

Energy and Computational Science

Steven E. Koonin

Under Secretary of Energy for Science August 2009

My roles at DOE

In many ways, it still looks like this...

- Chief Scientist of the DOE (not the Director of SC)
- Enable cross disciplinary ideas and research to flourish
- Define and enable science programs that
 - Knit the department together and
 - Lead to novel energy research efforts

America's energy challenges

Security of Supply

Greenhouse Gas Emissions

Source: Marland et. al (2007) Global, Regional, and National CO2 Emissions. In Trends: A Compendium of Data on Global Change. CDIAC U.S.A.

US Energy flows (~ 100 Ej annually)

Energy technologies change slowly

Source: EIA

Why is energy different?

Scale

Large **capital** and access to existing **infrastructure** are required

Ubiquity Consider economic, political, and social dimensions

Incumbency

Technology requires a **full-chain** effort

Interoperability Transformation will take a long time

Energy relevant computation

Novel divide & conquer approach to solve DFT by reducing O(n³) to O(n)

Design of new materials for solar cells, Wang et al., SC08

Simulations show deglaciation during the Bølling-Allerød, Earth's most recent period of natural global warming. Featured in the July 17 issue of the journal Science Dipole moment calculated on 2633 atom quantum rod

Computing for Nuclear Energy

Multiple scales Multiple physics Systems approach required

Potentially significant impacts: reliability, safety, efficiency gains

From ASCAC/NE workshop on Science based Nuclear Energy systems Enabled by Advanced Modeling and Simulation at the Extreme Scale

Time Scale

Science, tools, and algorithms

Computation as a tool in science

Tools have changed rapidly: power

These were our supercomputers in the 1970's and 1980's

1986: X-MP/48 ~220 Mflop sustained 120-150kW (depending on model) \$40M for computer+disks (FY09\$)

Today:

SC/ASCR: Jaguar at 1.059 PF (LINPACK) ORNL; 6.9 MW Factor 5x10⁶ in speed Factor of 18 in power

Family Tree of Recent Top Computing Architectures

Architecture / Programming Model

Algorithms and models also yield solutions

Simulation (SCaLeS) Volume 2

ENERGY

Exascale challenges going forward

- Scientific justification
 - How will Exascale help to solve important problems?
 - Not all important problems are extreme scale
- Breakthroughs hardware and software
 - Power consumption; memory bandwidth; communications; …
 - New algorithms: such as O(n) methods; usability
- Building interdisciplinary communities
 - Integrate the domain knowledge of theorists, experimentalists (lab and integral), computational and computer scientists, and applied mathematicians
 - Collaborating with NNSA

Questions/Comments?