
Compilation Technology

ASCAC meeting | August 11, 2009 @ 2009 IBM Corporation

Software Group

IBM Power Systems
Compiler Strategy

Roch Archambault

IBM Toronto Laboratory

archie@ca.ibm.com

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

2

IBM Rational Disclaimer

© Copyright IBM Corporation 2008. All rights reserved. The information

contained in these materials is provided for informational purposes only, and is

provided AS IS without warranty of any kind, express or implied. IBM shall not be

responsible for any damages arising out of the use of, or otherwise related to,

these materials. Nothing contained in these materials is intended to, nor shall

have the effect of, creating any warranties or representations from IBM or its

suppliers or licensors, or altering the terms and conditions of the applicable

license agreement governing the use of IBM software. References in these

materials to IBM products, programs, or services do not imply that they will be

available in all countries in which IBM operates. Product release dates and/or

capabilities referenced in these materials may change at any time at IBM’s sole

discretion based on market opportunities or other factors, and are not intended to

be a commitment to future product or feature availability in any way. IBM, the

IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM

products and services are trademarks of the International Business Machines

Corporation, in the United States, other countries or both. Other company,

product, or service names may be trademarks or service marks of others.

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

3

Agenda

IBM Compiler Team

Collaboration with US Government

Overall Roadmap

Common Features and Compiler Architecture

Key Technology Exploitation

Fortran 2003

OpenMP 3.0

UPC Compiler

CAF Compiler

OpenCL

Delinquent Load Analysis

Assist Threads For Prefetching

Compiler Transformation Report Infrastructure

Automatic Parallelization

Q&A

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

4

IBM Compilation Technology Group

More than 300 development, test and service engineers. Mostly in Toronto,

Canada

Product responsibility for high performance C, C++ and Fortran compilers

and Math libraries (MASS,MASSV) targeting IBM servers/CPUs.

Responsible for Java JIT compilers targeting handheld devices to 64-way

servers and everything in between.

Also develops compilers for commercial markets

C/C++ (pSeries and zSeries), COBOL, PLX for zSeries

All in-house technology developed over the past 25 years in close

conjunction with IBM Research and HW teams in Austin and Rochester.

Our Mission:

To deliver the highest performance, most robust, most up-to-date

language implementations in support of IBM’s Hardware, Software and

Services businesses

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

5

Collaboration with US Government

 Involved in first system to achieve 1 TF sustained (sPPM) in

late 1990s (ASCI Blue)

– Toronto compiler group developed automatic vectorization

technology (calls to vector math routines) in collaboration with

LLNL.

– Continued support of ASCI program with White and Purple.

 ASC collaboration with Blue Gene and Roadrunner systems

 HPCS collaboration with delivery of UPC and programmer

productivity improvements.

 Bluewater collaboration with delivery of CAF product and

scaling challenges.

 Sequoia collaboration with delivery of compiler to exploit BG/Q

features.

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

6

Dev Line

2008 2009

All information subject to change without notice

XL C/C++ Vxx P7

XL Fort Vxx Linux

XL C/C++ Vxx P7

XL Fort Vxx AIX

SLES 10 SLES 11

XL C/C++ V10.1

XL Fort V12.1 AIX

XL C/C++ V10.1

XL Fort V12.1 Linux

XL C/C++ V10.1 for CELL

2010 and

beyond

XL C/C++ Vxx BG/Q

XL Fort Vxx BG/Q

RHEL6 ??

XL C/C++ Vxx PXX

XL Fort Vxx AIX

XL C/C++ Vxx PXX

XL Fort Vxx Linux

SLES 12 ??

Roadmap of XL Compiler Releases

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

7

Common Fortran, C and C++ Features

Linux (SLES and RHEL) and AIX, 32 and 64 bit

Debug support

Debuggers on AIX:

Total View (TotalView Technologies), DDT (Allinea), IBM Debugger

and DBX

Debuggers on Linux:

TotalView, DDT and GDB

Full support for debugging of OpenMP programs (TotalView)

Snapshot directive for debugging optimized code

Portfolio of optimizing transformations

Instruction path length reduction

Whole program analysis

Loop optimization for parallelism, locality and instruction scheduling

Use profile directed feedback (PDF) in most optimizations

Tuned performance on POWER3, POWER4, POWER5, PPC970, PPC440,

PPC450, POWER6, POWER7 and CELL systems

Optimized OpenMP

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

8

TPO

IPA

Objects

Other

Objects

System

Linker

Optimized

Objects

EXE

DLL

Partitions

TOBEY

C FE C++ FE
FORTRAN

FE
Compile Step

Optimization

Libraries

PDF info

Link Step

Optimization

O4 and O5

Wcode+

Wcode

Wcode+

Instrumented

runs

Wcode
Wcode

Wcode

Wcode

noopt and O2

O3, O4 and O5

IBM XL Compiler Architecture

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

9

Highest performance with programmer control

Highest Productivity with fully automatic compiler technology

Iterative compilation

UPC, CAF,

OpenMP, OpenCL

C
o
m

p
ile

r
s
u
p
p
lie

d

Automatic Optimization

Memory optimization

Auto-simd

Auto-parallel

User reports, PDF

Parallel Languages

Analyse, change,

SIMD/Alignment ..

recompile

M
a
n
u
a

l
 I
n
te

rv
e

n
ti
o
n

S
e
m

i-
a
u
to

m
a

ti
c

Compiler support for performance and productivity

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

10

Emerging Standards and Tools Related Development:
More Fortran 2003 support (Parameterized Derived Types)
More OpenMP 3.0 support in Fortran
Support for C++ 0x Standard
Support for Fortran 2008 Standard
Support for UPC language
Support for Coarray Fortran language
Support for OpenCL language
Support for Propolice (Stack smashing protection in C)
Support for POMP (OpenMP performance analysis)

Compiler Infrastructure and Optimization:
Compiler optimization report in XML
PDF (Profile Directed Feedback) extension:

Multi pass profiling
Delinquent load analysis and optimizations

Assist threads for prefetching
Polyhedral loop transformations
Automatic Parallelization
Analysis of MPI applications

All information subject to change without notice

Key Technology Exploitation

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

11

Fortran 2003: Object Oriented Extensions

type extension (inheritance)

type fluid

real :: viscosity

real, allocatable :: velocity(:,:,:)

end type

type, extends(fluid) :: magnetofluid

real, allocatable :: magnetic_field(:,:,:)

end type

– type magnetofluid inherited ALL of properties

of fluid: viscosity and velocity

– Only support single-rooted inheritance

hierarchy

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

12

Fortran 2003: Object Oriented Extensions

type-bound procedures

type point

real x, y

contains

procedure :: length => lenBetween2Points

end type

...!definition of lenBetween2Points

real function lenBetween2Points(this, p)

class(point), intent(in) :: this, p

... ! compute the length

end function

...! in main program

type(point) :: pa, pb

...

distance = pa%length(pb)

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

13

Fortran 2003: Object Oriented Extensions

derived type allowed to have KIND and LENGTH type parameters

integer, parameter::dp = selected_real_kind(15)

type matrix(kind,m,n)

integer, kind :: kind=dp

integer, len :: m, n

real(kind) :: element(m,n)

end type

type(matrix(dp,10,20)) :: a

declares a double-precision matrix of size 10 x 20

type(matrix(dp, :, :)), allocatable :: mat

...

ALLOCATE (matrix(dp, m, n) :: mat)

size of matrix mat is determined at runtime

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

14

OpenMP 3.0: Task Support

irregular parallelism

a task has
code to execute
a data environment (it owns its data)
an assigned thread executes the code and uses the data

two activities: packaging and execution
each encountering thread packages a new instance of a task (code and data)
some thread in the team executes the task

task construct

defines an explicit task
directive: task / end task
clause: if, untied, private, firstprivate, default, and shared

task switching
the act of a thread to switch from executing one task to another task

task scheduling point
a point during the execution of the current task region at which it can be suspended to

be resumed later; or the point of task completion, after which the executing thread
may switch to a different task region

e.g. encountered task constructs, encountered taskwait constructs

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

15

OpenMP 3.0: Task Support

generate independent works with task

construct

!$OMP parallel

!$OMP single

do while (...)

!$OMP task

call process(p)

!$OMP end task

enddo

!$OMP end single

!$OMP end parallel

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

16

XL UPC Compiler

Tech preview on alphaWorks

Based on XL C V10.1 compiler

Compiler generated interface to the runtime system is identical for shared and distributed memory
implementations

Optimizations take advantage of system architecture knowledge

On AIX

Shared Memory (pthreads)

Distributed (LAPI)

On Linux

Shared Memory (pthreads)

Distributed (LAPI)

On BG/L

BG Message Layer (based on XLC V9.1 compiler)

Using approximately 1000 test scenarios:

GWU UPC test suite

UPC version of NAS benchmarks

Berkeley UPC test suite

MTU UPC test suite

HPC Challenge suite

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

17

NodeProcessThread

Partitioned Global

Address Space

Network

Hybrid

Partitioned Global

Address Space

Network

Distributed

Execution Environments

– Distributed: multiple nodes, one (or more)

process per node running one thread

– Hybrid: multiple nodes, one (or more)

processes per node running multiple

threads

Memory Locality

– Shared memory physically located on the

node where the thread is running has

lower latency than memory located on

another node (affinity concept)

– Compiler can exploit memory affinity

information when thread mapping and

cluster topology is known (static threads,

num. nodes known)

Hybrid Execution Environment

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

18

1 2 4 7 8 14 16 28

0

1

2

3

4

5

6

7

MPI vs UPC HPL

Power5 + HPS, 28 nodes, 16 processes/node

MPI

UPC

nodes

p
e
rf

o
rm

a
n
c
e
/C

P
U

,
G

F
lo

p
s
/s

UPC HPL (Blue Gene/L, 16k nodes)

Higher is better

Performance: almost equivalent, lags 10% behind MPI

Complexity: UPC code 1,430 lines, MPI code 30,744 lines

High Performance Linpack – MPI vs UPC

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

19

XL UPC Language Extensions

Flexible data layout: tiled arrays
example: shared [2][2] int A[4][4];
provides ability to call to efficient libraries, e.g., ESSL

Mapping data to processors
Allows control of block placement on processor grid
Allows communication among rows, cols of processors

#pragma distributed A(2,2)
extern shared [2][2] double A[4][4];

Data driven team collectives
collective operation participants are a subset of the threads (team)

allreduce (team, &src, &dst, OP_ADD, dt, size);
defining teams based on data distribution fits better the in the programming model.
It can significantly reduce the amount of communication.
Example: add all elements in a row of processors

These language extensions make UPC more effective at optimizing a wider range of
scientific applications:

NAS CG: performance of the UPC version within 10% of the MPI performance, but the UPC
benchmark implementation uses 50% less code

HP Linpack: performance of the UPC version within 10% of the MPI performance (MPI
code from http://icl.cs.utk.edu/hpcc), but with 20 times less code

Random Access: UPC version outperforms MPI version by ~15%

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

Coarray Fortran Compiler (CAF)

Programming Model: Single Program Multiple Data (SPMD)

 Fixed number of processes (images)

“Everything is local!” [Numerich]

 All data is local

 All computation is local

Explicit data partition with one-sided communication

 Remote data movement through codimensions

Programmer explicitly controls the synchronizations

 Good or bad?

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

CODIMENSION attribute

 double precision, dimension(2,2), CODIMENSION[*] :: x

or simply use [] syntax

 double precision :: x(2,2)[*]

a coarray can have a corank higher than 1

● double precision :: A(100,100)[5,*]

from ANY single image, one can refer to the array x on image Q using []

X(:,:)[Q]

e.g. Y(:,:) = X(:,:)[Q]

X(2,2)[Q] = Z

Coindexed objects

Normally the remote data

Without [] the data reference is local to the image

● X(1,1) = X(2,2)[Q]

● !LHS is local data; RHS is a coindexed object, likely a

● !remote data

CAF: Coarray syntax

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

Image 1

x(1,1) x(1,2)

x(2,1) x(2,2)

Image 2

x(1,1) x(1,2)

x(2,1) x(2,2)

Image p

x(1,1) x(1,2)

x(2,1) x(2,2)

Image q

x(1,1) x(1,2)

x(2,1) x(2,2)

Image n

x(1,1) x(1,2)

x(2,1) x(2,2)

Logical view of coarray X(2,2)[*]

CAF: Coarray memory model

A fixed number of images during execution
Each has a local array of shape (2 x 2)

examples of data access: local data and remote data
X(1,1) = X(2,2)[q] !assignment occurs on all images

if (this_image() == 1) X(2,2)[q] = SUM(X(2,:)[p])
!computation of SUM occurs on image 1

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

CAF : REAL :: X(2)[*]

UPC : shared [2] float x[2*THREADS]

Image 1 Image 2

Image num_images()

...

X (2)

X (1)

X (2)

X (1)

X (2)

X (1)

Thread 0 Thread 1

Thread THREADS-1

...

x[2*THREADS-1]

x[2*THREADS-2]

x [3]

x [2]

x [1]

x [0]

Comparison between CAF and UPC

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

24

OpenCL Compilers

clEnqueueKernel()

Host Thread

Accelerator

Load Kernel

ExecuteB
lo

c
k

e
d

OpenCL C

CompilerStandard

C/C++

Compiler

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

25

OpenCL Compilers

 Internal prototype on OpenCL compiler for CELL and POWER processors

 Some experience with implementing OpenMP and OpenCL on CELL

 Possible advantages of OpenCL versus OpenMP:

Architecture development provides the underlining environment
Memory bandwidth, power consumption, simplified pipeline
Cost effective GPU, accelerator

Massive data parallel programming
Computation grid

Model remote memory
Local memory: fast, no coherence
Remote memory: global addressed, slow to access
__global, __local

Builtin SIMD element
Logical vector
Data alignment considered

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

26

OpenCL - Transpose

Cell SDK – C with intrinsics

void transpose (vector float m[4])

{

vector float abcd, efgh, ijkl, mnop; /* input vectors */

vector float aeim, bfjn, cgko, dhlp; /* output vectors */

vector float aibj, ckdl, emfn, gohp; /* intermediate vectors */

vector unsigned char shufflehi = VEC_LITERAL(vector unsigned char,

0x00, 0x01, 0x02, 0x03

0x10, 0x11, 0x12, 0x13,

0x04, 0x05, 0x06, 0x07,

0x14, 0x15, 0x16, 0x17);

vector unsigned char shufflelo = VEC_LITERAL(vector unsigned char,

0x08, 0x09, 0x0A, 0x0B,

0x18, 0x19, 0x1A, 0x1B,

0x0C, 0x0D, 0x0E, 0x0F,

0x1C, 0x1D, 0x1E, 0x1F);

abcd = m[0];

efgh = m[1];

ijkl = m[2];

mnop = m[3];

aibj = spu_shuffle(abcd, ijkl, shufflehi);

ckdl = spu_shuffle(abcd, ijkl, shufflelo);

emfn = spu_shuffle(efgh, mnop, shufflehi);

gohp = spu_shuffle(efgh, mnop, shufflelo);

aeim = spu_shuffle(aibj, emfn, shufflehi);

bfjn = spu_shuffle(aibj, emfn, shufflelo);

cgko = spu_shuffle(ckdl, gohp, shufflehi);

dhlp = spu_shuffle(ckdl, gohp, shufflelo);

m[0] = aeim;

m[1] = bfjn;

m[2] = cgko;

m[3] = dhlp;

}

void transpose (float4 m[4])

{

float16 x = (float16) (m[0], m[1], m[2], m[3]);

float16 t;

t.even = x.lo;

t.odd = x.hi;

x.even = t.lo;

x.odd = t.hi;

m[0] = x.lo.lo;

m[1] = x.lo.hi;

m[2] = x.hi.lo;

m[3] = x.hi.hi;

}

OpenCL C

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

27

Very small number of delinquent loads are responsible for the

vast majority of cache misses

Delinquent load identification: User annotation / Static analysis

Dynamic profiling

L2 cache misses

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of delinquent loads

%
 o

f t
ot

al
 c

ac
he

 m
is

se
s

astar

bwaves

bzip2

cactusADM

calculix

gobmk

gromacs

h264ref

libquantum

lbm

mcf

milc

umt2k

Delinquent Load Identification

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

28

Array recovery for pointer access (e.g. p++.)

Unique array identification (memory disambiguation)

Access pattern analysis for stream identification
Stride one stream (unit stride access, a[i])
Stride N stream (A[i][*][*], B[N*i]);
Indexed stream(A[B[i]);
Irregular access (p->next, p->right, p->left, …)

Reuse analysis

Static Analysis for Delinquent Load Identification

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

29

Coarse-Grain Cache Miss Profiling

Identify the code regions which contain the memory

operations which cause most cache misses

Generate pmapi calls or the code to read performance

counters directly
Fine-Grain Cache Miss Profiling

Identify specific memory operations which cause cache

misses

Combine static analysis to instrument memory

operations which most likely cause runtime cache

misses

Generate the code to read performance counter directly

Dynamic Profiling for Delinquent Load Identification

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

30

SOURCE CODE

COMPILE AND LINK WITH –qpdf1

Static analysis

Profile based refinement

COMPILE AND LINK WITH –qpdf2

Profile directed optimizations

INSTRUMENTED

APPLICATION

OPTIMIZED

APPLICATION

PROFILE

DATA

SAMPLE

INPUTS
SAMPLE

INPUTS

Multiple-pass
Dynamic
Profiling Infrastructure

Hardware and software constraints

Multiple sample runs for different hardware

performance events

Profile based instrumentation refinement

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

31

Cache Miss Information
Delinquent load

Source code location

Memory Reference Cache Level Cache Miss Count Miss Rate Line Number Function File

--

((char * *)((char *)@CIVINIT4 + 2 45331 63 147 flow_cost mcfutil.c

@CIV4 * 60))->(*)node.node.basi

c_arc.rns38.->(*)arc.arc.flow.rn

s39.

arc2->(*)arc.arc.flow.rns14. 2 885002 95 60 write_circulatio output.c

ns

bla->(*)arc.arc.ident.rns28. 2 45274 43 123 primal_net_simpl psimplex.c

ex

@ICM2->(*)long.rns8. 2 3740 71 127 primal_net_simpl psimplex.c

temp.rnn4->(*)node.node.sibling. 2 6714 7 102 update_tree treeup.c

rns8.->(*)node.node.sibling_prev

.rns9.

Cache misses

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

32

Delinquent Load Driven Optimization

Prefetch Effectiveness

Timeliness

the placement of the prefetches such that the latency to memory is

effectively hidden

Accuracy

prefetching data which will actually be used by the program to avoid cache

pollution

Overhead

incurring the least amount of overhead incurred by the prefetch instructions

Data prefetch

Software assisted data prefetch to reduce the overhead of hardware stream

identification

Prefetch depth control

Prefetch instruction selection

Prefetch engine control

Instruction Scheduling

Instruction reordering to hide memory latency

Prefetch instruction awareness scheduling

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

33

Dependency Analysis, Reuse Analysis

Cache footprint Analysis

Global pointer, shape analysis

global array recovery

Static delinquent load identification

Stream identification and classification

Loop fusion, Loop distribution,

stream unrolling, Loop version, Loop strip mining

Dynamic cache miss profiling

Coarse grained and fine grained

Loop cost analysis

Prefetch and cache control instructions

Instruction Scheduling

PROFILE

DATA

Delinquent Load Driven Optimizations

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

34

Motivation:

Significant amount of cache misses in HPC workloads

Availability of multi-core and multi-threading for CMP (Chip
MultiProcessors) and SMT (Simultaneous
MultiThreading) exploitation

Existing prefetch techniques have limitations:
hardware prefetch - irregular data access patterns
software prefetch – prefetch overhead on program

execution

Goals:

Deploy the available multiple SMT threads and cores to
increase single thread and multiple thread performance

Assist Threads: Motivation and Goals

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

35

Loop Blocking

Distance Control

Version Control

AT OptimizationsBasic AT Generation

Delinquent Load Identification

Loop Selection

Back-slicing

Region Cloning

Signal Handling

Thread management

XL compiler

Application programs Profiling information for cache miss

Binary with assist thread

AT Runtime

Assist Threads: Compiler Infrastructure

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

36

Assist Threads: Code Generation

Delinquent load identification (common to Memory Hierarchy Optimizations.)

Back-slicing for address computation and prefetch insertion

Spawn assist threads once in MT (Main Thread)

Notify AT (Assist Thread) to execute the slice function for delinquent loads

while (1)
{

wait for signal;
(*func_addr)(id);

}

Spawn assist thread

signal assist thread

Loop {

………

delinquent load/loads

……

}

………

Slice function #id

Loop {

………

prefetch

……

}

Assist ThreadMain Thread

Inter-threaded communication

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

37

Original Code

// A and x are globals

y = func1();

…

i = func2();

// start of back-slice

while (i < condition) {

…

x = operations;

…

// delinquent load

=…+A[i] ;

…

i += y;

}

// end of back-slice

Assist Thread (AT) Slice Function

void slice_func_1(int thd_id) {

…

int y_local = y;

int i_local = i;

…

while (i_local < condition) {

// pre-fetch request

__dcbt(&A[i_local]);

i_local += y_local;

}

}

Main Thread (MT) Code

y = func1();

…

i = func2();

// start pre-fetching in assist thread

func_addr = &slice_func_1;

signal assist thread;

// start of back-slice

while (i < condition) {

…

x = operations

…

=…+ A[i] ;

…

i += y;

}

// end of back-slice

Example of Assist Threads Code Transformation

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

38

Synthesis test cases to show the performance of assist thread on

Different function unit usage

Different cache miss rate

Operations in main thread can be grouped into:

ADDR: operations needed by AT to calculate the addresses for

prefetch

COMP: the rest operations (computation) done by MT but not AT

Different ratio between ADDR and COMP

at-comp: much more operations in COMP

at-addr: much more operations in ADDR

at-bal: ADDR and COMP are roughly balanced

Different cache miss rate for delinquent loads ONLY

High: miss rate: ~90%

Medium: miss rate: ~40%

Low: miss rate: ~20%

Assist Threads: Kernels Description

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

39

at-addr

at-comp

at-bal

Speedup with CMP assist thread on P5

0

0.5

1

1.5

2

2.5

hi
gh

m
ed

iu
m lo

w
hi
gh

m
ed

iu
m lo

w
hi
gh

m
ed

iu
m lo

w

kernels

S
p

e
e
d

u
p

AT with distance control

AT without distance control

at-comp at-addr
at-bal

Assist Threads: CMP Performance on Power5

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

40

Speedup with CMP Assist Thread on Power5

1

1.04

1.08

1.12

1.16

1.2

art bzip2-kernel lbm mcf

S
p

e
e

d
u

p

Assist Threads: Speedup of Benchmarks

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

41

Compiler exploitation of assist threads to demonstrate the

performance improvement

Delinquent load infrastructure integration

Profitability analysis for code region selection

Outlining and backward slicing

Assist thread optimizations: distance control, loop blocking

Speculation handling

User annotated and automatic assist thread generation will be

implemented under the –qprefetch=AssistThread compiler

option

Assist Threads: Summary

All information subject to change without notice

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

42

Compiler Transformation Report Infrastructure

The compiler transformation infrastructure has been designed and

implemented.
The infrastructure allows the compiler to generate XML reports detailing the

performed optimizations and missed optimization opportunities. The content of the

XML reports has been enhanced to report on optimizations across all phases of

the compilation.

XML reports are transformable
XML can be translated into HTML with the style sheet into a human readable format

XML is an easily consumable format which can be used by tooling with the XML

schema

Compiler Transformation Reports enhance the programming productivity
Increase productivity of manual code tuners by providing compiler information;

that would otherwise not be available to them

only available through more time consuming analysis by higher skilled users

(e.g. assembler listings)

Increase productivity with integrated performance tools that do automatic or user

assisted performance tuning (e.g. Hot spot identification by tools, combined with

compiler optimization information on the hot spot)

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

43

Inlining

Summarizes all successful inlines and all failing user inlines

Represents inlining from all phases of the compilation (Front End, High

Level Optimizer, and Low Level Optimizer)

Transformations

Shows a list of successful transforms

Shows a list of unsuccessful transforms with reasons for failure

Represents transformations preformed by the High Level Optimizer

during both compile and link phases, including:

Loop transformations

Parallelizatio transformations

Vectorization/SIMDization transformations

Data prefetch

Data Reorganization

Reports a summary of variable data reorganized by the High Level

Optimizer

Compiler Transformation Report Types

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

44

COMPILE

LINK

D

R

I

V

E

R

DATABASE

LISTER

FE

TPO

High-level

Optimizer

TOBEY

Low-level

Optimizer

Compiler Transformation Report Infrastructure

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

45

EXTERNAL

HTML

Source File Table

a.C1

File NameFile Number

XML SchemaPARSE

XML4J

Style Sheet
XSLT

TRANSLATE

Final XML

<SourceFile Id=“1” Name=“a.C”/>

INTERNAL

DATABASE

Raw XML
<SourceFile>

<FileId>1</FileId>

<FileName>a.C</FileName>

</SourceFile>

Compiler Transformation Report Infrastructure

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

46

Transformation report information in Eclipse:

More easily readable

Easy navigation to source code locations

Eclipse View

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

47

Automatic Parallelization

Enablement:

 Removing dependencies is key to enable more parallelization

 Array Privatization

 Runtime dependence test

 Interprocedural array section analysis to parallelize loops with calls

 Multi dimensional array reductions (common in scientific codes)

Cost Analysis:

 Parallelization is not always profitable

 Both compile-time and runtime analysis is done

 Runtime profiling of sequential/parallel code

Gaining valuable experience parallelizing SPECFP

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

48

BACKUP SLIDES

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

49

FFT - Compiler Optimizations

FFT (16 threads per node)

0

5

10

15

20

25

1 3 5 7 9 11 13 15

Nodes

G
fl

o
p

/s

No UPC Optimizations

+ 350%

+ 300%

HYBRID

Shared Array Privatization

Forall strip-mining

Loop Versioning

+ 10%

typedef struct { double re, im; } complex_t;

typedef shared [BF] complex_t ComplexArray_t [N*N];

void transpose2 (ComplexArray_t A, ComplexArray_t B) {

// tile exchange (communication)

upc_barrier;

// local transpose

upc_forall(i = 0; i < N; i += bsize; &B[i*N])

for (j = 0; j < N; j += bsize)

for (ArrayIndex_t k = 0; k < bsize - 1; k++)

for (ArrayIndex_t l = k + 1; l < bsize; l++) {

complex_t c = B[(i+k)*N+(j+l)];

B[(i+k)*N+(j+l)] = B[(i+l)*N+(j+k)];

B[(i+l)*N+(j+k)] = c;

}

Privatized

1. version the upc_forall, this allows the analysis to reason about the locality of shared accesses done through

pointers-to-shared

2. accesses in the local transpose are then recognized as local and privatized.

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

CAF: Standardization status

Coarray is in base language of Fortran 2008

 Standard to be published in 2010

 Fortran to be the first general purpose language

to support parallel programming

The coarray TR (future coarray features)

 TEAM and collective subroutines

 More synchronization primitives

 notify / query (point – to – point)

 Parallel IO: multiple images on same file

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

Coarrays and MPI

Early experience demonstrated coarrays and MPI can coexist in the

same application

Migration from MPI to coarray has shown some success

– Major obstacle: CAF is not widely available

Fortran J3 committee willing to work with MPI forum

 Two issues Fortran committee is currently working on to support:

 C interop with void *

 void * buf; (C)

 TYPE(*), dimension(...) :: buf (Fortran)

 MPI nonblocking calls: MPI_ISEND, MPI_IRECV and

MPI_WAIT

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

MPI:
if (master) then
r(1) = reynolds
...
r(18) = viscosity
call mpi_bcast(r,18,real_mp_type,

masterid,
MPI_comm_world,
ierr)

else
call mpi_bcast(r, 18,

real_mp_type,
masterid,
MPI_comm_world,
ierr)

reynolds = r(1)
...
viscosity = r(18)

endif

(Ashby and Reid, 2008)

CAF:
sync all
if (master) then

do i=1, num_images()-1
reynolds[i] = reynolds
...
viscosity[i] = viscosity
end do

end if
sync all

Or simply:

sync all
reynolds = reynolds[masterid]
...
viscosity = viscosity[masterid]

Example: comparing CAF to MPI

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

53

XL Fortran Roadmap: Strategic Priorities

Superior Customer Service

Continue to work closely with key ISVs and customers in scientific and

technical computing industries

Compliance to Language Standards and Industry Specifications

OpenMP API V2.5 (Full) and OpenMP API V3.0 (Partial)

Fortran 77, 90 and 95 standards

Fortran 2003 Standard

Exploitation of Hardware

Committed to maximum performance on POWER4, PPC970,

POWER5, POWER6, PPC440, PPC450, CELL and successors

Continue to work very closely with processor design teams

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

54

XL C/C++ Roadmap: Strategic Priorities

Superior Customer Service

Compliance to Language Standards and Industry Specifications

ANSI / ISO C and C++ Standards

OpenMP API V3.0

Exploitation of Hardware

Committed to maximum performance on POWER4, PPC970, POWER5,

PPC440, POWER6, PPC450, CELL and successors

Continue to work very closely with processor design teams

Exploitation of OS and Middleware

Synergies with operating system and middleware ISVs (performance,

specialized function)

Committed to AIX Linux affinity strategy and to Linux on pSeries

Reduced Emphasis on Proprietary Tooling

Affinity with GNU toolchain

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

55

Documentation

An information center containing the documentation for the XL Fortran V12.1 and
XL C/C++ V10.1 versions of the AIX compilers is available at:
http://publib.boulder.ibm.com/infocenter/comphelp/v101v121/index.jsp

An information center containing the documentation for the XL Fortran V11.1 and
XL C/C++ V9.0 versions of the AIX compilers is available at:
http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp

Optimization and Programming Guide for XLF V12.1 is now available online at:
http://publib.boulder.ibm.com/infocenter/comphelp/v101v121/index.jsp

New whitepaper “Overview of the IBM XL C/C++ and XL Fortran Compiler Family”
available at: http://www.ibm.com/support/docview.wss?uid=swg27005175

This information center contains all the html documentation shipped with the
compilers. It is completely searchable.

Please send any comments or suggestions on this information center or about the
existing C, C++ or Fortran documentation shipped with the products to
compinfo@ca.ibm.com.

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

56

All POWER4, POWER5, POWER6 and PPC970 enabled

XL C/C++ for AIX, V10.1 (July 2008)

XL Fortran for AIX, V12.1 (July 2008)

XL C/C++ for Linux, V10.1 (September 2008)

XL Fortran for Linux, V12.1 (September 2008)

Blue Gene (BG/L and BG/P) enabled

XL C/C++ Advanced Edition for BG/L, V9.0

XL Fortran Advanced Edition for BG/L, V11.1

XL C/C++ Advanced Edition for BG/P, V9.0

XL Fortran Advanced Edition for BG/P, V11.1

Cell/B.E. cross compiler products:

XL C/C++ for Multicore Acceleration for Linux on Power Systems, V10.1

(4Q2008)

XL C/C++ for Multicore Acceleration for Linux on x86 Systems, V10.1

(4Q2008)

XL Fortran for Multicore Acceleration for Linux on System p, V11.1

Power Systems Compiler Products: Latest Versions

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

57

Technology Preview currently available from alphaWorks

XL UPC language support on AIX and Linux

Download: http://www.alphaworks.ibm.com/tech/upccompiler

XL C/C++ for Transactional Memory for AIX

Download: http://www.alphaworks.ibm.com/tech/xlcstm

CDT for AIX

Download: http://www.alphaworks.ibm.com/tech/cremoteide

IBM Debugger for AIX (with Fortran support)

Download:

https://www.ibm.com/services/forms/preLogin.do?source=swerpsw

Power Systems Compilers : Latest Versions

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

58

Note: SPEC2000 base options improvements from www.spec.org

Compilers
2001

V5/V7.1.1

2002

V6/V8.1

2003

V6/V8.1.1

2004

V7/V9.1

2005

V8/V10.1

Compound

Over 4

Years

CAGR

Rate

SpecINT Baseline 21% 0% 3% 7% 34% 7.6%

SpecFLOAT Baseline 12% 5% 18% 5% 46% 9.9%

History Of Compiler Improvement On Power4

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

59

Note: SPEC2000 base options improvements from www.spec.org

Compilers
2004

V7/V9.1

2005

V8/V10.1

2007

V9/V11.1

Compound

Over 3

Years

SpecINT Baseline 4.3% 6.4% 11%

SpecFLOAT Baseline 5.4% 1.8% 7.3%

History Of Compiler Improvement On Power5

Compilation Technology

ASCAC Meeting | IBM Power Systems Compiler Strategy © 2009 IBM Corporation

Software Group

60

FPU

Global information gathering

Pointer Analysis Alignment Analysis

Simdization

Straightline-code Simdization Loop-level Simdization

General Transformation for SIMD

Dependence Elimination Data Layout Optimization

Simdization

SIMD Intrinsic Generator

Constant Propagation

VMX

CELL

architecture independent

architecture specific

Diagnostic

output

…

Idiom Recognition

A Unified Simdization Framework

