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WarpX 
Accelerator Physics

Figure of Merit on 8576 Frontier 
nodes is ~500X baseline run on 
NERSC Edison system 

Science goal:  First ever 3D simulation of a chain of 
tens of plasma accelerator stages for future colliders 
using multi-physics particle in cell codes.

FOM run: 1000 steps of plasma acceleration stage 
with a prefilled plasma. Physics included PIC 
dynamic maxwell equations solver using block AMR 
grids, field ionization of atomic levels, Coulomb 
collisions, macroscopic materials.

ExaSky
Cosmology

Figure of Merit on 8192 Frontier 
nodes is ~230X baseline run on 
ANL Theta system

Science goal:  Enable extraction of science from 
upcoming cosmological surveys.

FOM run:  Gravity-only and hydro simulations using 
HACC at the scale of galaxies, groups and clusters. 
Physics included gravity, gas dynamics, 
heating/cooling, star formation, wind models, etc. 
Code design focuses on a small number of kernels 
that are optimized for each system; 95% of the code 
remains unchanged across systems.

ECP has successfully run two of our challenge problems on Frontier

Particle light-cone visualizations from the 
‘Farpoint’ run (Frontiere et al., ApJS 2022), a 
might mass resolution, large-volume 
cosmological simulation run with HACC.
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ECP teams are ready and eager to have access to exascale systems

Frontier
• ECP expected to get access late October 2022

• Most teams are ready for a medium to large-scale 
run; If additional pre-acceptance time slots become 
available, 5-7 teams (CANDLE, ExaSMR, EQSIM, 
Subsurface, LatticeQCD, WDMApp) to be prioritized

• Teams make extensive use of access to Crusher, 
hackathons, vendor office hours, OLCF user support

Aurora
• Sunspot TDS system ready for ECP teams in early 

November (2 racks of final Aurora hardware)
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The first cohort of the ECP Broadening Participation Initiative Group 
was a big success!

• A multi-pronged initiative to expand the pipeline and workforce for 
DOE HPC led by Dan Martin (LBNL) and Lois McInnes (ANL)

• Partnership with Sustainable Horizons Institute

• Cohort 1 

– 61 participants: 13 student track, 16 faculty track (+29 students), 
3 self-funded students

– 82% of overall participants represent at least 1 element of diversity

– Mentors/hosts through ECP and Facilities community

– Matches at all 9 participating labs

– All participants to present posters at the 2023 ECP Annual Meeting

• Cohort 2

– Funded for summer 2023

– Kickoff meeting was Sept 29; matching workshop January 11-13
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NOAA

• NOAA deep dive meeting 
on July 20 was very 
successful.  Discussed 
NOAA goals and shared 
lessons learned

• NOAA experimenting with 
Spack build caches to 
significantly reduce 
compile times and, using 
E4S, build their code AM4 
for the first time on AWS 
cloud.

• Working on ideas for
collaboration projects post-
ECP

NSF

• Planning an exascale 
system; very interested in 
E4S software stack. 
Exploring deployment of 
E4S on NFS commodity 
clusters

• Joint NSF-DOE workshops
on E4s

• Shared lessons learned in 
ECP project management 
for portfolios of 
applications and software 
technologies.

• Inviting them to give a 
plenary panel at the 2023 
ECP Annual Meeting.

NASA

• ST presentation at the 
NASA Science Mission 
Directorate Open Source
Science Initiative Data and 
Compute Architecture study

• Planning technical deep 
dives; collected first round 
of topics of interest.

ECP is very active in agency outreach with many conversations around use of E4S

DoD

• Deployment and 
evaluation of E4S on DoD 
Narwal HPC system 
planned  (Navy) 

• Planning technical deep 
dive; requested topics of 
interest.

All IAC agencies invited to cross-cut workshops on Cloud Computing in an 
Exascale World and Fortran planned for October and November, respectively

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

https://spack.io
Spack lead: Todd Gamblin (LLNL)

https://e4s.io/
https://spack.io/
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Application Development

• Summary slides of post-ECP 
status for funding and opportunity 

• Ongoing interactions with 
stakeholder offices

• White paper on application role in 
broader sustainability efforts

Software Technology

• Monthly meetings with ASCR 
task force on software 
stewardship

• Response to ASCR RFI; 
summary information of 
dependencies

• ST / Co-design product summary 
slides for post ECP funding and 
opportunity

Hardware and Integration

• Active discussions with facilities 
on staff retention post ECP; 
particularly for application 
integration staff

• Several activities integrated with 
ST sustainability vision 
(productivity, continuous 
integration, software deployment)

ECP leadership helping to drive conversations around post-ECP sustainability

The integrated AD/ST/HI interactions initiated by ECP 
should be continued – the complex systems, software 

stacks, etc. necessitates this going forward
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ECP is entering a very exciting time!

Office POC Briefing Date

FECM Jennifer Wilcox December 8, 2021

FES James Van Dam December 23, 2021, 
next update Oct 13, 2022

HEP Harriet Kung June 10, 2022

BES Linda Horton June 29, 2022

WETO Benjamin Hallissy September 26, 2022

NE Katie Huff Setting date

BER Gary Geernaert TBD

NP Tim Hallman TBD

EERE Mike Anderson TBD

OE Gil Bindenwald TBD

CESER Puesh Kumar TBD

Will invite program managers from these offices to 
the 2023 ECP Annual Meeting

Date ECP Events
October 26-27, 2022 IAC Meeting at ORNL

October 31, 2022 Cloud Computing Workshop (IAC)(Virtual)

October 2022 Access to Frontier

November 2022 Access to Aurora TDS

November 2022 Fortran Workshop (IAC)(Virtual)

November 14-19, 
2022

SC22 in Dallas

January 11-13, 2023 Broadening participation cohort 2 
matching workshop

January 17-20, 2023 2023 ECP Annual Meeting

• Executing on KPP challenge problems and integration goals

• Engaging stakeholders on the new capabilities developed

• Engaging industry and other agencies with outreach and lessons learned to broaden the community of 
exascale-ready applications and technologies

AD stakeholder engagement



ECP Data Analytics 
and Optimization 
Applications

William Hart, SNL
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Overview of ECP Data Analytics and Optimization Applications

Focus: Applications that employ modern data analysis and machine learning techniques as a 
fundamental component of understanding and predictability

DAO applications are new challenges for HPC systems
– Large-scale data-driven computations
– Kernels for sparse, irregular computations, etc.

Project PI Description

CANDLE Rick Stevens, ANL Accelerate and Translate Cancer Research

ExaFEL Amedeo Perazzo, Stanford Light Source-Enabled Analysis of Molecular Structure

ExaSGD Chris Oehmen, PNNL Reliable and Efficient Planning of the Power Grid

ExaBiome Kathy Yelick, LBNL Improve Understanding of the Microbiome

DAO applications are
high-risk investments

for ECP



CANDLE
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ECP-CANDLE: CANcer Distributed Learning Environment
CANDLE Goals

Develop an exscale deep learning environment for 
cancer

Build on open source deep learning frameworks

Optimize for CORAL and exascale platforms

Support all three pilot project needs for deep 
learning

Collaborate with DOE computing centers, HPC 
vendors and ECP co-design and software technology 
projects 
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Candle Functional Goals

• Enable high productivity for deep learning centric 
workflows

• Support Key DL frameworks on DOE supercomputers 
(Keras, TF, Mxnet, CNTK)

• Support multiple paths to concurrency (Ensembles, Data 
and Model Parallel)

• Manage training data, model search, scoring, optimization, 
production training and inference (End-to-End Workflow)

• CANDLE runtime/supervisor (interface with batch 
schedulers)

• CANDLE Python library for improving model development 
(UQ, HPO, CV, MV)

• Well documented open examples and tutorials on Github
• Leverage as much open source as possible (build only 

what we need to add to existing frameworks)
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Deep Learning in Cancer ⟹ many Methods
• AutoEncoders – learning data representations for classification and prediction of 

drug response, molecular trajectories

• VAEs and GANs – generating data to support methods development, data 
augmentation and feature space algebra, drug candidate generation

• CNNs – type classification, drug response, outcomes prediction, drug resistance

• RNNs – sequence, text and molecular trajectories analysis
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CANDLE KPP and FOM
Achieved an estimated KPP of 50 in Apr 2020

CANDLE FOM is throughput rate measured in 
“models trained per hour”

Improvements continue with new optimizations to 
deep learning stacks

Improvements continue with new I/O strategies
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Pilot 1 Pilot 3 CANDLE FOM CANDLE KPP
May 19 128.00 114.00 120.60 14.98
Aug 19 128.00 112.60 119.98 14.90
Feb 20 128.00 392.90 193.09 23.99
Apr 20 631.67 392.9 484.46 60.18
Jul 20 631.67 511.20 565.09 70.20
Oct 20 931.04 511.20 660.01 81.99
Feb 21 1376.56 874.20 1069.32 132.83
Aug 21 1449.83 874.2 1090.73 135.49
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ECP KPP: Readiness for Frontier

•CANDLE Benchmark P3B4 from MOSSAIC

• Focus on single device performance

• Treating Frontier GPU as two logical devices 
(‘GCDs’) and benchmarking single GCD vs 
V100 from Summit

• Seeing 31-33% decrease in runtime on 
MOSSAIC datasets from different state cancer 
registries 

• Expect to report Frontier KPP well in excess of 
ECP’s 50x standard during FY23Q1

KPP Risk Assessment KPP Timeline
Near Certainty FY23/Q2



ExaFEL
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FEL Data Challenge:
● Ultrafast X-ray pulses from LCLS are used 

like flashes from a high-speed strobe light, 
producing stop-action movies of atoms and 
molecules

● Both data processing and scientific 
interpretation demand intensive 
computational analysis

LCLS-II will increase data throughput by three 
orders of magnitude by 2025, creating an 
exceptional scientific computing challenge

ExaFEL:
Data Analytics for High Repetition Rate Free Electron Lasers

Challenge Problem:
● Serial Femtosecond Crystallography (SFX): 

using x-ray tracing in nanocrystallography 
reconstruction

Stretch Goals:
● Single Particle Imaging (SPI): 

simultaneously determine conformational 
states, orientations, intensity, and phase 
from single particle diffraction images

● Real Time End-to-end Workflows: automate 
the coordination of resources to execute 
end-to-end workflows from SLAC to NERSC
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Broad ExaFEL Goal: Near real-time analysis of FEL data

Resource orchestration

• A key challenge for all 
ExaFEL applications

• This requires making 
reservations for both 
communication and 
computational resources

Filtering LCLS Data

• Critical to enable high quality, 
near real-time analysis

• Impacts requirements for 
communication bandwidths 
and HPC nodes
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ExaFEL Challenge Problem: X-ray Crystallography (SFX)

Science Goal: enable the time-domain 
"movie" of an enzymatic reaction 

Photosystem II protein complex:
2H2O → O2+ 4H+ + 4e--

waterMn
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Performance Goal: analyze LCLS-II 
data in near real time: 1 TB/s

diffBragg

Forward 
simulation of 
diffraction images

nanoBragg

Inverse problem: 
first-derivative of 
model likelihood 
given the data 

Compare simulation
and data

Improved estimates

GPU kernel

SFX Approach: apply L-BFGS to estimate 
structural parameters from diffraction data



20

Progress Towards KPP Demonstration

KPP Challenge Problem

• Analysis will simulate data processing in real 
time 

• Planned Computation: ⅓ of Frontier for 1 hour
– SFX analysis of 500k diffraction patterns
– LCLS-II-HE: 5000 Hz (after data reduction)
– Transfer 20 datasets to flash on Frontier
– Each representing 100 seconds of data 

acquisition

Status on Crusher
– Finalizing port of diffBragg kernel to Kokkos
– Currently no blockers

KPP demonstration planned for FY23/Q4 with 
new data collected in FY23/Q3

KPP Risk Assessment KPP Timeline
Very Likely FY23/Q4
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Science Impact of CCTBX Investments
• ExaFEL is extending the Computational 

Crystallography Toolbox (CCTBX) to support 
massive data sets

• Example: new data merging capability in CCTBX 
can process ~500GB of crystallography data in 
1000 seconds

Using XFEL analysis for small molecules to 
design advanced materials

Discovering enzyme mechanisms for 
photosystem II

CCTBX Workflow

“Chemical crystallography by serial femtosecond X-ray diffraction”, 
Nature, https://doi.org/10.1038/s41586-021-04218-3

“Structural dynamics in the water and proton channels of photosystem II during the S2 to 
S3 transition”, Nature Communications, https://doi.org/10.1038/s41467-021-26781-z
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Coupling Experimental and Computational Facilities

• ExaFEL has been developing a data 
management infrastructure capable of 
– streaming data to remote computational 

resources
– launching remote workflows automatically
– returning results to experimenters in a web 

browser

• This infrastructure relies on the superfacility
API to connect to NERSC



ExaSGD
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Scalability Challenges for Power 
Grid Planning and Operation
• Goal: Computing optimal power flow 

based on forecasts and contingencies

• Objective: Reduce cost of power 
generation and power supply

• Constraints: Demand and supply balance, 
security, and stability

• Challenges:
– Large number of forecast scenarios

– Large number of contingencies

– Multiperiod analysis for recovery/restoration

ExaSGD:
Optimizing Stochastic Grid Dynamics at Exascale

Project Base Goal:
● Security Constrained AC Optimal Power 

Flow (SC ACOPF): large-scale OPF 
calculation with many forecasts and 
contingencies (challenge problem)

Project Stretch Goals:
● Stochastic Multiperiod SC ACOPF: 

Multiperiod analysis of SC ACOPF (5-10 
periods) to account for ramping of 
dispatchable power generators

● Frequency Restoration: Multiperiod analysis 
of SC ACOPF including frequency dynamics
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ExaSGD Base Goal: Large Scale SC ACOPF

K1 B1

K2 B2

K3 B3

… …

KN BN

B1T B2T B3T … BNT K0

The optimization problem structure is apparent in 
the underlying linear system:

Posed as a 2-stage optimization problem:

y1

y2

y3

…

yN

x

r1
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…

rN

r0

=

Key Idea: The block-arrow coupling structure can be 
exploited to decompose the optimization problem.

Minimize
åt Ft(xt) generator fuel cost

+ åtsk Gtsk(xt, ytsk) wind curtailment, 
load shedding,
power imbalance, etc.

Subject to:
Htsk(xt, ytsk) = 0 flow definitions,

power balance

Qtsk(xt, ytsk) £ 0 bounds: generator power,
voltage, branch flow

Rt(xt, xt+1) £ 0 generator ramping limit
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Progress Towards KPP Demonstration

KPP Challenge Problem

• Security constrained optimal power flow
– 10,000-bus US Western Interconnect
– 105 contingency scenarios

• Planned Computation: 25% Frontier for 1 hours

– Software stack deployed and tested on Crusher.
– Nightly tests running.
– Preliminary scaling results show promising 

performance
– Several bugs identified, debugging in progress. 
– Peak performance ~10 PFLOPS on 64 Crusher 

nodes
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KPP Risk Assessment KPP Timeline
Likely FY23/Q2
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Optimal Power Dispatch for Texas Grid 

These four tasks were then split into di↵erent stories targeting specific development activities. The work done
under these stories was towards meeting the three milestones set for this year. The two mileposts provide
quantifiable measures for the success of the milestones. The end goal for this year was to run challenge
problem 3 (stochastic security-constrained optimal power flow) on Summit and Spock to achieve greater than
10 PFLOPS performance.

The detailed work including the scope, approach, and the results are presented in the following subsections.
We first present the results for the two mileposts, pertaining to the domain thrust, followed by discussion on
the three milestones. A brief overview of the work done in each of the epics and stories is given next. Finally,
we list the products/outreach items accomplished this year.

3.1 MILEPOSTS

3.1.1 Milepost 3

Run Formulation 3 using full ExaSGD software stack with HiOp MPI engine and ExaGO modeling framework
on Summit. Use 10,000-20,000 bus grid model with 5+ scenarios, 2000-10000 contingencies. All computations
inside optimization loops run on GPU. Target 10 PFLOP performance

For this milepost, we executed the ExaSGD software stack on Summit for the challenge 3 problem. The
synthetic Texas 2000-bus grid was used with 10 wind generation scenarios each with 1000 contingencies.
ExaGO’s SOPFLOW application was used together with HiOp’s primal decomposition solver. All the
computations (domain model and optimization kernels) for the second-stage subproblems run on the GPU.
The strong scaling of this problem up to 1920 nodes is shown in figure 1. It took about 15 minutes for the
optimization to converge in two iterations.

Figure 1: Challenge problem 3 strong scaling on Summit for the synthetic

Texas-2000 bus grid with 1000 contingencies and 10 scenarios

3.1.2 Milepost 4

Run Formulation 3 using full ExaSGD software stack on Tulip. Use 1,000-2,000 bus grid model with 5+
scenarios and 200-1,000 contingencies. All computations inside optimization loops run on AMD GPUs

For this milepost, we used Spock, instead of Tulip, for our runs. Spock uses AMD GPUs and it has a
maximum allocation limit of 4 nodes up to 3 hours. Hence, the challenge 3 problem was scaled accordingly to

Exascale Computing Project (ECP) 3 ADSE22-213

Strong scaling on Summit for the synthetic Texas-2000 bus grid with 1000 contingencies 
and 10 scenarios

Goal: 10 PF with all optimization loops running on 
GPU

Status: Ran formulation 3 on SUMMIT with HiOp 
primal decomposition solver (all 2nd stage model 
and optimization solver code running on GPU)

7TF/GPU * 1920 GPU *  0.7 = 9.4 PF
(70% utilization was the max observed when using 
non-pivoting factorization in Magma)

Optimal power dispatch computed within 20 min 
for a 2000-bus grid with 1000 contingencies and 
10 different weather scenarios.
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Key Challenge: Tailoring Second-Stage Problem for GPUs
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Kron 
Reduction
(CPU; 1/solve)

Schur complement
Reduction
(GPU; 1/iteration)

Challenge: Suitable GPU-accelerated sparse direct solvers are not 
anticipated for Frontier or Aurora*

Idea: Reformulate ACOPF subproblems to create dense 
formulations suitable for dense linear solvers

Impact:
– Dense 10k bus ACOPF formulations can fit on target GPUs
– 20-70% of peak GPU performance, depending on stability 

requirements
– Efficiency degrades (compared to sparse) as problem size increases
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Challenge: We need sparse linear solvers for constrained 
optimization that run efficiently on GPUs
• Linear systems arising in optimal power flow analysis are symmetric, indefinite, very sparse and 

often ill-conditioned. 

• ExaSGD Engagement (starting in FY22)
– Sparse matrix factorization within Ginkgo framework

• Collaboration with LBNL and KIT within ECP
• Solver developed with CUDA and HIP backends and interfaced with HiOp.

– Hybrid direct-iterative method for optimal power flow analysis
• Collaboration with Stanford to develop HyKKT solver
• Preliminary results show 2x speedup over CPU-only MA57 software

– Developed cuSolver-based solver with help from NVIDIA
• Extended the ExaSGD HiOp solver.
• Latest profiling results show 3x speedup in numerical factorization.
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ExaSGD will have a broad legacy for power grid optimization and 
related applications 

Problem Formulation and 
Solution Methods

ExaSGD Capabilities

Application formulation Stochastic Multiperiod SC ACOPF, Frequency Restoration

Optimization equations Scalable optimal power flow formulations

Computational models* ExaGO, ExaTron, Powerscenarios

Optimization solvers Hiop

Numerical methods Ginkgo, HyKKT

*ExaSGD is exploring both C++ and Julia approaches for modeling and solvers



ExaBiome
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ExaBiome:
Exascale Solutions to Microbiome Analysis

How do microbes affect disease and 
growth of switchgrass for biofuels?

What happens to microbes 
after a wildfire?

Challenge Problem: Metagenomic Assembly
• Find species, genes and relative abundance in microbial communities

Stretch Goal: Metagenome Analysis
• Improve understanding of tree of life for microbes; aid in identifying gene function
• Track microbiome over time or space, changes in environment, etc. 
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MetaHipMer: Metagenomic Sequence Assembly 

Extract K-mers

Input 
Reads

K-mer analysis and De 
Bruijn graph construction

Contig generation

Alignment

Local Assembly

Scaffolding

iterate for k+s

Local 
Assembly

Alignment

Kmer Analysis

On CPU systems, 3 computations 
dominate runtime
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Progress Towards KPP Demonstration

KPP Challenge Problem

• Tara Oceans Assembly
– Microbial data from all oceans, collected from 

2009-13
– 84 Terabytes, never before  co-assembled

• Planned Computations:
– 50TB: ½ of Frontier for 1 hour
– 84TB: ¾ of Frontier for 1 hour

Created miniapps and ported these to HIP using 
hipify script

– Alignment kernel - ported and integrated
– Kmer Analysis kernel - ported and integrated 
– Local Assembly - uses NVIDIA-specific 

intrinsics; have a workaround and will integrate 
while looking for better approach

KPP Risk Assessment KPP Timeline
Likely FY23/Q3
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Scientific Impact of Large-Scale Assembly Computations

35

Enabling a sequence of largest-ever 
metagenomic assemblies

Microbial metabolic 
dependency and its impact 
on the soil carbon  (3.3 TB)

GRE: Microbial carbon 
transformations in Wet 
Tropical Soils (7.7TB) 

Lake Mendota time series: 
temporal dynamics of 
microbial carbon processing

Tara oceans: worldwide expedition 
to sample microbes from across the 
oceans (image: ©G.Bounaud/ C.Sardet/ 
Soixanteseize/ Tara Expéditions)
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Challenge: Scaling metagenome assembly to increasingly large datasets Terabase-scale metagenome assemblies 
would not be possible without MetaHipMer

Largest ever metagenome 
assembly enabled by Summit

Lake Mendota time series (25 TB) Under development
Largest assembly of 
~500 metagenomes 
from 20-year time 
series to evaluate 
long-term ecological 
and evolutionary 
microbial processes 

CSP #504350
Trina McMahon

36

Terabase-scale metagenome assembly drives discovery at JGI
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Transformative contributions of ExaBiome

37

First-of-kind HPC tools, now exascale capable
1. MetaHipMer: metagenome short read assembler

2. PASTIS/HipMCL: protein alignment & clustering 

3. KmerProf: tool for comparing metagenomes

4. ELBA: assembler for long read assembly

Worked closely with and relied heavily on tools from 
the PAGODA (1,3) and ExaGraph (2,4) teams

Best 
Paper 
Finalist

Best 
Paper 
Finalist

Gordon 
Bell 
Finalist

"...best ranking method 
across metrics and all 
data sets..." 

Future: production support, plus new and augmented analyses using AI methods and hardware

2022 Critical 
Assessment of 
Metagenome 
Interpretation



Summary
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ECP Impact Extends Far Beyond Core KPP Demonstrations

Project Stretch Goals

CANDLE • Large Language Models (e.g. Transformers)
• COVID-19 Docking Models

ExaFEL • M-TIP: Single Particle Imaging
• Cross-Facility Resource Management

ExaSGD • Multi-Period Stochastic Optimal Power Flow
• Frequency Restoration
• Sparse Linear Solvers

ExaBiome • Protein Clustering
• Long-Read Metagenomic Assembly
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Next Steps

• Frontier
– All of the projects seem likely to meet their KPP objectives on Frontier

• Aurora
– CANDLE is already well-positioned for a KPP demonstration
– ExaBiome and ExaFEL are good candidates for FY24 investments
– Possible deployment of ExaSGD using Ginkgo sparse linear solver

• Post-ECP Funding
– CANDLE has a strong post-ECP funding plan (ASCR/NIH)
– Funding plans are uncertain for other projects
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Observations and Lessons Learned

• Performance portability abstractions
– Existing performance portability abstraction techniques appear well-suited for DAO applications

• GPU parallelism
– Half of the DAO applications have seen non-trivial challenges developing GPU kernels

• Key dependencies
– Most of the DAO applications have critical dependencies that are shared with few other ECP applications

• Performance bottlenecks
– Data management and movement is a key challenge, and on-node memory can be constraining

• Continuous Integration
– Critical to catalyze the development of new capabilities
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Comparing DAO Projects

• CANDLE vs ExaFEL
– Both rely on similar numerical algorithms for continuous, unconstrained parameter estimation
– CANDLE was able to leverage significant prior investment in AI/ML toolkits

• ExaFEL vs ExaSGD
– Both are focused on continuous optimization
– ExaSGD requires constrained optimization methods, which generally require sparse linear solvers
– The lack of suitable linear solvers significantly inhibited the development of ExaSGD capabilities

• ExaBiome: MetaHipMer vs HipMCL
– ExaBiome’s sequence assembly algorithms in MetaHipMer involve discrete algorithms

• These are qualitatively distinct from methods used by other ECP applications
• Parallelization of sequence assembly was quite complex (e.g. GPU assembly kernels)

– ExaBiome’s protein clustering algorithm in HipMCL leverage distributed matrix algebra
• Parallelization of matrix algebra is relatively well-understood, which accelerated HipMCL development


