

Update on Exascale Systems - Frontier

Justin L. Whitt Leadership Computing Facility Oak Ridge National Laboratory

ASCAC July 2022

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Frontier Update in 4 Parts

- System status
- Facility status
- Overcoming Supply Chain Issues
- Early User Experiences on Frontier Hardware

OAK RIDGE NATIONAL LABORATORY'S FRONTIER SUPERCOMPUTER

- 74 HPE Cray EX cabinets
- 9,408 AMD EPYC CPUs, 37,632 AMD GPUs
- 700 petabytes of storage capacity, peak write speeds of 5 terabytes per second using Cray Clusterstor Storage System
- 90 miles of HPE Slingshot networking cables

1.1 exaflops ofperformance on theMay 2022 Top500.

62.04 gigaflops/watt power efficiency on a single cabinet. 52.23 gigaflops/watt power efficiency on the full system.

6.88 exaflops on the HPL-AI benchmark.

Oak Ridge Leadership Computing Facility – a DOE Office of Science User Facility

Mission: Providing world-class computational resources and specialized services for the most computationally intensive global challenges

Vision: Deliver transforming discoveries in energy technologies, materials, biology, environment, health, etc.

Frontier System

System

- 74 compute racks
- 29 MW Power Consumption
- 9,408 nodes
- 9.2 PB memory (4.6 PB HBM, 4.6 PB DDR4)
- Cray Slingshot network with dragonfly topology
- 37 PB Node Local Storage
- 716 PB Center-wide storage
- 4000 ft² foot print

Frontier Cabinet

Olympus rack

- 128 AMD nodes
- 8,000 lbs
- Supports 400 KW

Frontier Node

AMD extraordinary engineering

- 1 AMD "Trento" CPU (optimized Milan)
- 4 AMD MI250X GPUs
- 512 GiB DDR4 memory on CPU
- 512 GiB HBM2e total per node
- 4 Cassini NICs connected to the 4 GPUs

All water cooled, even DIMMS and NICs

Energy Efficient Computing – Frontier achieves 14.5 MW per EF

Since 2009 the biggest concern with reaching Exascale has been energy consumption

- ORNL pioneered GPU use in supercomputing beginning in 2012 with Titan thru today with Frontier. Significant part of energy efficiency improvements.
- ASCR [Fast, Design, Path] Forward vendor investments in energy efficiency (2012-2020) further reduced the power consumption of computing chips (CPUs and GPUs)..
- 200x reduction in energy per FLOPS from Jaguar to Frontier at ORNL
- ORNL achieves additional energy savings from using warm water cooling in Frontier (32 C).
 ORNL Data Center PUE= 1.03

CAK RIDGE National Laboratory

Facility Status

To provide the power, space, and cooling for Frontier

• 30 offices, 8 laboratories, and a 20,000 s.f. data center were repurposed

8 **CAK RIDGE** LEADERSHIF COMPUTING FACILITY

To provide 40 MW of cooling

Additional Cooling Towers

40 MW of power

The old Titan data center becomes the new Frontier data center

Overcoming Supply Chain Issues

By the end of 2020 the Part Shortage Had Hit in Earnest!

World-wide part shortages are a BIG problem if you are building an Exascale Computer. When HPE began ordering parts, many suppliers said the lead time on orders had increased an additional 6-12 months

60 Million parts needed for Frontier

- 685 Different part numbers used in Frontier
- 167 Frontier part numbers affected by shortages
 - (more than 2 million parts from dozens of suppliers worldwide)
 - 12 Part numbers blocked building the first compute cabinet
 - 15 Part numbers shortage for AMD building all the MI250 cards for Frontier

It wasn't just exotic parts like new CPUs and GPUs, but also parts such as voltage regulators, oscillators, power modules

Frontier Build– Supply Chain Remained a Constant Battle Delaying Final Delivery from Summer to Fall of 2021

HPE saw commitments for parts deliveries from sub contractors being broken weekly as the chip shortage got worse. Had to call every supplier every week (sometimes every day)

HPE and AMD had 15 people whose sole job was to try to find the needed parts or alternatives for Frontier. Using HPE's size to negotiate with suppliers, looking for handfuls of parts in warehouses or at other companies who were also stuck because of chip shortage.

April 30 – July 15: Initial shortage of 167 part numbers reduced down to 1 part number

- An oscillator needed for Slingshot blade
- July 15th only found enough to build 63 of 74 cabinets (still looking for about 8,000 more)
- It took three more weeks to find all 8,000

PCA Shortages	4/30	5/7	5/14	5/21	5/28	6/4	6/11	6/18	6/25	7/2	7/9	7/16
Critical Shortages	167	69	46	39	30	28	28	11	6	3	2	1
New Shortages	0	0	0	1	0	0	0	1		0	0	0
Total	167	69	46	40	30	28	28	12	6	3	2	1

The final parts arrived the morning the last Frontier node was assembled

Last Cabinet of Frontier Delivered to ORNL October 18, 2021 Thanks to Heroic Efforts of the HPE and AMD teams

OAK RIDGE LEADERSHIP National Laboratory FACILITY

16

After the cabinets arrived they had to be connected. There are 81,000 cables between all the Frontier nodes

Then system debug and tuning began

- We fell into a pattern of repairing hardware, updating software, and tuning the system by day
- And running benchmarks like HPL at night

– In May, as time was running out for the June Top500, we had a successful exascale HPL run:

```
9,248 nodes of Frontier achieved 1.1 EF
#1 TOP500 list
#2 Green500 achieving over 52 Gflop/W
```


A Busy Year-end is ahead

Early User Experiences on Frontier Hardware

19 **CAK RIDGE** LEADERSHIP COMPUTING FACILITY

Image by Karsten Winegeart

The Center for Accelerated Application Readiness (CAAR)

- Built on the successful programs for OLCF-3 (Titan) & OLCF-4 (Summit)
- CAAR has been working with 8 applications since mid 2019 as part of OLCF-5
- Also supporting work on applications through ECP
- These applications have access to early hardware and software through the Vendor Center of Excellence

National Laboratory | FACILITY

OLCF-5 App	lications	ECP Applications			
Astrophysics	CHOLLA	Astrophysics	ExaStar		
Molecular	NAMD	Astrophysics	ExaSky		
Dynamics		HEP	LatticeQCD		
Materials Science	LSMS	Chemistry	NWCHEMeX		
Biology/Health	CoMet	Chemistry	GAMESS		
	COMEL	Combustion	PELE		
Dynamics	GESTS	Energy	ExaSMR		
Nuclear		Energy	WDMApp		
Physics	NUCCUR	Climate	E3SM		
Plasma Physics	PIConGPU	Additive Manufacturing	ExaAM		
Subsurface	LBPM	Biology	ExaBiome		
FIOW		Electric Grids	ExaSGD		

ECP Application Progress on Crusher

21

KPP-1 Application	Crusher (ORNL)	KPP-2 Application	Crusher (ORNL)		
LatticeQCD	Ready	GAMESS	Blocked (ROCm 5.x)		
NWChemEx	Initial Build/Test	ExaAM	Improving Perf.		
EXAALT	Improving Perf.	ExaWind	Improving Perf.		
QMCPACK	Improving Perf.	Combustion	Improving Perf.		
ExaSMR	Ready	MFIX-Exa	Improving Perf.		
WDMApp	Improving Perf.	ExaStar	Improving Perf.		
WarpX	Improving Perf.	Subsurface	Ready		
ExaSky	Ready		Iteauy		
EQSIM	Ready	EXaSGD	Improving Perf.		
E3SM-MMF	Improving Perf.	ExaBiome	Improving Perf (GasNet workaround)		
CANDLE	Ready	ExaFEL	Blocked (Rocm 5.x)		

CoMet for correlation analysis on Frontier

- Comet is used to compute similarity metrics from large datasets in genomics, climate and others
- Currently being used to analyze the geospatial and temporal evolution of SARS-CoV-2 variants
- CoMet has achieved up to <u>6.6 ExaFlops</u> mixed precision performance on Frontier (3-way DUO method)

22

Geospatial 7-day moving average of SARS-CoV-2 genome sequences by strain

2020.03 2020.03 2020.04 2020.05 2020.06 2020.01 2020.08 2020.09 2020.10 2020.11 2020.12 2021.01 2021.02 2021.03 2021.04 2021.05 2021.06 2021.01 2021.08 2021.09

Large Scale Density Functional Theory at the Exascale with LSMS

Workflows and high-performance computations to predict materials properties

Research Topics

- Understanding the role of disorder and defects in materials for electronic and mechanical properties
- Complex magnetic order topological magnetic structures and magnetism beyond ideal crystal

Recent Highlights

- Scaling of first principles calculations to O(100,000) up to O(1,000,000) atoms for the first time.
- Demonstrated scaling of LSMS on Frontier up to 1,048,576 atom FePt system on 8192 Frontier nodes.
- Speedup of LSMS from Summit to Frontier from combined hardware and software improvements is ~8x

Future work

- Capabilities for non-metallic quantum materials
- Calculation of forces for ab-initio relaxation and first-principles molecular dynamics.

Weak (left) and strong (right) scaling results of LSMS for FePt calculations on Frontier

23

CAAR Cholla Status (Feb 2022)

- Total speedups: ~16X on 64 GPUs on Frontier hardware (Crusher) from baseline (see plot).
- Software development contributed to ~5X speedups on Summit (blue bars on the plot). Major highlights:
 - Made hydro grid fully GPU resident
 - Exploited GPU-aware MPI

CAK RIDGE

- Ported gravity solver to GPU
- Ported particle solver to GPU
- Hardware improvements from Summit to Crusher: ~3X speedups
- Pending: Scaling up to the full Frontier

Speedups from Summit Baseline

Summit (current) Spock (MI100) Crusher (MI250X)

Many talented people helped make Frontier a reality

- Broad support from DOE HQ and Site Office
- 150 experts from 6 labs met in late 2018 to review technical proposals for Frontier
- 1,000 ECP staff
- 90 OLCF staff
- Over 100 electrical and mechanical workers
- Over 300 HPE and AMD engineers

Decadal effort to deliver U. S. Exascale systems led to Frontier

Thank You

