

Overview of the MAPD Workshop June 3–5, 2008, Rockville, Maryland

The Organizing Committee

Philip Kegelmeyer SNL/CA, Chair

Chandrika Kamath LLNL

Robert Calderbank Princeton

Juan Meza LBNL

Terence Critchlow PNNL

Nagiza Samatova NC State/ORNL

Leland Jameson NSF_____

Alyson Wilson LANL

Demographics

- 66 attendees: 57 invitees, 9 observers
- 30 from DOE labs, 27 from academia, 6 from DOE ASCR, one each from NSA, Office of Technology Policy, NSF
- 27 attendees with an application focus, 30 with a math focus.

Application attendees			Math discipline attendees		
2	Astrophysics	6	Dimensionality Reduction		
3	Biology	3	Optimization		
4	Earth Systems	4	Uncertainty Quantification		
2	Nanophysics	5	Machine Learning		
4	Networks	4	Network/Graph Analysis		
2	Combustion	6	Statistics		
5	Cybersecurity	3	Streaming Data		
1	Fusion physics				
1	Accelerator physics				
3	Visualization				

Findings: Scalability

Algorithms must be re-engineered to scale with the size of the data, which is often independent of the number of model parameters, and so may require parallel, single-pass, or subsampling methodologies.

Findings: Distributed

Petascale data sets are too large to easily move, yet are often non-uniformly distributed, requiring algorithms that come to the data, rather than vice versa, and can adapt to the lack of a global perspective on the data.

Findings: Architectures

New algorithms should make effective use of new computer architectures that are being developed for data analysis.

Platform	Local	\mathbf{Remote}	Programming	Type of
	Memory	Memory	Model	Remote
	Access	Access		Access
	Latency	Latency		
Red Storm	Commodity	Medium	MPI	Distributed
				Memory
XMT	Long	Long	Heavily	Shared
			Multithreaded	Memory
Netezza	Commodity	Short (SPU	Augmented	Custom Query
		to $Disk$),	SQL	
		$\operatorname{Commodity}$		
		(Netezza		
		to Netezza)		
Commodity	Commodity	Long	MPI or PGAS	Distributed
Cluster				Memory
SMP	Commodity	Short	Lightly	Shared
			Multithreaded	Memory
Multithreaded	Commodity	Short	Moderately	Shared
SMP (e.g., SUN			Multithreaded	Memory
Niagara)				

Findings: Reduction

Analysis of petascale data in their raw form is often infeasible. Instead, improved methods for data and dimension reduction are needed to extract pertinent subsets, features of interest, or low-dimensional patterns.

Findings: Models

Using data to make predictions or discover new science requires methods to build and evaluate appropriate models of large-scale, heterogeneous, high-dimensional data.

Findings: Uncertainty

Interpreting results from petascale data requires methods for analyzing and understanding uncertainty, especially in the face of messy and incomplete data.

Findings: Outliers

Near real-time identification of anomalies in streaming and evolving data is needed in order to detect and respond to phenomena that are either short-lived (e.g., supernova onset) or urgent (e.g., power grid disruptions).

Findings: Culture

Effective mathematics research requires infrastructure, recognition of contributions, and incentives for efficient exchange and persistent storage of knowledge, both internally, within the mathematics community, and externally, to the application communities.

Findings: Mathematics is Critical

Mathematics is a critical part of the path from data to decision making; it leverages and completes investments in networking, architectures, and visualization.

Resources

- Conference materials: http://www.orau.gov/mathforpetascale
- Breakout notes and summaries (until May 1, 2009): http://drop.io/mapd
- Organizing committee:
 - Philip Kegelmeyer: wpk@sandia.gov
 - -Robert Calderbank: calderbk@math.princeton.edu
 - Terence Critchlow: terence.critchlow@pnl.gov
 - Leland Jameson: ljameson@nsf.gov
 - Chandrika Kamath: kamath2@llnl.gov
 - Juan Meza: meza@hpcrd.lbl.gov
 - Nagiza Samatova: samatovan@ornl.gov
 - Alyson Wilson: agw@lanl.gov

Summary

- Adapt analysis methods to the requirements of scientific petascale data
 - Algorithms must be re-engineered to scale with the size of the data, which is often independent of the number of model parameters, and so may require parallel, single-pass, or subsampling methodologies.
 - Petascale data sets are too large to easily move, yet are often non-uniformly distributed, requiring algorithms that come to the data, rather than vice versa, and can adapt to the lack of a global perspective on the data.
 - New algorithms should make effective use of new computer architectures that are being developed for data analysis.
- Develop new mathematics to extract novel insights from complex data
 - Analysis of petascale data in their raw form is often infeasible. Instead, improved methods for data
 and dimension reduction are needed to extract pertinent subsets, features of interest, or
 low-dimensional patterns.
 - Using data to make predictions or discover new science requires methods to build and evaluate appropriate models of large-scale, heterogeneous, high-dimensional data.
 - Interpreting results from petascale data requires methods for analyzing and understanding uncertainty, especially in the face of messy and incomplete data.
 - Near real-time identification of anomalies in streaming and evolving data is needed in order to detect and respond to phenomena that are either short-lived (e.g., supernova onset) or urgent (e.g., power grid disruptions).
- Support a research environment that recognizes the challenges of petascale data analysis
 - Effective mathematics research requires infrastructure, recognition of contributions, and incentives for efficient exchange and persistent storage of knowledge, both internally, within the mathematics community, and externally, to the application communities.
 - Mathematics is a critical part of the path from data to decision making; it leverages and completes investments in networking, architectures, and visualization.