

Data and Communications in Basic Energy Sciences

Creating a Pathway for Scientific Discovery

A Workshop Co-sponsored by Basic Energy Sciences and Advanced Scientific Computing Research

Bethesda North Marriott Hotel & Conference Center Bethesda, MD October 24-25, 2011

Walt Polansky Advanced Scientific Computing Research, Office of Science

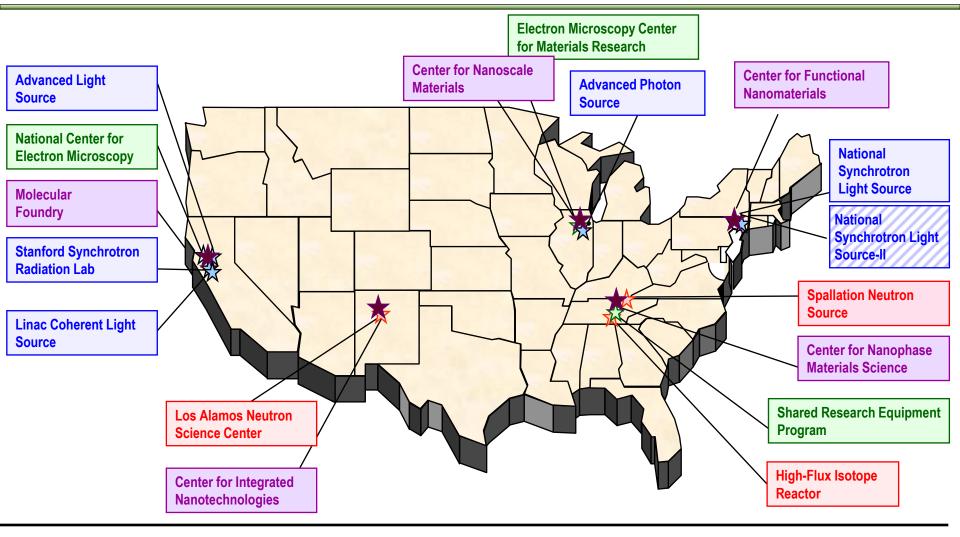
ASCR-BES Data Workshop

https://www.orau.gov/dataworkshop2011/default1.htm

Charge

- Review status, successes, and shortcomings of current data and communication pathways for scientific discovery in the basic energy sciences;
- Ascertain knowledge, methods and tools needed to mitigate present and projected data and communication shortcomings;
- Consider opportunities and challenges related to data and communications with the combination of techniques in single experiments;
- Identify research areas in data and communications needed to underpin advances in the basic energy sciences in the next ten years;
- Create the foundation for information exchanges and collaborations among ASCR-BES research and facilities communities

Co-Chairs


- Peter Nugent, LBNL (NERSC)
- J. Michael Simonson, ORNL (SNS)

Reports

- Draft- by December 9, 2011
- Final- by January 23, 2012

BES Scientific User Facilities: Resources for Energy Research

- 4 Synchrotron Radiation Light Sources
 Linac Coherent Light Source
- 3 Neutron Sources
- 3 Electron Beam Microcharacterization Centers
- 5 Nanoscale Science Research Centers

Provided to workshop participants by BES

- Other Agencies: Data Driven Science, Storage, Analysis, Simulation
- NSF Task Force on Data and Visualization
- Representatives here from NSF, NIST
- Other Programs in DOE: LHC, RHIC, Climate Research, Leadership Computing.....
- Interagency Working Group on Big Data
- Competes Act 2010: Working Group on Public Access
- Office of Science Working Group on Digital Data
- Data Play a Key Role in Materials Genome

Provided to workshop participants by BES

- BES facilities have capability to produce TeraBytes of data per day from single beam lines
- LCLS, SNS, Synchrotron Light Sources, e⁻ Microscopes are excellent examples
- Increasing use of time resolved & tomographic studies
- Increased need for analysis 'on the fly'
- Broad spectrum of BES data needs requires:
 - New level of understanding as a result of sophisticated applied mathematics and computer science techniques
 - New science that extracts the most from our (i.e. BES) facilities

ASCR-BES Data Workshop

- Participants, Observers & Speakers -

- Number of Participants 80
 - National Laboratories, Universities, NIST, NSF & International
- Observers- ASCR, BES, BER, HEP & SC-2
- Plenary Speakers
 - Brent Fultz, CalTech- Workflow
 - Thomas Schulthess, ETH Swiss SC Center- Theory & Aglorithms
 - Dave Pugmire, ORNL, Visualization and Analysis
 - Quincey Koziol, University of Illinois, Data Processing & Management
- Luncheon Speaker
 - Adam Riess, 2011 Nobel Laureate in Physics Professor, John Hopkins University Scientist, Space Telescope Science Institute

Workflow management: Experiment to Science

– Identifying and managing the data path from experiment to publication.

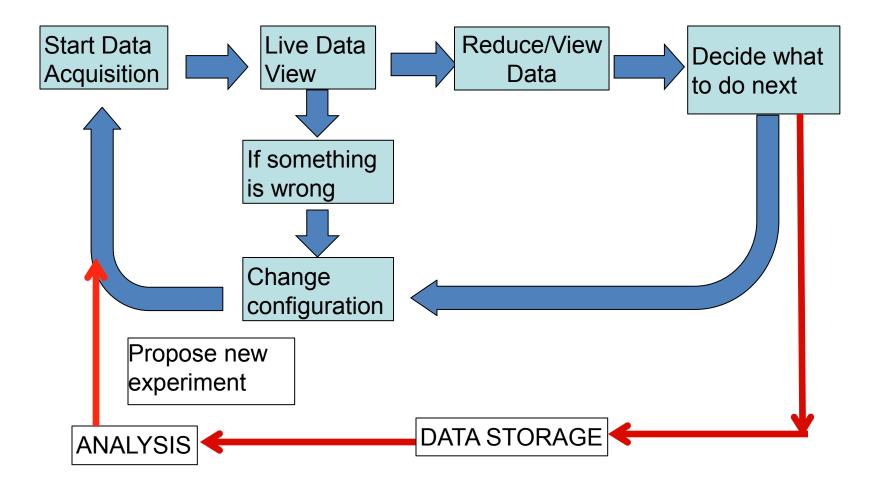
Theory and algorithms

 Recognizing the need for new tools for computation at scale, supporting large data sets and realistic theoretical models.

Visualization and Analysis

 Supporting near-real-time feedback for experiment optimization and new ways to extract and communicate critical information from large data sets.

Data Processing and Management


 Outlining needs in computational and communication approaches and infrastructure needed to handle unprecedented data volume and information content.

- "High Performance Computing in Accelerator Science"
- "SciDAC's Scientific Data Management Center"
- "ESnet: A Partner in Data Intensive Science"
- "Challenges and Opportunities in Data Systems at the Spallation Neutron Source"
- "Data Challenges at Current and Future Light Sources"
- "Linac Coherent Light Source"
- "Data Needs from BES Nanoscale Research Centers: Examples from the Center for Nanophase Materials Sciences"

Workflow, Processing & Viz.

Preliminary Findings

Theory & Algorithms

- Sustained support for interdisciplinary team consisting of domain scientists (theory and experiment), applied mathematicians, computer scientists working together to meet the theory/algorithm challenges for facilities' data
 - Pilot studies
 - One team for each end station/facility
- Inverse problems and solution algorithms (near term 1-3 years), but there is a need for long term R&D
- Feature extraction, image analysis (near term 1-3 years), include model based constraint (longer term)
- Combine multiple data sources and imaging techniques to provide more reliable solutions (mid-term 5 years)
- Ab initio theory guided experiments for data triage/reduction (long term 5-10 years)
- Computational endstation that couples virtual and real experiments (long term 5-10 years)

Detector and source advancements will enable transformative science within BES facilities. Current systems are producing a tremendous amount of data. Future systems will overwhelm current analysis pipelines.

- Integrate theory and analysis components seamlessly within experimental workflow.
- Move analysis to closer to experiment.
- Match data management access and capabilities with advancements in detectors & sources.

... components seamlessly within experimental workflow.

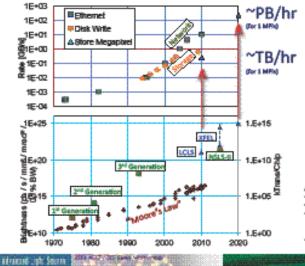
- Coupled simulation and experiment
- Theory guidance for experimental design
- Analysis feedback to steer experiment
- Common data formats
- Common community toolsets for analysis and workflow
- Apply ASCR's investment in visualization and analysis tools (invest in adaptation specific to experiments)

- Real-time (in-situ), streaming analysis at beamline.
- Local data reduction capabilities
 - –0 suppression
 - Hierarchical filtering
 - Baseline and background subtraction
- Live visualization of experiment
- Improve the efficiency of the experiment
- Increase data-quality
- Improve off-line analysis

ENERGY Match data management access and capabilities...

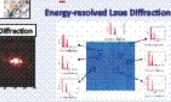
... with advancements in detectors & sources.

- Remove the bottlenecks
- Apply existing data transport and mobility toolsets
- Apply forefront mathematical techniques to more efficiently extract science from the experiment.
- Interoperability across different facilities/beamlines
- Combine multiple data sets
- Expandable
- Incorporate legacy data
- Integrated teams of engineers, scientists and computer scientists to solve these problems

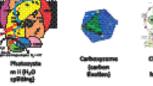


Data Rate ~ Brightness x N_p

100s of Megapixel/second detectors are starting to be used at light sources (and EM centers). ALS, for example, will soon be generating >10 Tb/hr. Requires:

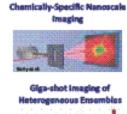

- Implementation of uniform data transfer and management approaches
- Realtime data reduction
- Information extraction

Needs will grow faster than Moore's law -- next generation sources will produce ~TB/s



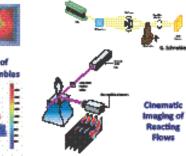
Computational Methods for Determining the Structure of Energy-Cycle Biomachines Through Diffractive Imaging

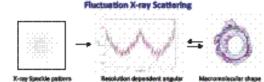
NOW SUCESE: Future (HelicS): Heterogeneous Single Particles Microcrystals


Engineered bacterial microcompartments as building blocks for

(Fight

artificial solar fuel production systems - their structures cannot be determined by conventional X-ray diffraction


Algorithm and Theory Tesks:


- image formation theory
- Preprocessing Dimension reduction iterative reconstruction and
- Noise characterization structure refinement Control excision services Phone construct to an ograph Plane anti-mail Postprocessing

Tomorrow – Examples:

Ultrafast Nanoscale Spin Dynamics

Motivation: Speckle patterns from fs solution X-ray scattering allows more accurate shape determinations of macromolecules in solution. The experiment is performed on an ensemble of particles in solution.

autocorvelations

Challenges: How to perform data processing at kHz to MHz rate? How to efficiently solve the 'inverse' problem from autocorrelations to structure?

C ENERGY

TALT DE LANS OF THE OWNER