ECP Update: Progress on Applications in Data Analytics and Optimization

Doug Kothe, ECP Project Director, Oak Ridge National Laboratory Lori Diachin, ECP Deputy Director, Lawrence Livermore National Laboratory Bill Hart, AD Leadership Team, The Sandia National Laboratories

September 30, 2022

Office of Science

ECP has successfully run two of our challenge problems on Frontier

WarpX Accelerator Physics	Science goal : First ever 3D simulation of a chain of tens of plasma accelerator stages for future colliders using multi-physics particle in cell codes.	from a full stage simulation
Figure of Merit on 8576 Frontier nodes is ~500X baseline run on NERSC Edison system	FOM run : 1000 steps of plasma acceleration stage with a prefilled plasma. Physics included PIC dynamic maxwell equations solver using block AMR grids, field ionization of atomic levels, Coulomb collisions, macroscopic materials.	KPP: 1000 steps of plasma acc. stage with prefilled plasma
ExaSky Cosmology	Science goal : Enable extraction of science from upcoming cosmological surveys.	
Figure of Merit on 8192 Frontier nodes is ~230X baseline run on ANL Theta system	FOM run : Gravity-only and hydro simulations using HACC at the scale of galaxies, groups and clusters. Physics included gravity, gas dynamics, heating/cooling, star formation, wind models, etc. Code design focuses on a small number of kernels	
	that are optimized for each system; 95% of the code remains unchanged across systems.	Particle light-cone visualizations from the 'Farpoint' run (Frontiere et al., ApJS 2022), a might mass resolution, large-volume cosmological simulation run with HACC.

2

ECP teams are ready and eager to have access to exascale systems

Frontier

- ECP expected to get access late October 2022
- Most teams are ready for a medium to large-scale run; If additional pre-acceptance time slots become available, 5-7 teams (CANDLE, ExaSMR, EQSIM, Subsurface, LatticeQCD, WDMApp) to be prioritized
- Teams make extensive use of access to Crusher, hackathons, vendor office hours, OLCF user support

Aurora

• Sunspot TDS system ready for ECP teams in early November (2 racks of final Aurora hardware)

КРР-1 Арр	Aurora EAS (Intel Proprietary)	Frontier TDS	Frontier	KPP-2 App	Aurora EAS (Intel Proprietary)	Frontier TDS	Frontier
LatticeQCD	Verified	Ready		GAMESS	Improving Perf.	Improving Perf.	
NWChemEx	Full Build/Test	Initial Build/Test		ExaAM	Initial Build/Test	Improving Perf.	
EXAALT	Verified	Improving Perf.		ExaWind	Verified	Improving Perf.	
QMCPACK	Initial Build/Test	Improving Perf.					
ExaSMR	Improving Perf.	Ready		Combustion-PELE	Initial Build/Test	Improving Perf.	
WDMApp	Improving Perf.	Improving Perf.		MFIX-Exa	Verified	Improving Perf.	
WarpX	Verified	Ready	Run	ExaStar	Full Build/Test	Improving Perf.	
ExaSky	Improving Perf.	Ready	Run	Subsurface	Stretch	Ready	
EQSIM	Initial Build/Test	Ready		ExaSGD	Stretch	Improving Perf.	
E3SM-MMF	Improving Perf.	Improving Perf.		ExaBiome	Stretch	Improving Perf.	
CANDLE	Ready	Ready		ExaFEL	Full Build/Test	Blocked	

The first cohort of the ECP Broadening Participation Initiative Group was a big success!

SRP-HPC mentors/co-mentors

Dan Martin, LBL Keisha Moore, SHI SRP thrust lead SRP Program for ECP Coordinator

- A multi-pronged initiative to expand the pipeline and workforce for DOE HPC led by Dan Martin (LBNL) and Lois McInnes (ANL)
- Partnership with Sustainable Horizons Institute
- Cohort 1
 - 61 participants: 13 student track, 16 faculty track (+29 students), 3 self-funded students
 - 82% of overall participants represent at least 1 element of diversity
 - Mentors/hosts through ECP and Facilities community
 - Matches at all 9 participating labs
 - All participants to present posters at the 2023 ECP Annual Meeting
- Cohort 2
 - Funded for summer 2023
 - Kickoff meeting was Sept 29; matching workshop January 11-13

4

ECP is very active in agency outreach with many conversations around use of E4S

NOAA

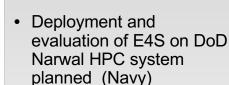
 NOAA deep dive meeting on July 20 was very successful. Discussed NOAA goals and shared

lessons learned

- NOAA experimenting with Spack build caches to significantly reduce compile times and, using E4S, build their code AM4 for the first time on AWS cloud.
- Working on ideas for collaboration projects post-ECP

NSF

NORR


- Planning an exascale system; very interested in E4S software stack. Exploring deployment of E4S on NFS commodity clusters
- Joint NSF-DOE workshops
 on E4s
- Shared lessons learned in ECP project management for portfolios of applications and software technologies.
- Inviting them to give a plenary panel at the 2023 ECP Annual Meeting.

NASA

- ST presentation at the NASA Science Mission Directorate Open Source Science Initiative Data and Compute Architecture study
- Planning technical deep dives; collected first round of topics of interest.

Spack

 Planning technical deep dive; requested topics of interest.

https://e4s.io

DoD

NASA

E4S lead: Sameer Shende (U Oregon)

https://spack.io

Spack lead: Todd Gamblin (LLNL)

All IAC agencies invited to cross-cut workshops on Cloud Computing in an Exascale World and Fortran planned for October and November, respectively

ECP leadership helping to drive conversations around post-ECP sustainability

Application Development

- Summary slides of post-ECP status for funding and opportunity
- Ongoing interactions with stakeholder offices
- White paper on application role in broader sustainability efforts

Software Technology

- Monthly meetings with ASCR task force on software stewardship
- Response to ASCR RFI; summary information of dependencies
- ST / Co-design product summary slides for post ECP funding and opportunity

Hardware and Integration

- Active discussions with facilities on staff retention post ECP; particularly for application integration staff
- Several activities integrated with ST sustainability vision (productivity, continuous integration, software deployment)

ECP Team and Funding	deling of advanced particle ECP Challenge Problem	Post-ECP Funding		
ECP Stakeholders: HEP, FES ECP funding: \$2.5M/year EOR ECP Team Members LBNL Leve, Weigun Zhang, Andrew hyses, Ann Alingen, Zhang, Andrew LLNL David Grote Key Simulation Milestone Jase Jase Jase Deam Deam Modeling of laser- plasma Schemidter of the memorated by the interaction of the memorated by the set	Simulating a chain of tens of plasma wakefield acceleration stages for HEP colliders at high enough fidelity to capture the full complexity of the acceleration processes that develop over a large range of space and timescales Software Products Delivered Core Modeling Capabilities • Electromagnetic PIC dynamic Maxwell equations solver on block structured AMR grids • Quasi-static Electromagnetic grids • Structs* Automic Induced AMR grids • Structs* Automic Induced AMR	• Accelera & astrop	tegrated AD/ST/HI interactions initiated by ECP I be continued – the complex systems, software tacks, etc. necessitates this going forward	A Broponse to the "Stewarchship of Software for Scientific and High-Performance Computing" Request for Information University of the Information of Software Information (Information Information Information Information Steven Cale Lings Annual Laboratory Steven Cale Lings Annual Laboratory Steven Cale Lings Annual Laboratory The Information Information Information Kindley Moher, Larveron Lingmore National Laboratory The Information Information Information Kindley Moher, Larveron Lingmore National Laboratory The Information Information Information Cale Lings Computing Statistics Information Cale Lings Computing Statistics Information Information Information Information Information Information Information Information Information Information In
Hours-tog simulations on up to 4k nodes on Summit and 8k nodes on Frontier	Target Domains Plasma accelerators Key Software Plasma physical applications Dependencies AMRRAS, SLATE, Spack ALPINE, ADIOS2, hePFTw/FFTX	Electron structure3 AMR gnds Finite-difference and pseudo- spectral (FFT-based) time- discretization Domain-decomposed FFT solvers		© ENERGY Daw MASS

ECP is entering a very exciting time!

- Executing on KPP challenge problems and integration goals
- Engaging stakeholders on the new capabilities developed
- Engaging industry and other agencies with outreach and lessons learned to broaden the community of exascale-ready applications and technologies

	Date	ECP Events
	October 26-27, 2022	IAC Meeting at ORNL
	October 31, 2022	Cloud Computing Workshop (IAC)(Virtual)
	October 2022	Access to Frontier
	November 2022	Access to Aurora TDS
	November 2022	Fortran Workshop (IAC)(Virtual)
	November 14-19, 2022	SC22 in Dallas
	January 11-13, 2023	Broadening participation cohort 2 matching workshop
	January 17-20, 2023	2023 ECP Annual Meeting
E		

AD stakeholder engagement

Office	POC	Briefing Date	-
FECM	Jennifer Wilcox	December 8, 2021	
FES	James Van Dam	December 23, 2021, next update Oct 13, 2022	\succ
HEP	Harriet Kung	June 10, 2022	
BES	Linda Horton	June 29, 2022	
WETO	Benjamin Hallissy	September 26, 2022	
NE	Katie Huff	Setting date	
BER	Gary Geernaert	TBD	
NP	Tim Hallman	TBD	
EERE	Mike Anderson	TBD	\leq
OE	Gil Bindenwald	TBD	
CESER	Puesh Kumar	твр	\leq

Will invite program managers from these offices to the 2023 ECP Annual Meeting

ECP Data Analytics and Optimization Applications

William Hart, SNL

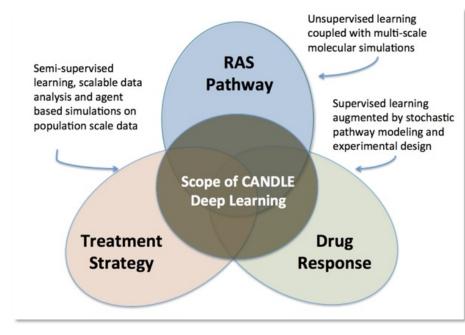
Overview of ECP Data Analytics and Optimization Applications

Focus: Applications that employ modern data analysis and machine learning techniques as a fundamental component of understanding and predictability

Project	PI	Description
CANDLE	Rick Stevens, ANL	Accelerate and Translate Cancer Research
ExaFEL	Amedeo Perazzo, Stanford	Light Source-Enabled Analysis of Molecular Structure
ExaSGD	Chris Oehmen, PNNL	Reliable and Efficient Planning of the Power Grid
ExaBiome	Kathy Yelick, LBNL	Improve Understanding of the Microbiome

DAO applications are new challenges for HPC systems

- Large-scale data-driven computations
- Kernels for sparse, irregular computations, etc.

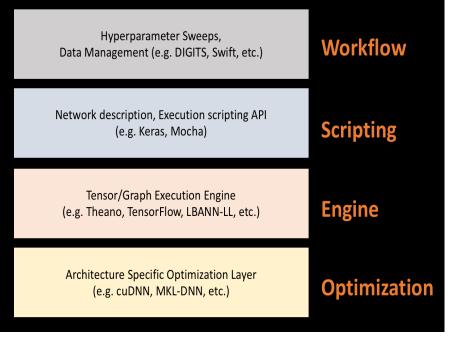

DAO applications are high-risk investments for ECP

CANDLE

ECP-CANDLE: <u>CAN</u>cer <u>D</u>istributed <u>Learning Environment</u>

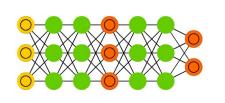
Develop an exscale deep learning environment for cancer Build on open source deep learning frameworks Optimize for CORAL and exascale platforms Support all three pilot project needs for deep learning Collaborate with DOE computing centers, HPC

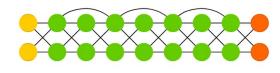
CANDLE Goals


vendors and ECP co-design and software technology projects

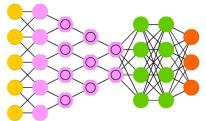
Candle Functional Goals

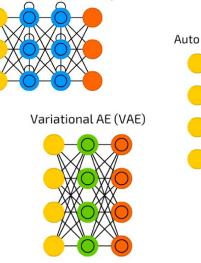
- Enable high productivity for deep learning centric workflows
- Support Key DL frameworks on DOE supercomputers (Keras, TF, Mxnet, CNTK)
- Support multiple paths to concurrency (Ensembles, Data and Model Parallel)
- Manage training data, model search, scoring, optimization, production training and inference (End-to-End Workflow)
- CANDLE runtime/supervisor (interface with batch schedulers)
- CANDLE Python library for improving model development (UQ, HPO, CV, MV)
- Well documented open examples and tutorials on Github
- Leverage as much open source as possible (build only what we need to add to existing frameworks)


CANDLE Software Stack


Deep Learning in Cancer \Rightarrow **many Methods**

- AutoEncoders learning data representations for classification and prediction of drug response, molecular trajectories
- VAEs and GANs generating data to support methods development, data augmentation and feature space algebra, drug candidate generation
- CNNs type classification, drug response, outcomes prediction, drug resistance
- RNNs sequence, text and molecular trajectories analysis


Generative Adversarial Network (GAN)


Deep Residual Network (DRN)

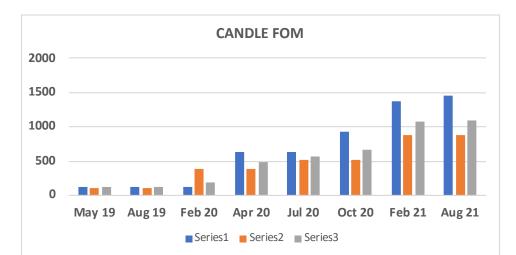


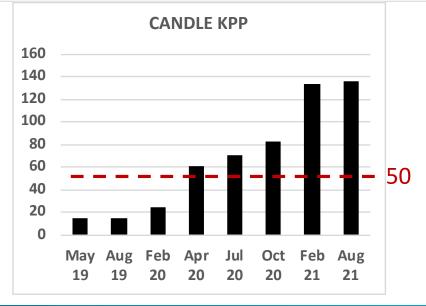
Deep Convolutional Network (DCN)

Long / Short Term Memory (LSTM)

CANDLE KPP and FOM

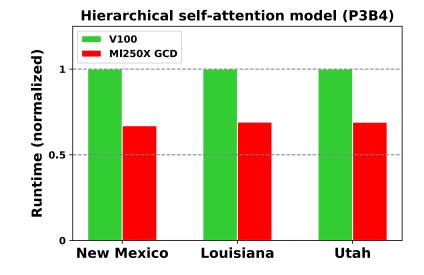
Achieved an estimated KPP of 50 in Apr 2020


CANDLE FOM is throughput rate measured in "models trained per hour"


Improvements continue with new optimizations to deep learning stacks

Improvements continue with new I/O strategies

	Pilot 1	Pilot 3	CANDLE FOM	CANDLE KPP
May 19	128.00	114.00	120.60	14.98
Aug 19	128.00	112.60	119.98	14.90
Feb 20	128.00	392.90	193.09	23.99
Apr 20	631.67	392.9	484.46	60.18
Jul 20	631.67	511.20	565.09	70.20
Oct 20	931.04	511.20	660.01	81.99
Feb 21	1376.56	874.20	1069.32	132.83
Aug 21	1449.83	874.2	1090.73	135.49



ECP KPP: Readiness for Frontier

- CANDLE Benchmark P3B4 from MOSSAIC
- Focus on single device performance
- Treating Frontier GPU as two logical devices ('GCDs') and benchmarking single GCD vs V100 from Summit
- Seeing 31-33% decrease in runtime on MOSSAIC datasets from different state cancer registries
- Expect to report Frontier KPP well in excess of ECP's 50x standard during FY23Q1

KPP Risk Assessment	KPP Timeline
Near Certainty	FY23/Q2

ExaFEL

ExaFEL: Data Analytics for High Repetition Rate Free Electron Lasers

FEL Data Challenge:

- Ultrafast X-ray pulses from LCLS are used like flashes from a high-speed strobe light, producing stop-action movies of atoms and molecules
- Both data processing and scientific interpretation demand intensive computational analysis

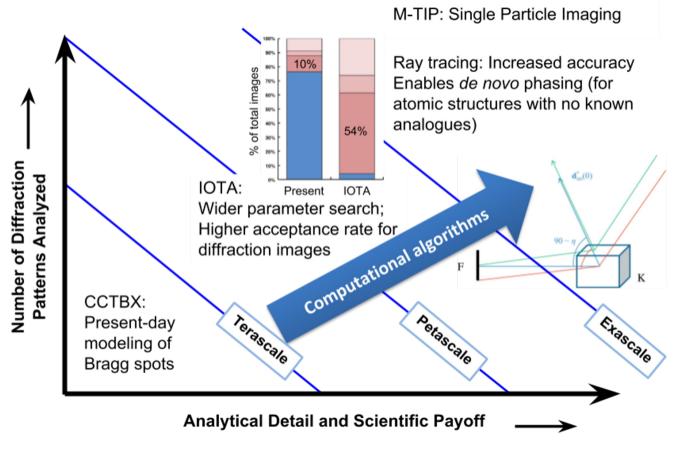
LCLS-II will increase data throughput by three orders of magnitude by 2025, creating an exceptional scientific computing challenge

Challenge Problem:

• Serial Femtosecond Crystallography (SFX): using x-ray tracing in nanocrystallography reconstruction

Stretch Goals:

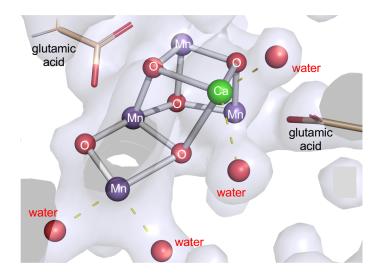
- Single Particle Imaging (SPI): simultaneously determine conformational states, orientations, intensity, and phase from single particle diffraction images
- Real Time End-to-end Workflows: automate the coordination of resources to execute end-to-end workflows from SLAC to NERSC

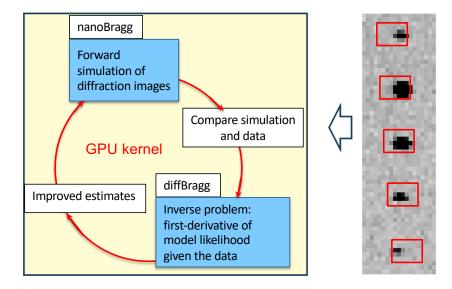

Broad ExaFEL Goal: Near real-time analysis of FEL data

Resource orchestration

- A key challenge for all ExaFEL applications
- This requires making reservations for both communication and computational resources

Filtering LCLS Data


- Critical to enable high quality, near real-time analysis
- Impacts requirements for communication bandwidths and HPC nodes


ExaFEL Challenge Problem: X-ray Crystallography (SFX)

Science Goal: enable the time-domain "movie" of an enzymatic reaction

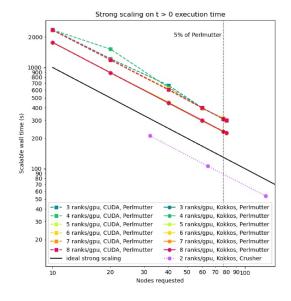
Photosystem II protein complex: $2H_2O \rightarrow O_2 + 4H^+ + 4e^{--}$

Performance Goal: analyze LCLS-II data in near real time: 1 TB/s

<u>SFX Approach</u>: apply L-BFGS to estimate structural parameters from diffraction data

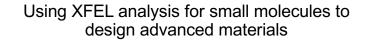
Progress Towards KPP Demonstration

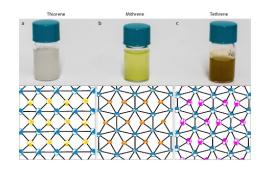
KPP Challenge Problem


- Analysis will simulate data processing in real time
- Planned Computation: ¹/₃ of Frontier for 1 hour
 - SFX analysis of 500k diffraction patterns
 - LCLS-II-HE: 5000 Hz (after data reduction)
 - Transfer 20 datasets to flash on Frontier
 - Each representing 100 seconds of data acquisition

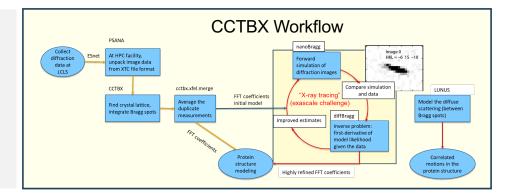
KPP Risk Assessment	KPP Timeline
Very Likely	FY23/Q4

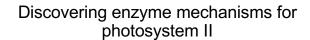
Status on Crusher

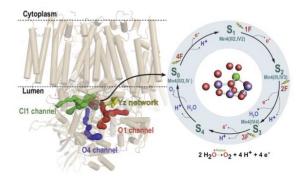

- Finalizing port of diffBragg kernel to Kokkos
- Currently no blockers


KPP demonstration planned for FY23/Q4 with new data collected in FY23/Q3

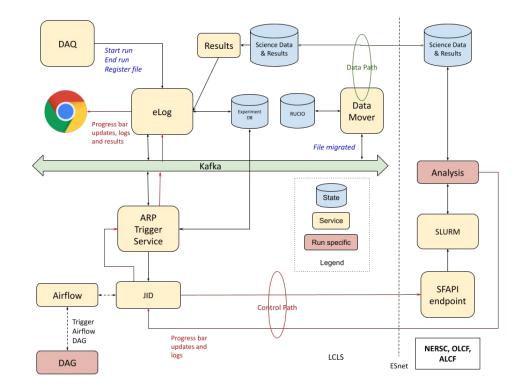
Science Impact of CCTBX Investments


- ExaFEL is extending the Computational Crystallography Toolbox (CCTBX) to support massive data sets
- Example: new data merging capability in CCTBX can process ~500GB of crystallography data in 1000 seconds





"Chemical crystallography by serial femtosecond X-ray diffraction", Nature, https://doi.org/10.1038/s41586-021-04218-3



"Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition", Nature Communications, https://doi.org/10.1038/s41467-021-26781-z

Coupling Experimental and Computational Facilities

- ExaFEL has been developing a data management infrastructure capable of
 - streaming data to remote computational resources
 - launching remote workflows automatically
 - returning results to experimenters in a web browser
- This infrastructure relies on the superfacility API to connect to NERSC

ExaSGD

ExaSGD: Optimizing Stochastic Grid Dynamics at Exascale

Scalability Challenges for Power Grid Planning and Operation

- Goal: Computing optimal power flow based on forecasts and contingencies
- Objective: Reduce cost of power generation and power supply
- Constraints: Demand and supply balance, security, and stability
- Challenges:
 - Large number of forecast scenarios
 - Large number of contingencies
 - Multiperiod analysis for recovery/restoration

Project Base Goal:

• Security Constrained AC Optimal Power Flow (SC ACOPF): large-scale OPF calculation with many forecasts and contingencies (*challenge problem*)

Project Stretch Goals:

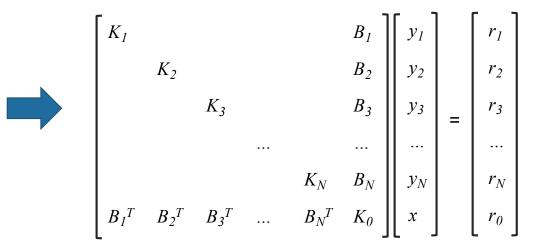
- Stochastic Multiperiod SC ACOPF: Multiperiod analysis of SC ACOPF (5-10 periods) to account for ramping of dispatchable power generators
- Frequency Restoration: Multiperiod analysis of SC ACOPF including frequency dynamics

ExaSGD Base Goal: Large Scale SC ACOPF

Posed as a 2-stage optimization problem:

Minimize

$$\sum_{t} F_{t}(x_{t}) + \sum_{tsk} G_{tsk}(x_{t}, y_{tsk})$$

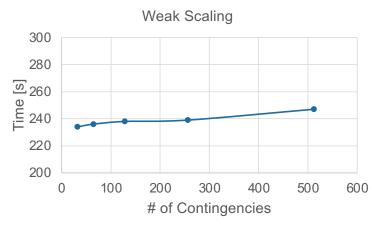

wind curtailment, load shedding, power imbalance, etc.

generator fuel cost

Subject to:	
$H_{tsk}(x_t, y_{tsk}) = 0$	flow definitions, power balance
$Q_{tsk}(x_t, y_{tsk}) \leq 0$	bounds: generator power, voltage, branch flow
$R_t(x_t, x_{t+1}) \le 0$	generator ramping limit

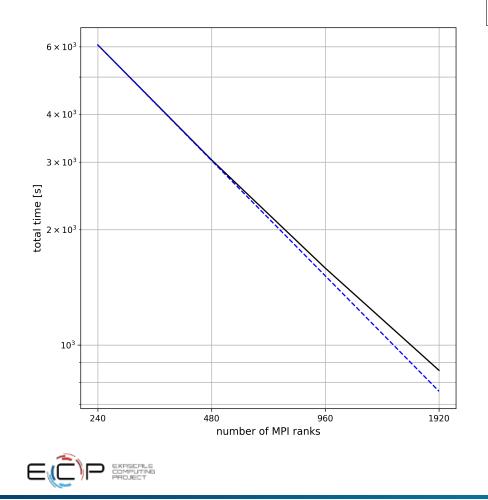
Key Idea: The block-arrow coupling structure can be exploited to decompose the optimization problem.

The optimization problem structure is apparent in the underlying linear system:



Progress Towards KPP Demonstration

KPP Challenge Problem

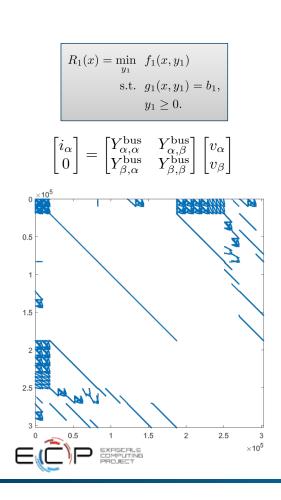

- · Security constrained optimal power flow
 - 10,000-bus US Western Interconnect
 - 10⁵ contingency scenarios
- Planned Computation: 25% Frontier for 1 hours

- Software stack deployed and tested on Crusher.
- Nightly tests running.
- Preliminary scaling results show promising performance
- Several bugs identified, debugging in progress.
- Peak performance ~10 PFLOPS on 64 Crusher nodes

KPP Risk Assessment	KPP Timeline
Likely	FY23/Q2

Optimal Power Dispatch for Texas Grid

Strong scaling on Summit for the synthetic Texas-2000 bus grid with 1000 contingencies and 10 scenarios

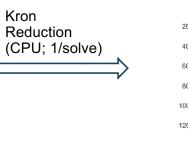

Goal: 10 PF with all optimization loops running on GPU

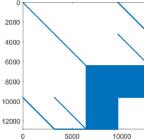
Status: Ran formulation 3 on SUMMIT with HiOp primal decomposition solver (all 2nd stage model and optimization solver code running on GPU)

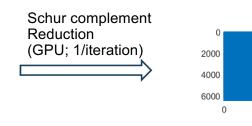
7TF/GPU * 1920 GPU * 0.7 = **9.4 PF** (70% utilization was the max observed when using non-pivoting factorization in Magma)

Optimal power dispatch computed within 20 min for a 2000-bus grid with 1000 contingencies and 10 different weather scenarios.

Key Challenge: Tailoring Second-Stage Problem for GPUs




Challenge: Suitable GPU-accelerated sparse direct solvers are not anticipated for Frontier or Aurora*


Idea: Reformulate ACOPF subproblems to create dense formulations suitable for dense linear solvers

Impact:

- Dense 10k bus ACOPF formulations can fit on target GPUs
- 20-70% of peak GPU performance, depending on stability requirements
- Efficiency degrades (compared to sparse) as problem size increases

5000

Challenge: We need sparse linear solvers for constrained optimization that run efficiently on GPUs

- Linear systems arising in optimal power flow analysis are symmetric, indefinite, very sparse and often ill-conditioned.
- ExaSGD Engagement (starting in FY22)
 - Sparse matrix factorization within Ginkgo framework
 - Collaboration with LBNL and KIT within ECP
 - Solver developed with CUDA and HIP backends and interfaced with HiOp.
 - Hybrid direct-iterative method for optimal power flow analysis
 - Collaboration with Stanford to develop HyKKT solver
 - Preliminary results show 2x speedup over CPU-only MA57 software
 - Developed cuSolver-based solver with help from NVIDIA
 - Extended the ExaSGD HiOp solver.
 - Latest profiling results show 3x speedup in numerical factorization.

ExaSGD will have a broad legacy for power grid optimization and related applications

Problem Formulation and Solution Methods	ExaSGD Capabilities
Application formulation	Stochastic Multiperiod SC ACOPF, Frequency Restoration
Optimization equations	Scalable optimal power flow formulations
Computational models*	ExaGO, ExaTron, Powerscenarios
Optimization solvers	Ніор
Numerical methods	Ginkgo, HyKKT

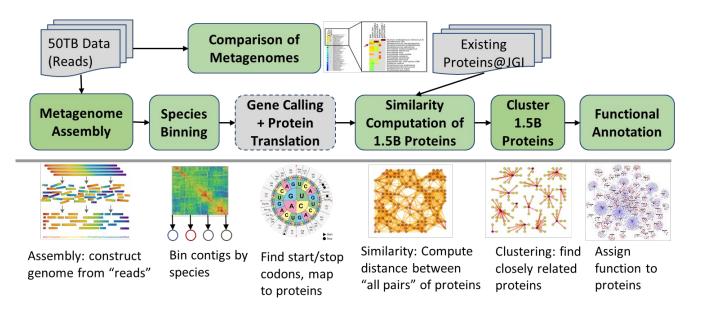
*ExaSGD is exploring both C++ and Julia approaches for modeling and solvers

ExaBiome

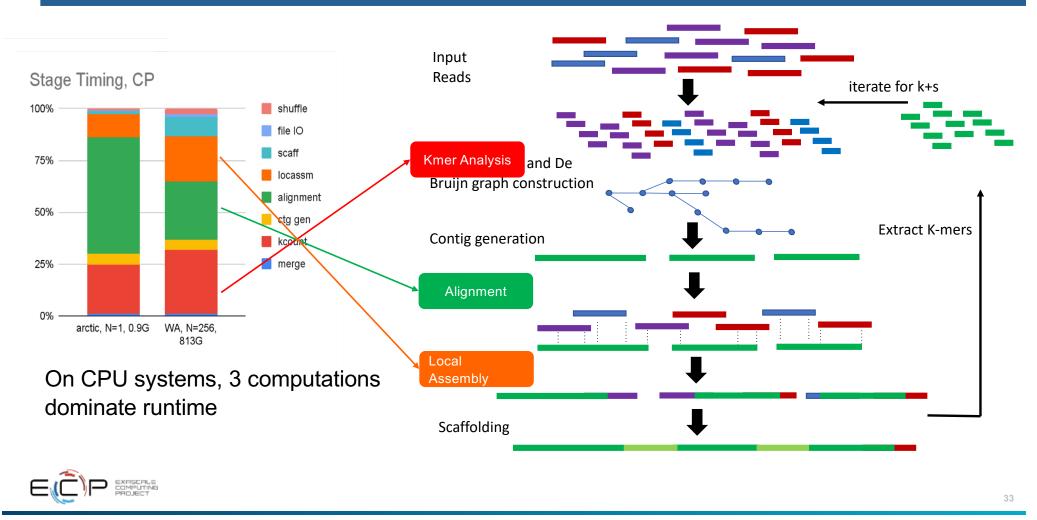
ExaBiome: Exascale Solutions to Microbiome Analysis

How do microbes affect disease and growth of switchgrass for biofuels?

What happens to microbes after a wildfire?


EXRSCALE COMPUTING

Challenge Problem: Metagenomic Assembly


· Find species, genes and relative abundance in microbial communities

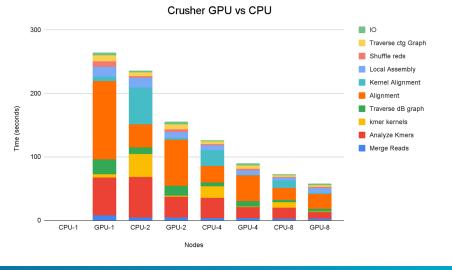
Stretch Goal: Metagenome Analysis

- Improve understanding of tree of life for microbes; aid in identifying gene function
- Track microbiome over time or space, changes in environment, etc.

MetaHipMer: Metagenomic Sequence Assembly

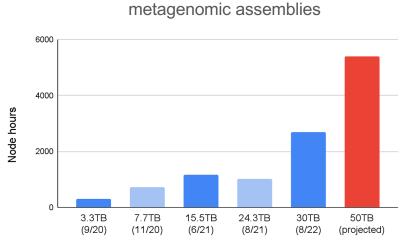
Progress Towards KPP Demonstration

KPP Challenge Problem


- Tara Oceans Assembly
 - Microbial data from all oceans, collected from 2009-13
 - 84 Terabytes, never before co-assembled

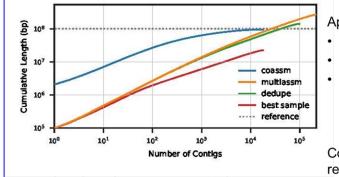
Planned Computations:

- 50TB: ½ of Frontier for 1 hour
- 84TB: ¾ of Frontier for 1 hour


Created miniapps and ported these to HIP using hipify script

- Alignment kernel ported and integrated
- Kmer Analysis kernel ported and integrated
- Local Assembly uses NVIDIA-specific intrinsics; have a workaround and will integrate while looking for better approach

KPP Risk Assessment	KPP Timeline
Likely	FY23/Q3


Scientific Impact of Large-Scale Assembly Computations

Enabling a sequence of largest-ever

Dataset size (TB)

Big Data, Big Compute \rightarrow Better Science

800 GB of soil (Western Arctic, 12) data plus synthetic data from 64 reference genomes

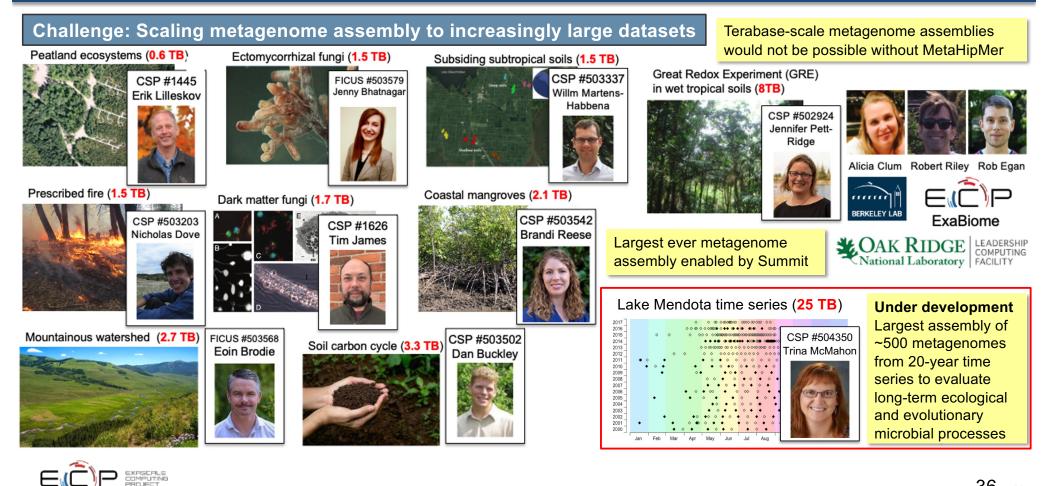
Approaches:

- Co-assembly: entire data set
- Multi-assembly: lane at a time
- Dedup: remove duplicates from multi-assembly

Co-assembly gives longer, less redundant assemblies, and is only possible with HPC

Microbial metabolic dependency and its impact on the soil carbon (3.3 TB)

GRE: Microbial carbon transformations in Wet Tropical Soils (7.7TB)


Lake Mendota time series: temporal dynamics of microbial carbon processing

Tara oceans: worldwide expedition to sample microbes from across the

OCEANS (image: ©G.Bounaud/ C.Sardet/ Soixanteseize/ Tara Expéditions)

Terabase-scale metagenome assembly drives discovery at JGI

Transformative contributions of ExaBiome

First-of-kind HPC tools, now exascale capable

- 1. MetaHipMer: metagenome short read assembler
- 2. PASTIS/HipMCL: protein alignment & clustering
- 3. KmerProf: tool for comparing metagenomes
- 4. ELBA: assembler for long read assembly

Worked closely with and relied heavily on tools from the PAGODA (1,3) and ExaGraph (2,4) teams

Future: production support, plus new and augmented analyses using AI methods and hardware

Summary

ECP Impact Extends Far Beyond Core KPP Demonstrations

Project	Stretch Goals
CANDLE	 Large Language Models (e.g. Transformers) COVID-19 Docking Models
ExaFEL	M-TIP: Single Particle ImagingCross-Facility Resource Management
ExaSGD	 Multi-Period Stochastic Optimal Power Flow Frequency Restoration Sparse Linear Solvers
ExaBiome	Protein ClusteringLong-Read Metagenomic Assembly

Next Steps

- Frontier
 - All of the projects seem likely to meet their KPP objectives on Frontier
- Aurora
 - CANDLE is already well-positioned for a KPP demonstration
 - ExaBiome and ExaFEL are good candidates for FY24 investments
 - Possible deployment of ExaSGD using Ginkgo sparse linear solver
- Post-ECP Funding
 - CANDLE has a strong post-ECP funding plan (ASCR/NIH)
 - Funding plans are uncertain for other projects

Observations and Lessons Learned

- Performance portability abstractions
 - Existing performance portability abstraction techniques appear well-suited for DAO applications
- GPU parallelism
 - Half of the DAO applications have seen non-trivial challenges developing GPU kernels
- Key dependencies
 - Most of the DAO applications have critical dependencies that are shared with few other ECP applications
- Performance bottlenecks
 - Data management and movement is a key challenge, and on-node memory can be constraining
- Continuous Integration
 - Critical to catalyze the development of new capabilities

Comparing DAO Projects

- CANDLE vs ExaFEL
 - Both rely on similar numerical algorithms for continuous, unconstrained parameter estimation
 - CANDLE was able to leverage significant prior investment in AI/ML toolkits
- ExaFEL vs ExaSGD
 - Both are focused on continuous optimization
 - ExaSGD requires *constrained* optimization methods, which generally require sparse linear solvers
 - The lack of suitable linear solvers significantly inhibited the development of ExaSGD capabilities
- ExaBiome: MetaHipMer vs HipMCL
 - ExaBiome's sequence assembly algorithms in MetaHipMer involve discrete algorithms
 - These are qualitatively distinct from methods used by other ECP applications
 - Parallelization of sequence assembly was quite complex (e.g. GPU assembly kernels)
 - ExaBiome's protein clustering algorithm in HipMCL leverage distributed matrix algebra
 - Parallelization of matrix algebra is relatively well-understood, which accelerated HipMCL development

