
Diffusion on complex networks: 
algorithmic foundations 

Anil Kumar S. Vullikanti 

Dept. of Computer Science and  

Virginia Bioinformatics Institute 

Virginia Tech 

Network Dynamics and Simulation Science Laboratory  



Acknowledgements 

 

Joint work with: 

 NDSSL members including: Madhav Marathe Henning Mortveit, 
Maleq Khan, Zhao Zhao, Chris Kuhlman, Samarth Swarup 

 S. S. Ravi, SUNY Albany 

 Dan Rosenkrantz, SUNY Albany 

 Aravind Srinivasan, University of Maryland 

 Rajmohan Rajaraman, Northeastern University 

 Ravi Sundaram, Northeastern University 

 



Diffusion models and applications 

Stochastic 
Diffusion, 
percolation 

Threshold 
models 

Constrained 
Network flows 

Chip firing, 
sandpiles 

Malware 

Independent  
failures 

Epidemics 

Packet flows 

Adoption of 
technology 

Cascading  
failures 

Fads and 
Social conventions 

Power grid 

Commodities/ 
information 

 Graph connecting different entities 
 Nodes change state based on their neighbors’ states 

Wide variety of models for different applications 



Broad goals 

Motivation: wide variety of diffusion processes 
are used in different applications 

 Can be formulated by similar fundamental questions 
in terms of graph dynamical systems 

Goals: 

 Modeling and analysis of complex networks 

 Characterize dynamical properties, especially in terms 
of the underlying graph structure 

 Techniques to optimize and control dynamics 



Challenges 

 Underlying complex networks 
 Analytical approaches based on renormalization and 

differential equation methods not easily applicable 

 Network structure not well understood - need for better 
models 

 Characterization of dynamical properties 
 Need to identify new properties 

 Need for new scalable computational approaches  
 Poor locality  

 High expansion and large separators 

 Dynamics on and of networks 

 Co-evolution between networks and diffusion process 

 Behavioral changes 

 



Models of Complex Networks 

Erdos-Renyi, 
Chung-Lu 
models 

 Very simple 
models 
 Main goal: capture 
degree distribution 
 well understood 
analytically 

Small world, PA, 
copying models 

 Based on 
hypotheses of 
social evolution 
(“rich get richer”, 
etc.) 

HOT model 

First principles 
approaches: synthetic 
networks 

 Combination of 
optimization 
objectives with 
random evolution 

 Most realistic 
 Useful for network/policy 
planners 
 Need lot of data, models 
and HPC tools 

Increasing complexity and realism 

 [Borner, et al., 2007] 
[Li, et al., 2005] 



Beyond degree distributions 

Edge swap  
operation 

 Edge swap operations 
 Preserves degree distribution 
 Polynomial time mixing [Feder et al., 2005] 

 Disease dynamics not completely 
determined by degree distribution 
 Need random graph models to preserve 
non-local properties 

Changes in static network 
properties with edge swaps 

Changes in disease dynamics 
with  edge swaps 

Day 



Outline for the rest of the talk 

Part I: Modeling and analysis of complex 
networks 

 Map-reduce based algorithms for relational subgraph 
analysis 

Part II: Dynamical properties: mathematical and 
computational aspects 

 Characterize different local diffusion models and 
techniques for controlling dynamical properties 

Part III: Simulation tools for diffusion models 

 Malware spread in large proximity networks 



PART I: MODELING AND ANALYSIS 
OF VERY LARGE GRAPH PROPERTIES 



Summary of contributions 

 “First principles” approach for synthetic social 
and infrastructure networks 
 Integrates a large number of diverse public and 

commercial data sets 

 Stochastic models that capture properties of real 
networks 

Computing properties of very large networks 
 Efficient sampling based approaches for computing 

structural properties 

 Mapreduce/Hadoop based for relational subgraph 
analysis 

 New parallel algorithms for dynamical properties 



General goal 

Embedding of H in G 

G=(V,E): very large graph  

H=(V’,E’): small 
template/subgraph 

Goal: find one or more embeddings 
of labeled subgraph H in G 

Non-induced embedding: 



Motivation and applications: data 
mining, social networks, Semantic web 

 Detecting fraud in financial 
transactions  [Bloedorn et al.] 

 Other applications: connection 
subgraphs [Faloutsos, et al.] 

[Brochelor et al]: query of the form  
 ?v1, ?v2, ?v3, p such that ?v1 is a faculty member 
at UMD, ?v2 is an Italian university, who is a friend 
of ?v1 and ?v3 has commented on paper p by ?v1 



Motivation and applications: systems, 
networking and software engineering 

 Automatic custom instruction set 
generation by enumerating convex 
subgraphs [Bonzini et al.] 

 Mining call graphs to localize software bugs 
[Eichiner et al.] 

 Other applications: anomaly detection in 
networks through subgraph analysis [Noble 
et al.] 

 [Maxwell et al.] discovering  graph 
grammars corresponding to 
memory leaks 



Motivation and applications: 
bioinformatics 

[Alon et al.] Characterization of protein-protein interaction 
networks based on differences in counts of trees on 9 nodes  

[Alon] network motifs in transcription networks 



Variations: subgraph enumeration 
problems 

Functions on the space of embeddings 
 Existence and counting all occurrences 

 Functions of labels as part of embeddings 

 Approximate embeddings 

Relational queries 
 Involving node and edge labels 

 Specified by graph grammars 

Motifs and most frequent subgraphs 
 Contrast with random graphs with similar properties 

Graphlets 
 Generalization of degree distribution 



Summary of results 

SAHad: randomized Hadoop based algorithm for 
enumerating trees and tree-like subgraphs 
 For given ε, δ: produces (1±ε) approximation with 

probability ≥ 1-δ 

 Worst case work complexity bound of O(22km f(ε,δ)) 

 Scales to graphs with over 500 million edges and 
templates of size up to 12 

 Color-coding technique for approximate enumeration 

Heterogeneous computing environments 
 Different clusters and amazon EC2 without any system 

level optimization 



Summary of results (continued) 

Broad class of relational subgraph queries 

 Node and edge labeled subgraphs 

 Extension to tree-width bounded subgraphs (low 
treewidth = like trees) 

 Can easily compute classes of distributive functions on 
the space of embeddings 

 Can extend to weighted and approximate matches 

 Systematic approach to handle queries specified by a 
class of tree grammars (chain grammars) 

 Graphlets and motifs 



Prior approach and challenges 

 Large literature on frequent subgraph enumeration 
and variations: Apriori, FSG,… 
 Maintain candidate matches for subgraphs with k-1 edges, 

and extend to subgraph with k edges 
 Backtracking/extensive bookkeeping to ensure valid 

matches 
 Scales to ~100,000 node graphs, not clear how to 

parallelize 
 No rigorous worst case bounds 

 Database techniques: preprocessing based on fixed 
distribution of queries 

 Dynamic programming based on color-coding 
 No prior parallelization 



Attempt: divide and conquer 

H1 

H2 

Could identify embeddings of H1 and H2 
and put them together? 



But … overlaps possible 

Need to keep track of extra information to avoid 
overlaps between embeddings of sub-templates 



Color-coding idea 

[Alon, Yuster, Zwick, 95]  



Dynamic programming for paths 

1 

2 

C(1,        )=2 

3 

4 

C(3,        )=0 

C(4,        )=1 



1 

2 

C(1,        )=2 

3 

4 

C(3,        )=0 

C(4,        )=1 

C(2,         ) = C(1,      ) +  
                      C(3,      ) + C(4,     ) 

Dynamic programming for paths 



Mapreduce/Hadoop 

Map 

Map 

Reduce 

Reduce 

Data stream 

Key value pairs  
<k1, v1>  <k2, v2> <k3, v3> All pairs with key k1:  

<k1, v11, v12, … 

All pairs with key k2:  
<k2, v11, v12, … 

 Powerful framework for processing large amount of streaming data 
 Developed by Google for web applications [Dean and Ghemavat, 2005] 
 Open source implementation: Hadoop  

 Mapreduce internally sorts key-value pairs and reorganizes items with 
same key value for reducer 
 Mapper produces key-value pairs for each data item 
 Reducer processes all elements with same key 
 Can be repeated multiple times 
 System takes care of producing data streams and sorting 

HDFS 



Graph algorithms using 
Mapreduce/Hadoop 

 

Finding paths and diameter 

Pagerank and other random walk based measures 

Community detection and clustering problems 

Subgraph analysis 

 Counting #triangles: [Pagh et al., 2011], [Suri et al., 
2011] 

 Subgraph enumeration to ~100,000 node graphs: [Liu 
et al., 2009] 



Extension to trees 



SAHad: mapreduce implementation 



Performance analysis 



Experiments: setting 

Computing resources 
 Athena: 42 node cluster 

with 32 cores per node 
 Amazon EC2 

Different templates 



Performance analysis: time & space 
R

u
n

n
in

g 
ti

m
e

 f
o

r 
U

1
0

  

#computing nodes 

To
ta

l i
n

te
rm

e
d

ia
te

 f
ile

 s
iz

e
 

Size of template 

Performance with MPI based implementation Performance in Amazon EC2 



Variation with #reducers per node 

 Athena: one disk per node 
 Many reducers: contention for disk 

Total running time for different tasks Total running time vs #reducers per node 

Distribution of total 
running time of reducers 



Summary of experimental results 
Experiment Computing 

resource 
Template and 
network 

Key observations 

Approximation error Athena U7; GNP Error below 0.5% 

Impact of number of 
data nodes 

Athena U10; Miami, GNP scale from 4 hours to 
30 minutes with data 
nodes from 3 to 13 

Impact of #concurrent 
reducers 

Athena, EC2 U10; Miami Non-monotone 
variation in running 
time 

Impact of #concurrent 
mappers 

Athena, EC2 U10; Miami Time generally 
constant 

Unlabeled/labeled 
template 

Athena, EC2 Varying templates 
7-12 

< 35 minutes 

Graphlets Athena U5; Miami, 
Chicago 

< 35 minutes 



PART II: DYNAMICS & CONTROL 



Diverse diffusion processes 

Model Description Example Applications 

Percolation and 
extensions: 
SI/SIS/SIR/Independent 
cascades 

Each red node infects each blue neighbor 
independently with some probability 
 

Malware, failures, 
infections 

Complex contagion: 
threshold and variants 

Each blue node switches to red if at least  
 

Spread of innovations, 
peer pressure 

Non-monotone multi-
threshold models 

Thresholds for switching from blue to red 
and from red to blue 

More complex social 
behavior 

Voter models Each node picks the state of a random 
neighbor 

Spread of ideologies 

Constrained network 
flows 

Flows with node/link capacities and 
additional constraints on paths 

Packet flows, traffic, 
wireless networks 

Graph dynamical system: 
contact graph, node states, local 
functions, update order Example: ratcheted threshold-2 model 



Key Questions 
Understanding Dynamical 

Properties 
Computational aspects Interventions to control the 

dynamics 

 Existence and 
characteristics of fixed 
points 
 E.g.: average 

#nodes in state 1 in 
fixed point 

 Transient lengths 
 Stability 

 How do changes in 
graph, update order 
or functions alter 
dynamics? 

 Who becomes 
“infected”? 

 Impact of network 
structure 

 

 Computing different 
dynamical properties 
 Reachability: does the 

system reach specific 
configurations of 
interest? 

 Predecessor existence: 
what kind of 
configurations could 
lead to the current 
one? 

 Simulation tools that scale 
to large systems 

 

 Forcing node states: 
changing local functions 
 Freezing selected nodes in 

a specific state 
• Malware spread 

(SIS/SIR): anti-virus 
patches 

• Influence spread 
(threshold): choose 
sources to seed spread 

• Voter models: make 
some nodes stubborn 

 Changes in the graph 
 Add/delete edges to 

indirectly alter dynamics 
 

 



Summary of results 

 Analyzing dynamical properties 
 Stability in threshold systems 
 Characterization of limit cycles and fixed points in bi-threshold 

systems 
 Impact of structural properties: identifying static graph 

properties 

 Efficient algorithms for computing dynamical properties 
 Efficient algorithms and scalable simulation tools for computing 

dynamical properties 

 Control and optimization of the dynamics 
 Influence maximization in voter dynamics 
 Critical sets to control diffusion in SIR (e.g., vaccinations) and 

threshold models (countering influence) 
 Game theoretical analysis of distributed interventions 



Specific results: controlling diffusion in 
threshold systems 



Bicriteria approximation for threshold=1 

t s 
I 

b 

b 

b 

M 

M Flow based algorithm 



Bi-threshold model: limit cycles and 
fixed points 

Non-monotone dynamics: more 
realistic model of agent behavior 



Proof: fixed points for trees 

v switches from 0 to 1 if it has at 
least one 1-neighbor, and from 1 to 
0 if it has at least one 0-neighbor 



PART III: EFFICIENT SIMULATION 
TOOLS 



Summary of results: efficient 
computational tools 

 

EpiFast: Epidemics on large social-contact 
networks 

EpiCure: spread of malware in proximity networks 

 InterSim: HPC framework based on graph 
dynamical systems 



 Malware: from nuisance to a threat 

 Challenges and tools needed 
 Multiple scales: Bluetooth to Internet; self-

forming; resistant to regulation 

 Need to model mobility, multi-level network 
representation to capture interactions between 
humans and devices, and behavioral changes 

 Modeling and simulation of malware spread: 
more abstract models and efficient simulation 
tools that scale to large networks 

 

Malware on hybrid wireless networks 
43 

“Human mobility and wireless 
networks could abet the spread of 
mobile malware” – Jon Kleinberg, 

Nature 2008 

Time 

S
p

a
c
e
 

Internet 

worms 

Human 

worms 

Days Seconds 

Mobile 

worms 

Key questions 
 Detect and understand characteristics of the spread of new worms 
 Identify vulnerable devices and networks  
 Strategies to control the spread: anti-virus patches, quarantining 



Current approaches: broad spectrum 

IDLE

Inquiry Phase

Build a neighbor list

For every neighbor

Paging Phase

Connect to a neighbor node

Worm Query Phase

Worm Replication 

Phase

No

Yes

Yes

No

Query Times out

Times out / Success

NoYes

Empty
neighbor list?

Connected?
All neighbors 
Connected?

S I 

Compartmental model 
 Assume complete mixing 

population 
 Random waypoint mobility 

Detailed modeling of 
all device states 
 Does not scale 

beyond networks 
with few hundred 
devices 

Motivating question: approach that captures worm characteristics 
reasonably well, but scales to very large graphs  



Our approach: EpiCure 
 Malware modeled as a stochastic diffusion 

processes. 

 High resolution models of synthetic social 
contact networks, mobility and call behavior 

 First principles based approach, integrates 
over 14 different public and commercial data 
sets 

 Detailed model of movement and activities  
of people in urban regions 

 Can explicitly incorporate behavioral changes 
in model 

 EpiCure: HPC modeling and simulation 
environment to study mobile malware in 
large dynamic networks 

 Generic: can work with generic malware 
models and networks (user inputs) 

 Scalable: Scales to large realistic dynamic 
networks 

 Expressive: Allows one to study a large class 
of adaptive and non-adaptive responses 

 

Synthetic 
Data 

Activity 
Patterns 

TRANSIMS 

Sub-location 
Modeling 

Bluetooth 
Network 

Construction of Realistic 
Mobile network 



Approach and key techniques for scaling 

 Approach 
 Network-based representation 
 Probabilistic timed transition system (PTTS) 
motivated by human epidemics 
 Bluetooth specific states abstracted out 
 State reduction by offline traversal 
 Threading based optimization 
 Error less that 5% 
 Scales to millions of devices 

 

Highly 
detailed 
ns-2 based 
Bluetooth 
model 



Approach and key techniques for scaling 

Highly 
detailed 
ns-2 based 
Bluetooth 
model 

 Approach 
 Network-based representation 
 Probabilistic timed transition system (PTTS) 
motivated by human epidemics 
 Bluetooth specific states abstracted out 
 State reduction by offline traversal 
 Error less that 5% 
 Scales to millions of devices 

 



Sample results: simulation setup 

 
Factorial experiment design 

Network 

Area Chicago Downtown area (zip 60602) 

Demographics People in age group of 20 – 50 years 

People (devices); 
locations 

30000; 4400 

Smart device ownership 100% - every individual in the demographic has a smart phone 

Simulation 

Replicates 5 

Duration of Simulation 8 hours (8 AM to 4 PM), typical work schedule 

Initially infected 1%,5%,10% 

Wallclock Max 2 hours (lower when responses are implemented) 

Infection seed 8 AM 

Sensitivity 
analysis 

Malware parameters Idle time, pto 

Network parameters:  Market share (m), Location Density (d) 

Response 
mechanisms 

Static Degree and Betweenness centrality 

Device-based detection Passive  self detection, local and centralized signature dissemination 

Results 
Cumulative infection size 

T(q,x): time taken to infect q percent of devices when x is varied 



Sample results: mobility matters 

Activity-based mobility model 

Random Waypoint mobility model 



Results: controlling malware spread 

Setting: detection by activity monitoring 
 System call, power signature or behavior based detection 
 Require some number of occurrences before detection: “self detection 

threshold” 
 Use self detection for automatic signature generation: local and 

centralized signature dissemination 
 

 

Centralized dissemination is more effective than local 
 



 Speed and Parallelization 
– Sequential EpiCure 300X faster than NS-2 
– Speedups are obtained with <5% loss in 

accuracy 
– Parallel implementation: Hybrid MPI-threads 

improves efficiency for multi-core clusters 

 Scale and Complexity 
– Scales to  3-5 million devices 
– Heterogeneous and realistic  spatial networks 
– Time Varying Networks 
 
 

 

500 Devices 3—5 M devices 

ns-2 45-50 hrs Cannot Study 

EpiCure 

10 minutes 

(0.1% error, 

comp. NS-2) 

1.5 hrs (<5% 

error comp. 

EpiCure v1.0) 

New model reduction and algorithmic techniques needed to scale 
and parallelize: EpiCure is the first modeling environment that 
can represent and study malware over urban scale, time varying 
and heterogeneous networks 

Computational contributions 



Summary of computational 
contributions 52 

Factors 

Simulation based computational models 

Random Mobility 
[Yan et al. ACSAC ’06, 

ASIACCS ’07] 

Real Mobility Data 
[Wang, Nature ’09] 

EpiCure  Environment 

Scope 1 location Large area Large area 

Temporal Scale ms. / µs. Time unit (time to infect) Time units (TUs) 

Spatial Scale meters Cell tower region, uniform meters 

Network size 500 – 1000 devices 6 million 3-5 million 

Within-host 
Malware Model 

Detailed implementation Compartmental model (SI) 
High fidelity malware model, specific to the 

malware & Bluetooth protocol. 
Can implement other manifestations. 

Mobility model 
Random Waypoint, Random 

Walk, Random Landmark 
Cell tower position from mobile 

call data 
Activity-based mobility model, activity 

location for each individual 

Device  interaction 
network 

Based on mobility models 
Homogeneous distribution of 
devices in each tower region 

High resolution network, pair-wise 
interaction model 

Detection Can be implemented 
Not studied, difficult to 

implement 
Detection based on infection propagation 

Control mechanisms Can be implemented 
Not studied and not easy to 

implement 
Self detection, signature dissemination 

schemes & co-evolution of networks 

Network co-
evolution 

Co-evolution of networks can be modeled 
and studied 



Summary 

Graph dynamical systems 

 Rich framework to capture a wide variety of diffusion 
phenomena 

 Challenging algorithmic problems, need new 
computational tools 

Fundamentally new computational challenges 

 Very large heterogeneous graphs 

 Cannot be easily partitioned 

 Non-uniform communication patterns: difficult to 
parallelize in conventional models 

 



Thank you 


