- Co-design centers to deliver next generation scientific applications by coupling application development with formulation of computer hardware architectures and system software.
- Investments in U.S. industry to address critical challenges in hardware and technologies on the path to exascale
- Installation of a 10 petaflop low-power IBM Blue Gene/Q at the Argonne Leadership Computing Facility and a hybrid, multi-core prototype computer at the Oak Ridge Leadership Computing Facility.

ASCR Budget Overview

		FY 2010 Budget	FY 2011 Request	FY 2012 Request	FY 2012 vs. FY 2010	
	Advanced Scientific Computing Research					- Supports Uncertainty Quantification (\$5M)
Exascale	Applied Mathematics	43,698	45,450	48,973	+ 5,275	– Increases Exascale
Exascale	Computer Science	45,936	47,400	47,400	+1,464	relevant research
Exascale	Computational Partnerships (includes SciDAC)	49,538	53,297	60,036	+10,498	 Supports Co-Design partnerships (\$25M)
	Next Generation Networking for Science	14,373	14,321	12,751	-1,622	- Transfers Grids to
	SBIR/STTR	0	4,623	4,873	+4,873	production (funding
	Total, Mathematical, Computational, and Computer Sciences Research	153,545	165,091	174,033	+20,488	from other programs)
	High Performance Production Computing (NERSC)	54,900	56,000	57,800		- Supports Hopper Ops
Exascale	Leadership Computing Facilities	128,788	158,000	156,000	+27,212	 Supports installation of BG/Q & prototype
	Research and Evaluation Prototypes	15,984	10,052	35,803		-Supports new vendor
	High Performance Network Facilities and Testbeds (ESnet)	29,982	30,000	34,500	+ 4,518	partnerships aimed at advancing critical technologies (e.g.
	SBIR/STTR	0	6,857	7,464	+7,464	power management,
	Total, High Performance Computing and Network Facilities	229,654	260,909	291,567	+61,913	 memory, fault tolerance) (\$35M)
-	Total, Advanced Scientific Computing Research	383,199 ª	426,000	465,600	+82,401	 Supports planning for procurement of
^{a/} Total is red	^{a/} Total is reduced by \$10,801, \$9,643 of which was transferred to the Small Business Innovation Research (SBIR) program, and \$1,158 of which					

was transferred to the Small Business Technology Transfer (STTR) program.


Science and Engineering at the Petascale

In FY 2012, the Argonne LCF will be upgraded with a 10 petaflop IBM Blue Gene/Q. The Oak Ridge LCF will continue site preparations for a system expected in FY 2013 that will be 5-10 times more capable than the Cray XT-5.

- Nuclear Reactor Simulation
 Energy Storage Materials
 - U.S. DEPARTMENT OF Office of Science

- The Cray XT5 ("Jaguar") at ORNL and the IBM Blue Gene/P ("Intrepid") at ANL will provide ~2.3 billion processor hours in FY12 to address science and engineering problems that defy traditional methods of theory and experiment and that require the most advanced computational power.
- Peer reviewed projects are chosen to advance science, speed innovation, and strengthen industrial competitiveness.
- Demand for these machines has grown each year, requiring upgrades of both.

ASCR FY 2012 Budget Briefing 4

Delivering Capabilities that Keep the U.S. IT Sector Competitive "ASCR inside"

A few ASCR Technologies and the Companies that Use them

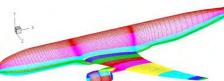
• MPICH – Message passing library

"MPICH's impact comes from the fact that since it is open source, portable, efficient, and solid, most computer vendors have chosen it as the foundation of the MPI implementation that they supply to their customers as part of their system software." - Rusty Lusk, MPICH consortia ""MPICH is critical to the development of the F135 engine, which will power America's next-generation Joint Strike Fighter," - Robert Barnhardt, VP, Pratt & Whitney

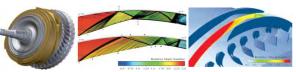
• **Fastbit** – Search algorithm for large-scale datasets "FastBit is at least 10 times, in many situations 100 times, faster than current commercial database technologies" – Senior Software Engineer, Yahoo!

• OSCARS - On-demand virtual network circuits "It used to take three months, 13 network engineers, 250 plus e-mails and 20 international conference calls to set up an inter-continental virtual circuit. With OSCARS and collaborative projects, we can establish this link in 10 minutes." - Chin Guok, ESnet network engineer

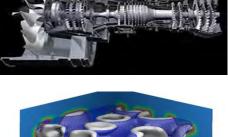
perfSONAR - network performance monitoring "These tools give us better visibility into the network, allowing us to troubleshoot performance issues quickly." -- Internet2 Network Performance Workshop participant

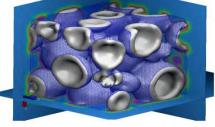


Delivering INCITE – Computing Facilities Contribute to U.S. Competitiveness

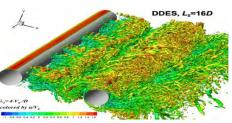


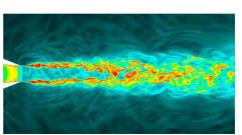
United Technologies


- Smart Truck Brands went from concept to design to manufacturer in 18 months.
- Demonstrated fuel mileage improvements of 7% to 12% available 2011. Exceeds California CARB requirements.
- Boeing demonstrated the effectiveness and accuracy of high fidelity computational fluid dynamics simulation tools and then used them in designing their next generation of aircraft.
- Significantly reduced the need for costly physical prototyping and wind tunnel testing. Accelerated airplane design and lowered cost.
- GE determined the effects of unsteady flow interactions between blade rows on the efficiency of highly loaded turbines.
- Provided design engineers with the analytical tools to extract greater design efficiency and fuel savings.
- Ramgen used computational fluid dynamics with shock compression to expedite design-cycle analysis, and to make large stage configuration analyses possible.
- Advanced the development curve of the CO₂ compressor with next generation rotor now scheduled for testing in February 2012.
- Accelerate materials research by at least a year to help GM meet fuel economy and emissions standards.
- A prototype thermoelectric generator in a Chevy Suburban generated up to 5% improvement in fuel economy.
- UT studies of nickel and platinum are demonstrating that the less expensive nickel can be used as a catalyst to produce hydrogen.



Delivering INCITE – Computing Facilities Contribute to U.S. Competitiveness





- Pratt and Whitney using "virtual testing" to accelerate improvements in jet engine design, dramatically decreasing problem-solution turnaround times in development of PurePower[™] engine.
- The new-generation engine improves fuel burn by 12-15%, with a potential savings to airlines of nearly \$1M per aircraft per year. It also cuts carbon emissions by 3,000 tons per aircraft per year while reducing other emissions 50%.
- P&G was able to study the complex interactions of billions of atoms and create simulations to determine how tiny submicroscopic structures impact the characteristics of the ingredients in soaps, detergents, lotions and shampoos.
- Understanding these processes accelerates the development of many consumer goods, foods, and fire control materials.
- Boeing simulated the turbulence created by aircraft landing gear and calculated the noise caused by two cylinders placed in tandem in an air stream. This uses state of the art turbulence-resolving CFD for massively separated flows.
- Boeing expects these capabilities to contribute to the design of safe and quiet technologies.
- GE Global Research simulated the complex turbulent flows that generate aerodynamic noise during takeoff to validate the accuracy of a large eddy simulation solver.
- The simulations are considered by GE to be critical for developing next-generation, "green" (low-emission) aircraft.

Broadening Our Impact – Working with the Council on Competitiveness

Council on Competitiveness

Case Study. Procter & Gamble's

Story of Suds, Soaps, Simulations and Supercomputers

High Performance Computing

Case Study.

Lighting Up DreamWorks with High Performance Computing

Case Study.

2.

Advance.

Benchmarking Industrial

Use of High Performance

Computing for Innovation

Boeing Catches a Lift with High Performance Computing ASCR Outreach Workshop with Independent Software Vendors* Scheduled for March 31, 2011 in Chicago, IL outreach.scidac.gov/industry_software/ *The majority of U.S. ISVs are small businesses

ublic-Private Partnerships for Leveraging .S. HPC Expertise	5	
ay 13, 2010	Compete	
	Council on Competitivenes	
ontents • Executive Summary		
Pilots		
1. General Electric and Metacomp Technologies		

2. Westinghouse Electric Company and CD-adapco

3. United Technologies Corporation

P

U.S. Manufacturing-Global Leadership Through Modeling and Simulation

4 March 2009

This is today's heading: The Collapse of Manufacturing, and many U.S. manufacturers and then supplydenses are in crisis. In this time of crisis, the U.S. has the technological loois to maintain our competitive odge and global loadenthip in manufacturing, but we risk our manufacturing loadenthip postform if we fail to againer changing looi I hindin performance computing HPCI for modeline, simulation, and analysis

The same responsibilit for producing a majority of the HRC systems capacity and the mast recent 00 Supercomputer Sites. The use of HRC has provided a competitive idvantage for many of turing Fortune SO. These companies employ in-house advanced computing and have access to functe computing fuertware, software, and technical resources through partnerships will nation and universities. For US leading manufacturers, to out-compete to out-compute in the US. concent Analysis indicates that manufacturing tools subject has increased through 2007. We the looks and new technologies that have been the keys to our success?

emative tochnology is used by international competitors of U.S. manufacturers, often through the partmentrips some of which are cross-boorder. For example, HLRS, the German national high recomputing lacelity in Statigat. In a assistant the rolen's coal-fined power plant industry in using nd simulation to optimize plant design and operation. These simulations have lead to reduced higher efficiency greater boiler availability, and increased safety. Wear-like ananite, the partment-BW and signals Earth Simulation supercomputer is benchmarking optimal automotive design, performance!

a and economic security critically depend on our having immosfive and agile manufacturing and the current economic conditions have only heightmend the needs to accelorate competitive for U.S. manufacturing companies.³ Manufacturers can maintain their global leadership position, the chronogical of thermittation, not through labor cost savings or other "del-work?" indemtages, acturing or tall to the deployment of meeded inflatituation, new energy sources, and transportation and tamoration and the sources and tamoration and tamoration the sources and tamoportation and tamoration and the sources and tamoportation and the sources and tamoportation and tamoportation and the sources and tamoportation a

(1) The second secon

(1) O = 100 here the set of the Association of the Second Seco

(11) A. and A.C. M. Markinski, C. Karris, K. Karris,

8

Investments for Exascale Computing

Opportunities to Accelerate the Frontiers of Science through HPC

Why Exascale?

Science:

Computation and simulation advance knowledge in science, energy, and national security; numerous S&T communities and Federal Advisory groups have demonstrated the need for computing power 1,000 times greater than we have today.

U.S. Leadership:

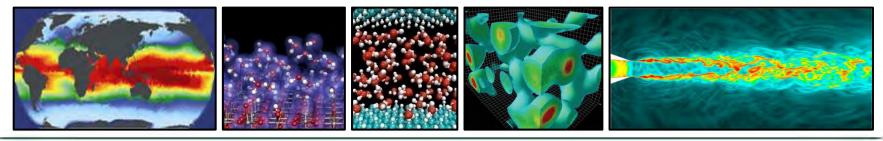
The U.S. has been a leader in high performance computing for decades. U.S. researchers benefit from open access to advanced computing facilities, software, and programming tools.

Broad Impact:

Achieving the power efficiency, reliability, and programmability goals for exascale will have dramatic impacts on computing at all scales—from PCs to midrange computing and beyond.

DOE Activities will:

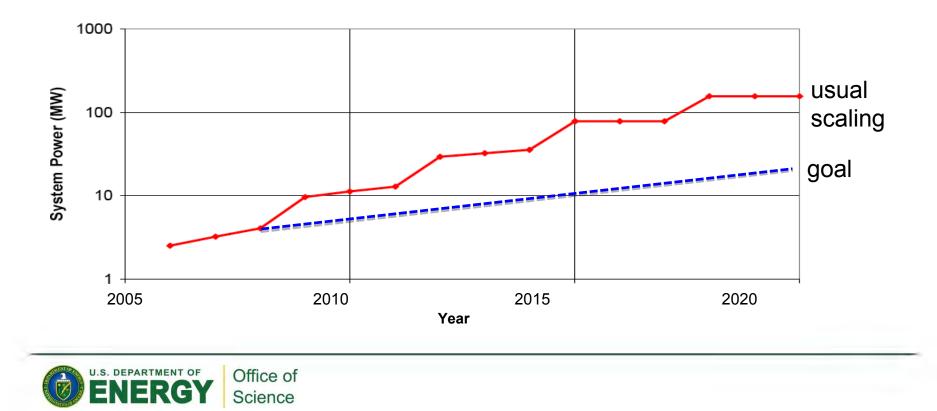
Build on Success


DOE delivered Petascale science and engineering– Firmly re-establishing U.S. leadership in Computational Science.

Use What Works – Co-design

The embedded computing industry realized that it was not a significantly large market force to ensure that "off the shelf" offerings met their specific needs. They adopted a co-design partnership with vendors to great success. DOE will copy this successful approach since scientific computing is also a small part of the overall computing market.

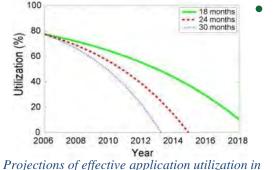
• Focus on What Matters Most


- Partner with Vendors on Grand Challenges
 – this will also enable
 U.S. manufacturers to leapfrog foreign competition.
- Use "mission-critical" Department of Energy Applications as part of the Co-design process – also ensures a broad spectrum of applications will be ready for Exascale.

Exascale is about Energy Efficient Computing

- At \$1M per MW, energy costs are substantial
- 1 petaflop in 2010 will use 3 MW
- 1 exaflop in 2018 at 200 MW with "usual" scaling
- 1 exaflop in 2018 at 20 MW is target

Three Grand Challenges that Must be Solved to Delivering Exascale Computing

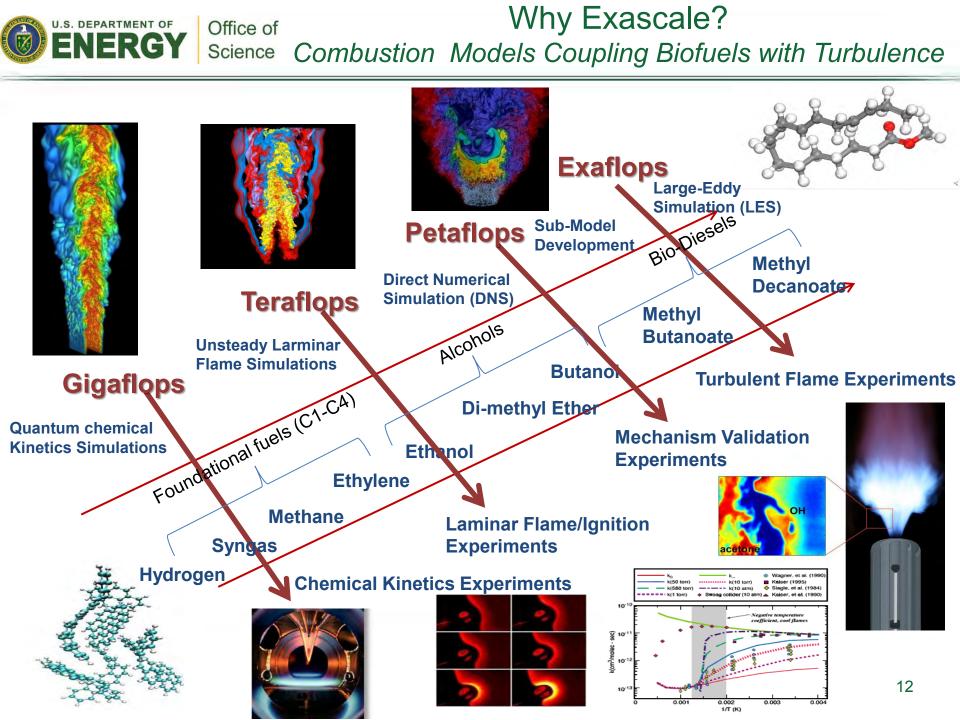

Energy Utilization

- An Exascale machine built from today's technology would take more than a gigawatt of electricity or the output of a small modular nuclear reactor.
- Memory and data movement are the key energy hogs.

• Parallelism in the Extreme (Concurrency)

 Billions of regular processors and specialized processors need to work together and share data seamlessly without moving the data very often.

future HPC systems under checkpoint restart model

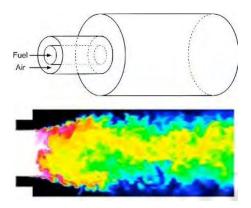

Fault Tolerance

 An Exascale machine built from today's technology would operate for only a few minutes at a time due to chip failures.

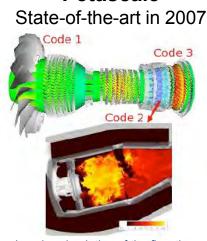
For such a computer to be useful, the mean failure rate must be measured in days or weeks.

Solving these Grand Challenges would reap rewards across the U.S. IT sector and across science and engineering – from petaflop desktops to exaflops

Why Exascale

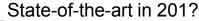


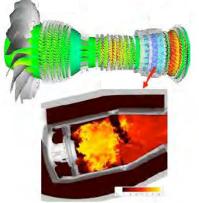
Terascale State-of-the-art in 1997


Office of

U.S. DEPARTMENT OF

ENERGY


Shown are a schematic (top) of a coaxial combustor with air-methane co-flow and an instantaneous snapshot of the mixture fraction (bottom) from the first LES of turbulent combustion in a research combustor performed at Stanford University. The simulations used a flamelet and progress-variable approach with over two million degrees of freedom computed on the ASCI Red platform at Sandia National Laboratories. Note that the highest-fidelity simulations of reactive flow in 1997 were restricted to simple geometries and gas-phase only physics.



Petascale

Comprehensive simulation of the flow through an entire jet engine performed by Stanford University, under the NNSA ASCI Program, and Pratt & Whitney. The compressor (Code 1) and the turbine (Code 3) were computed using RANS while the combustor (Code 2) used LES. Data is transferred across these interfaces using a coupled, multi-code, multi-physics integration environment. Contours of entropy in the compressor and turbine sections are shown while the flame in the combustor is visualized via contours of temperature in a mid-plane section from a realistic PW6000 engine.

Exascale

One multiscale, first principles, code to optimize designs with alternative fuel chemistry in advanced engine designs

The current industry standard simulation tools have plateaued in their ability to resolve the critical technical challenges that arise as the operability and performance thresholds of aerospace vehicle and jet engines are driven to their limits. A new suite of first-principles, simulation-based engineering design tools must become a standard component in the engineering design cycle. This increased level of simulation fidelity has the potential to expand the current design envelope, eschew industrial stagnation and augment human creativity with first-principles, simulation-based engineering science tools.

"The key finding of the Panel is that there are compelling needs for exascale computing capability to support the DOE's missions in energy, national security, fundamental sciences, and the environment. The DOE has the necessary assets to initiate a program that would accelerate the development of such capability to meet its own needs and by so doing benefit other national interests." - Trivelpiece Panel Report, January, 2010

"Exascale computing will uniquely provide knowledge leading to transformative advances for our economy, security and society in general. A failure to proceed with appropriate speed risks losing competitiveness in information technology, in our industrial base writ large, and in leading-edge science." - Advanced Scientific Computing Advisory Committee

Exascale Progress

• Proposals processed in Exascale related topic areas:

- Applied Math: Uncertainty Quantification
- Computer Science: Advanced Architectures
- Computer Science: X-Stack
- Computer Science: Data Management and Analysis at Extreme Scales
- Computational Partnerships: Co-Design
- Exascale Coordination with DOD and DARPA
- Close Collaboration with NNSA
 - Weekly leadership calls
 - Program mangers exchanges
 - Coordinated PI meetings
 - Management plan and MOU



Summary

- The FY 2012 budget supports activities needed for delivering petascale science today and meeting the challenges of hybrid, multi-core computing for predictive exascale science and engineering in the next decade.
 - Critical to continued leadership in computational science
 - Critical for continued U.S. leadership in Information Technology
 - Success will have wide reaching impacts across the U.S. IT sector,
 High-tech Industry and science and engineering
- Office of Science computing and networking needs will be met.
- Begins expanding benefits of high performance computational science and engineering to the DOE applied programs.

ASCR at a Glance

Relevant Websites

ASCR: <u>science.energy.gov/ascr/</u>

ASCR Workshops and Conferences:

science.energy.gov/ascr/news-and-resources/workshops-and-conferences/

SciDAC: www.scidac.gov

INCITE: science.energy.gov/ascr/facilities/incite/

Exascale Software: <u>www.exascale.org</u>

DOE Grants and Contracts info: science.doe.gov/grants/

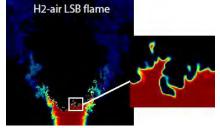
Backup

ENERGY Office of Science Applications and Technology Challenges

http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/

- Town Hall Meetings April-June 2007
- Scientific Grand Challenges Workshops November 2008 October 2009
 - Climate Science (11/08),
 - High Energy Physics (12/08),
 - Nuclear Physics (1/09),
 - Fusion Energy (3/09),
 - Nuclear Energy (5/09) (with NE)
 - Biology (8/09),
 - Material Science and Chemistry (8/09),
 - National Security (10/09) (with NNSA)


• Cross-cutting workshops


- Architecture and Technology (12/09)
- Architecture, Applied Mathematics and Computer Science (2/10)
- Meetings with industry (8/09, 11/09)
- External Panels
 - Trivelpiece Panel (1/10)
 - ASCAC Exascale Charge (FACA) (11/10)

Scientific Grand Cha

Meeting Report

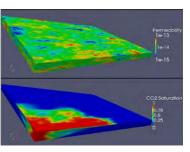
MISSION IMPERATIVES

"The key finding of the Panel is that there are compelling needs for exascale computing capability to support the DOE's missions in energy, national security, fundamental sciences, and the environment. The DOE has the necessary assets to initiate a program that would accelerate the development of such capability to meet its own needs and by so doing benefit other national interests." - Trivelpiece Panel Report, January, 2010

"Exascale computing will uniquely provide knowledge leading to transformative advances for our economy, security and society in general. A failure to proceed with appropriate speed risks losing competitiveness in information technology, in our industrial base writ large, and in leading-edge science." - Advanced Scientific Computing Advisory Committee 18

ASCR Computational Research Delivers Public Benefits – Saving Energy

Stress Corrosion Cracking - Priya Vashishta, USC

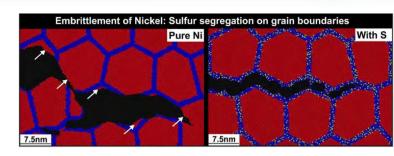

- Annually, corrosion costs about \$276 Billion (3% of GDP).
- Performance and lifetime of materials in nuclear and advanced power generation are severely limited by corrosion from extreme conditions.
- Simulations link sulfur impurities and embrittlement of Nickel.

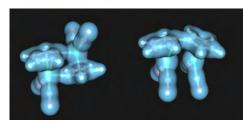
Turbulence - Robert Moser, UT-Austin

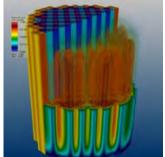
- 20% of world energy consumption (100 quadrillion BTU) due to turbulence.
- Virtual redesign reduces costly drag on piping, ducts, and vehicles.
- Simulations show where viscous near-wall turbulence interacts with outer-layer resulting in energy losses in transport of fuels in pipes and flow past vehicles.

Storing Solar Energy - Jeffrey Grossman, MIT

- Capturing solar energy in chemical form can make it storable and transportable.
- Simulations reveal how *fulvalene diruthenium* molecules change configuration when they absorb heat from sunlight informing the search for similar, less expensive compounds




Subsurface – Mary Wheeler, University of Texas at Austin


- High fidelity models of complex geosystems are key tools for groundwater remediation, sequestration of carbon in saline aquifers and enhanced petroleum production.
 - Simulations have been used to characterize the US Eagle Ford shale formations in collaboration with industrial partners Chevron, IBM, and ConocoPhillips.

NE Modeling and Simulation Hub (CASL) - Doug Kothe, Oak Ridge Nat. Lab.

- 20% of U.S. electricity comes from Nuclear.
- NE Modeling and Simulation Hub builds on numerous ASCR developed capabilities and tools.

