

February 2001: A Major Milestone

We are 99.9\% identical at the DNA level, and most of our genetic differences are shared among all ethnicities and races. There is no scientific basis for precise racial categories.

A typical page of the human instruction book

ATGCCGATCGTACGACACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGATCCATTTTA TACTGACTGCATCGTACTGACTGCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTTTACCCCATG CATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATC САTATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGG ACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTGACTGCATCGTACTGACTGCACATATCGTCATACATAGACT TCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATG ATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATA GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTC ATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATCCATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTAT GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT СGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACA TATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTAT GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACA TATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATAGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTT CGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGC ATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATCC АТАТСGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTC GTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGAT ATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGC CGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTG

Our instruction books are not quite the same

ATGCCGATCGTACGACACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGATCCATTTTA TACTGACTGCATCGTACTGACTGCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTTTACCCCATG CATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATC CATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGG ACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTGACTGCATCGTACTGACTGCACATATCGTCATACATAGACT TCGTACTGACTGTCTAGTCTAAACA TCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATG ATATCGTCATCGTACTGACTGT AGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATA GCCGATCGTACGACACATR TCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC TGACTGCATCGTACTGAC ACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT CGTACTGACTGTCTAGCCTAAACACATCCCACTTTACCCATGCATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTC ATCGTACTGACTGTCTAGTCTAAACACATCCCAGCATCCATCCATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTAT GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACA TATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTAT GCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTAC TGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCAT CGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACA TATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATAGCCGATCGTACGACACATATCGTCATC TACTGCCCTACGGGA CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGCCGATCGTACGACACATATCGTC CGTACTGCCCTACGGGA CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTGACTGCATCGTACTGACTG \because ATATCGTCATACATAGACTT CGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTフ 」ACATCCCACTTTACCCATGC ATCGTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTATTCTAAACACATCCCAGCATCCATCC ATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCTATGCCGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGA CTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGACTGCATCGTACTGACTGCACATATCGTCATACATAGACTTC GTACTGACTGTCTAGTCTAAACACATCCCACATATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACTTTACCCATGAT ATCGTCATCGTACTGACTGTCTAGTCTAAACACATCCCACACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACGC CGATCGTACGACACATATCGTCATCGTACTGCCCTACGGGACTGTCTAGTCTAAACACATCCATCGTACTGACTGCATCGTACTG

There are no perfect genetic specimens

All of us carry an estimated 5-50

 significant gene flaws
Virtually All Diseases (Except Maybe Trauma) Have a Genetic Component

Adult Onset
AIDS
Cystic Fibrosis Diabetes

Genetic Component
Environmental Component

There is no Shortage of Concerns

The Tiresias Complex of Genetic Testing

"It is but sorrow to be wise when wisdom profits not."

As the seer Tiresias confronted Oedipus with this dilemma

June 26, 2000

A New Outlet for Venter's Energy

Genome Maverick
To Take On
Global Warming

By Justin Gillis
Washington Post Staff Writer
J. Craig Venter, the maverick scientist who altered history when he chose to compile a human genetic map with private money, has settled on his next project: tackling the problem of global warming.
Tapping a $\$ 100$ million research endowment he is creating from his stock holdings, Venter plans to scour the world's deep ocean trenches for bacteria that might be able to convert carbon dioxide, the gas released when cars and power plants burn fuel, back into sol id form without needing a lot of sunlight or other energy.
The idea is to devise a technology that vould allow humankind to continue producing energy while lowering emissions of the gas, which
"We"v
"We've barely scratched the surface of the microbial world out there to try to help the environment," Venter said in an interview. "We're going to be searching for some dra-

J. Craig Venter, former Celera president, says his ventures will now be not-for-profit.
matic new microbes."
Venter has a 20 -year track record of upending scientific dogma and developing new embrace In 1998 , he created Celera Geno mics Corp the Rockuille company that raced government researchers to a draw in compil
ing the first draft maps of the precise order of chemicals-or sequence-of the human ge nome.
The scientific jury is still out on whethe Venter could have done it without borrowing
See VENTER, E5, Col. 1

Ari Patrinos, associate director of science for biological and environmental research at the Energy Department, said he had been discussing futuristic solutions to the energy problem with Venter for a decade and is excited to hear Venter is planning a big move into the field. He cautioned, however, that a great deal of fundamental research remains to be done.
"I think it is indicative of the seriousness of these problems that they are attracting prominent scientists," Patrinos said. "People recognize that some of these problems are stubborn nuts to crack. We need to address them as aggressively as we can with the very best minds."

Former Celera president J. Craig Venter's new headquarters fill the entire top floor of a large Rockville office building.

Venter to Tackle Global Warming

VENTER, From El
data heavily from his public rivals, but there is no question the race accelerated the pubicly funded Human Ge nome Project by years. Venter and his scientific rival, Francis S. Collins, eventually put aside their differences to announce simultaneous genetic maps in a White House ceremony in 2000.

Venter recently confirmed that the genome Celera sequenced was in that if he was poing to ask people to surrender their genetic privacy for the sake of science, he ought to go first.
As the excitement of the genome race faded and Celera-and its Con-necticut-based corporate parentturned their attention to the task of using the data to develop drugs, Venter grew increasingly restless, locked in combat with his boss, lony L. White, over the units direction. Eventually, Venter was forced out as president.
Venter would say little about his final months at Celera, declining even alal whether he had signed a
executives at histov orm
ernment funding and is the world's premier center for researching the genetics of bacteria. The new think tank Advancealled the IIGR Center for the mics is the ster , the complete genetic inheritance of organisms-their genomes.
Venter is calling his third new entity the Institute for Biological Energy Alternatives. Venter expects to go after grant money from the U.S. Deparment of Energy and to have year His roal will be to explore whether modern science can use the power of biology to solve the world's most serious environmental crisi
As industrial societies burn fuels for energy, they are releasing vast amounts of carbon, previously locked in solid form, into the atmosphere as carbon dioxide. Rising concentrations of the gas are trapping extra heat from the sun-the famous "greenhouse effect"-and warming the Earth. Estumates of the impact of this warming in the current century begin with severe economic disruption and the dislocation of millions of people and get worse from there. As political efforts to cut the use of energy have stalled, many scientists, enter among them, have grown fas-

Atreplóplotes ot סuvaiòmies anio unv апाокаסぉкопоinon tou jovioiojuatos

 －artoxตpoúv тtaסtaká ta tракєغ́p

 Yoí npotiunoav va náve ora x ω－ pópıa tous ya va ouripouv，ka－ pạıa tous ya va onzipouv，ka va anохळройv $\mu \varepsilon$ та тракє่̇р tous onиغia Tov ouycevpoiozav ava－ μ цЕетai va anoxaphoouv onipepa． miv nyeoia tou unoupyciou 「ewp－ yias ya eqnaiypo． 	xakoú oס́koú סaktùou μ etá to vau－ àno nou eixe n ouvàvmon twv ek－ Aypòtes．ths Өeooa入ias anè． tou кöußou tns Гuptàvns，oto Keqä̀ ω ón Arqupoù Enions，aut मata $\mu \varepsilon$ та үесорyikà tous μ nxa－ vipata aro 260 xuldopetpo ms na－入ou oun δ ia oraùp ω on Axililiov， 	 बшп Фаркаб́óv． Aкӧun，aүpótes zixav бuүкع－ vтршөві $\mu \varepsilon$ та тракт̇ц тоиs，хшрі Aөnvïv－－erooahovikns orov kou－ onfèpt exatoviábes aypótes ou－ ба入оvikn $\mu \varepsilon$ тn Bépola kaı unv EEeooa．Euvóbeipoi rous λ iyonpiv tou Xaploù Kasifi．

T0

 UE пара́Oupa

ПАНРОФ OPIES, IIPOEQIIA

TO ITPOZ祭:

Apıбтعions Пatpıvös

O puӨpıøாn่s tou «ß1ß入iou tns zoñs»

The Sequence is Only the Beginning

BY AUTH FOR THE PHILADELPHIA INQUIRER

The Tree of Life

Bacteria
Archaea

Eukarya

- Completely sequenced or in the process of being sequenced
"so we should venture on the study of every kind of animal without distaste; for each and all will reveal to us something natural and something beautiful. Absence of haphazard and conduciveness of everything to an end are to be found in Nature's works in the highest degree, and the resultant end of her generation and combinations is a form of the beautiful."

Aristotle's "On the Parts of Animals"

Biological Archaeology: Tracing the Origins

Matriarchs of European Populations

Bryan Sykes, Institute of Molecular Medicine at Oxford University

Descendents of Eve

Proteins: The Workhorses of a Cell

Machines of Life: The Ribosome

The ribosome is where all the proteins in the cell are made

Advanced Light Source
Lawrence Berkeley National Laboratory

Yusupov, M.M. et al.,
Science 292, 883 (2001)

Machines of Life: Integrin

Integrin determines which molecules pass through a cell's membrane

Machines of Life: Anthrax Lethal Factor

Enables infection by disabling immune response

X-ray Diffraction Helps Determine the Structure

A high performance x-ray beamline for studying protein machines

High Field Spectrometer Magnet

Nuclear Magnetic Resonance Helps Determine the Structure

Calculated Structure

High Performance Computing Essential to the Future of Biotechnology

Blue Gene Specs

1 Million
Processors

1 Gigaflops per
Processor
512 Gbytes
Memory (on chip)
Footprint:
$<2,000 \mathrm{ft}^{2}$
Air-cooled

Modeling Increasing Complexity

Biotechnology for Clean Energy-Advances in systems biolology, computation, and technology contributing to:

Increased biology-based energy sources within 10 years.

Major new bioenergy industry by 2050 .

Biotechnology to Combat Climate Change -Advances in systems biology, computation, and technology contributing to:

Increased understanding of earth's carbon cycle to design ways to enhance carbon capture within 10 years.

Stabilization of atmospheric CO_{2} to counter global warming.

Biotechnology for cleanup
 of Stubborn Wastes -Advances in systems biology,
 computation, and technology contributing to:

Cost-effective ways for environmental cleanup within 10 years.

New technologies that will save billions in waste cleanup and disposal by 2020.

Deinococcus radiodurans

Geobacter sulfurreducens

Geobacter removes uranium from contaminated water, reducing risk to humans and the environment.

Biology + Nanotechnology for Energy

Applications-Engineered protein machines (from microbes) with extended operating times can be embedded in synthetic nanomembranes to:

Produce hydrogen from water for fuel cells

Clean up toxic wastes
Filter noxious fumes before venting air to the atmosphere

Experiments show enhanced biocatalytic lifetimes

Nanobiology - From Science Fiction to Reality
 Learning from Nature's Design Principles

Nanos = Dwarf
Computers, storage and delivery devices, machines, photosynthesizers

Nanobots - An Artist's View

Agricultural Biotechnology From Foods to Medicines

Edible vaccines, improved yields, new materials, healthier foods, environmental cleanup

...but not without some concerns
"In pursuing our science, we ought first to make a careful survey of the difficulties which confront us at the outset. Among them would be the diverse ways in which others have dealt with our problems and in addition any points that may have been overlooked. To have stated well the difficulties is a good start for those who expect to overcome them; for what follows is, of course, the solution of those very difficulties, and no one can untangle a knot which he cannot see."

Aristotle's "Metaphysics"

