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Day-to-day capacity, load, and pricing in a deregulated market

2

• Increased capacity from renewables exacerbates variability issues
• Can lead to reliability problems

Renewables contribution, grid demand, and prices for July 3-5 2017 from data supplied by CAISO 

CAISO. (2017). California Independent System Operator. Retrieved from http://www.caiso.com/Pages/default.aspx
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Extreme example: Central Texas “does” winter

3

ATX: Feb 15, 2021 (9oF)

(140+ hours below freezing and 6.5+ in. 
snow in a supposedly subtropical city)

*Australian Kelpie for 
scale
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The case for integrated scheduling and control

• Competitive global markets place heightened emphasis on information 
exchange between all layers of the chemical supply chain

• E.g., fast-changing markets, distributed energy systems

4

ERCOT. (2017). Energy Reliability Council of Texas. Retrieved April 3, 2017, 
from http://www.ercot.com/
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Load Shifting: Industrial Participation
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Total

Industrial

Production schedule

Plant behavior

• Paired events: overproduce during low demand/emissions times and store extra product to use during peak 
hours when production is lower
• Frequent schedule changes, account for process dynamics (same time scale as scheduling decisions)
• Assumptions: excess capacity, product storage, fast transitions are possible

CAISO. (2017). California Independent System Operator. Retrieved from http://www.caiso.com/Pages/default.aspx

Requirements:
1. Account for plant dynamics

a) Fast calculations(<1 hour)
2. MILP formulation

a) Communicate model to power 
grid

b) Favored in scheduling problems
c) Powerful commercial solvers 

available
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Requirements for integrating scheduling and control

• Fast and frequent changes in 
scheduling targets required to 
maximize profit 
• Scheduling slot length comparable to 

process time constants 

• Combine longer (scheduling) time 
horizon with shorter (control) 
execution time
• Nonlinear, stiff and high dimensional

6

Baldea, M., & Harjunkoski, I. (2014). Integrated production scheduling and process control: A systematic review. Computers & Chemical 
Engineering, 71, 377–390. https://doi.org/10.1016/j.compchemeng.2014.09.002
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Multiple time grids for process representation
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ysp is supplied by the scheduling layer, and y is how the 
process reacts to ysp
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Scale-bridging models

8

Bridge disparate time scales between scheduling and process dynamics/control
• Low-order
• Utilize input/output (closed-loop) operating data
• Only capture scheduling-relevant variables

Du, J., Park, J., Harjunkoski, I., & Baldea, M. (2015). A time scale-bridging approach for integrating production scheduling and process control. Computers & Chemical Engineering, 79, 59–69. 
https://doi.org/10.1016/j.compchemeng.2015.04.026
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Removal of complicating constraints and parallel computing
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Common Problem

...

j NJ...

j NJ...

j NJ...

i=1

i=2

i=NI

Subproblem 1

Subproblem 2

Subproblem NI

Complicating (Continuity) Constraints
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j NJ...

i=NI

Subproblem NI

j NJ...

i=1

Subproblem 1

Common Problem

Now each subproblem can be solved independently

Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An
efficient MILP framework for integrating nonlinear
process dynamics and control in optimal production
scheduling calculations. Comput. Chem. Eng. 110, 35–52
(2018).

Difference between linking constraints are added to 
the objective
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Lagrangian Relaxation
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𝛾𝑖 = 𝑥𝑖−1,𝑁𝑗
𝑘 − 𝑥𝑖,𝑗=1

𝑘
2
+ 𝜖 ∀𝑖 > 1, 𝑘 = 1…𝑛

𝑆𝑖,𝑚 =
𝜃𝑚 𝐿𝑚 − 𝐽𝑚

𝜀 + 𝛾𝑖,𝑚
𝑘

2

𝜆𝑖 = max 0, 𝜆𝑖,𝑚−1
𝑘 𝑆𝑖,𝑚

𝑘 𝛾𝑖,𝑚
𝑘

𝜆i,m−1
𝑘 − 𝜆im

𝑘 ≤ Θ

PII

max 𝐿𝑚 = 𝐽𝑚 −෍

𝑘=1

𝑛

෍

𝑖=2

𝑁𝐼

𝜆𝑖𝑚
𝑘 𝛾𝑖𝑚

𝑘

s.t.
Scale bridging models
Initial Conditions
Process/safety constraints
Quality constraints

Theorem in literature proves 
that PI is equivalent to PII in 
linear problems so long as a 
solution to PI exists

Guignard, M. Lagrangean relaxation. Top 11, 151–200 (2003).

Initialize

Solve Relaxed 
Subproblem

|λk
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Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An
efficient MILP framework for integrating nonlinear
process dynamics and control in optimal production
scheduling calculations. Comput. Chem. Eng. 110, 35–52
(2018).
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“Small-Scale” Case study: Cryogenic Air Separation
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Industrial gas sector accounted 
for 2.62% of industrial electricity 
consumption in 2014

Products: LN2, GN2

Vary the inlet feed flowrate to 
modulate production levels

Longer time horizon=more 
savings

US EIA. (2017). Manufacturing Energy Consumption Survey 2014. Washington, D.C.
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Summary of Small-Scale Case Study Results

Problem Model Predicted 
Cost ($)

Cost ($) Savings (%) CPU Constraint 
Violations?

P1 Full-Order -- 1,012.56 1.22 94.62h N

P2 Nonlinear SBM 1,014.81 1,014.68 1.01 5.10h N

P3 Discrete SBM 1,013.31 1,013.64 1.12 11.7min N

P4 Discrete SBM+LR 1,013.31 1,013.64 1.12 7.12min N

Constant Prod. 
Rate*

-- -- 1,025.09 -- -- --

*Reference problem

12

Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An 
MILP framework for optimizing demand response 
operation of air separation units. Appl. Energy 222, 
951–966 (2018).

Same solution Solution time 
improvement

P3: 
Continuous Variables: 85,131 
Integer Variables: 1,512
P4:
Continuous Variables: 90,325 
Integer Variables: 1,512
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Power Requirements

Increases overall energy use (+0.64 MWh, +2.97%)
N2 liquefaction for storage

Decreases peak demand (-0.061MW, -20.00%)
Specific Power Consumption: 0.15 MWh/ton N2

13

Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An 
MILP framework for optimizing demand response 
operation of air separation units. Appl. Energy 222, 
951–966 (2018).

Future work: Network of ASUs 
operating together to meet 
localized demand
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Large-Scale Case study: industrial-scale demand response

14

PPAir

MAC

Ar

LC

UC SSCMHX

LO2

GO2

GN2

BC

WN2

LN2

Vent

LRC

T

Industrial ASU producing LO2, GO2, LN2, GN2, and Ar

Fit linear ARX models to historical data from 1 year of 
operation

na: number of poles
nb: number of zeros
nk: dead time

𝑦 𝑡 + 𝑎1𝑦 𝑡 − 1 +⋯+ 𝑎𝑛𝑎𝑦 𝑡 − 𝑛𝑎 =
𝑏1𝑢 𝑡 − 𝑛𝑘 +⋯+ 𝑏𝑛𝑏𝑢 𝑡 − 𝑛𝑏 − 𝑛𝑘 + 1 + 𝑒(𝑡)

𝒖𝟏(𝒕)
𝐾1

𝜏1𝑠 + 1

𝐾2
𝜏2𝑠 + 1

𝐾3
𝜏3𝑠 + 1

𝐾4
𝜏4𝑠 + 1

𝒚(𝒕)+
𝒖𝟐(𝒕)

𝒖𝟑(𝒕)

𝒖𝟒(𝒕)

Model Structure: ARX



Internal Use - Confidential

DR Scheduling problem structure: ARX models

15

“looking back” na time steps: 
number of complicating 
constraints is na times higher 

i=1

i=2

i=3

i=4

i=5

𝑦 𝑡 + 𝑎1𝑦 𝑡 − 1 +⋯+ 𝑎𝑛𝑎𝑦 𝑡 − 𝑛𝑎 = 𝑏1𝑢 𝑡 − 𝑛𝑘 +⋯+ 𝑏𝑛𝑏𝑢 𝑡 − 𝑛𝑏 − 𝑛𝑘 + 1 + 𝑒(𝑡)

BUT: problem is an LP 
and can be solved with 
simplex algorithm

One complicating 
constraint per time 
discretization interval

Reformulate nonlinearity: 
introduction of integer 
variables, must solve using 
branch and bound algorithm

Block-angular 
structure of real
system

i=1

i=2

i=3

i=4

i=5

ICs

Block-angular 
structure of modeled
system
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Modeling measurement error

Key challenge: data-driven models 
inherit any measurement errors 
and/or biases from plant sensors

• These errors will then propagate to 
optimal setpoints provided by the 
DR problem—solutions will not be 
physically meaningful (e.g. mass 
balances won’t close)

Solution: compute relevant errors 
from given data and model these 
errors using ARX models—capture 
both error magnitude and dynamics

16

Sample error model

Morgan T. Kelley, Calvin Tsay, Yanan Cao, Yajun Wang, Jesus Flores-Cerrillo, Michael Baldea,
A data-driven linear formulation of the optimal demand response scheduling problem for an 
industrial air separation unit, Chemical Engineering Science, Volume 252, 2022, 117468, ISSN 
0009-2509, https://doi.org/10.1016/j.ces.2022.117468.
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Large-Scale: ARX model fits

17

Variable Input na nb NMSE (training) NMSE (test)

P1 PC1,PC2,T 2 2 7.8561e-09 8.2419e-09

P2 PC1,PC2,T 2 2 1.8987e-09 1.6896e-09

P3 PC1,PC2,T 2 2 2.2687e-08 2.4331e-08

FGN2 𝑓( ത𝐹𝑎𝑖𝑟) 3 3 7.8075e-08 5.9252e-08

FLN2
ത𝐹𝐿𝑁2 3 3 4.2225e-10 3.5797e-10

FGO2
ത𝐹𝐺𝑂2 3 3 4.988e-10 4.551e-10

FLO2 𝑓( ത𝐹𝑎𝑖𝑟 , ത𝐹𝐺𝑂2) 1 1 1.1259e-07 1.7783e-07

FAr
ത𝐹𝐴𝑟 3 3 4.0058e-09 1.8106e-09

FAir
ത𝐹𝑎𝑖𝑟 3 1 1.1312e-10 6.6157e-11

CF
ത𝐹𝑎𝑖𝑟 3 3 1.0325e-09 9.2544e-10

ARX model of the inlet air flow
Data is scaled between upper and lower bounds

NMSE values are all very small
Process knowledge was used to select model inputs

Morgan T. Kelley, Calvin Tsay, Yanan Cao, Yajun Wang, Jesus Flores-Cerrillo, Michael Baldea,
A data-driven linear formulation of the optimal demand response scheduling problem for an 
industrial air separation unit, Chemical Engineering Science, Volume 252, 2022, 117468, ISSN 
0009-2509, https://doi.org/10.1016/j.ces.2022.117468.
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Optimal Schedule

18

Cost savings: 8.91% (compared to no DR)
Computation time: 1.97 mins

Linear models lead to “bang-bang” 
solutions—abrupt switching 
between upper and lower bounds 
can be difficult for control-layer 
MPC to track

Rate-of-change 
constraints can 
mitigate this 
where needed

Morgan T. Kelley, Calvin Tsay, Yanan Cao, Yajun Wang, Jesus Flores-Cerrillo, Michael Baldea,
A data-driven linear formulation of the optimal demand response scheduling problem for an 
industrial air separation unit, Chemical Engineering Science, Volume 252, 2022, 117468, ISSN 
0009-2509, https://doi.org/10.1016/j.ces.2022.117468.
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In Practice: Transfer learning of model parameters
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መ𝜃 𝑡 = መ𝜃 𝑡 − 1 + 𝐾 𝑡 𝑦 𝑡 − ො𝑦 𝑡

ො𝑦 𝑡 = 𝜓𝑇 መ𝜃 𝑡 − 1
𝐾 𝑡 = 𝑄 𝑡 𝜓 𝑡

𝑄 𝑡 =
𝑃 𝑡 − 1

𝑅2 + 𝜓𝑇 𝑡 𝑃 𝑡 − 1 𝜓 𝑡

𝑃 𝑡 = 𝑃 𝑡 − 1 + 𝑅1 −
𝑃 𝑡 − 1 𝜓 𝑡 𝜓𝑇 𝑡 𝑃 𝑡 − 1

𝑅2 + 𝜓𝑇 𝑡 𝑃 𝑡 − 1 𝜓 𝑡

Optimal 
scheduling

Plant

𝑦(𝑡)ො𝑦(𝑡)

𝑢(𝑡)

- +

Parameter 
updates

Kalman Filter

Parameter Updates

Preliminary work demonstrating efficacy of 
Kalman filters has been done on current plant data

Future work: Adaptation 
of current models to new 
plants



Internal Use - Confidential

Additional Study: Grid-Based Emissions

20

Generation over time in MW for each electricity source 
(top) and breakdown of renewables contribution (bottom) 
for July 3-5 2017 in California, as supplied by CAISO

U.S. electricity generation by source, amount, and share of total in 2017. (2018). Retrieved from https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
Daily Renewables Output Data. (2017). Folsom, CA. Retrieved from http://www.caiso.com/market/Pages/ReportsBulletins/RenewablesReporting.aspx

Calculated combined emissions factors for July 3-5 2017 
from data supplied by CAISO [2]

Renewables Nuclear Thermal Imports Hydro
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Grid-side Emissions Reduction

21

DR consistently lowers 
emissions even though its aim 
is to minimize operating cost

Kelley, M. T., Baldick, R. & Baldea, M. Demand Response Operation of Electricity-Intensive Chemical Processes for Reduced Greenhouse Gas Emissions: Application to an Air Separation Unit. ACS 
Sustain. Chem. Eng. 7, 1909–1922 (2019).

Minimizing emissions can 
increase operating cost 
during summer months

EMP emissions reduction: 2.3-4.9%
DR emissions reduction: 0.13-3.36%

DR cost reduction: 4.3-15.5%
EMP cost reduction: -7.9 to 9.3%

EMP: Emissions Minimizing 
Production
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Conclusions and Future Outlook

• DR has huge potential for mitigating grid instability and reducing 
emissions while saving companies electricity costs

• Involves little to no capital expenditure—primarily changes in 
operating habits

• Advances in computer technology, models, and algorithms enable 
efficient solution of large-scale DR problems

22

Future/Concurrent Work:
Applications outside of industrial plants:

Time-of-use electricity pricing for residential and commercial entities
Demand Response has potential to play a roll in remote computing tasks

Can schedule run time (and location) of large problems with flexible load (e.g., credit card 
transactions, large research compute tasks) based on grid conditions in different places
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Hammerstein-Wiener (HW) Models
• Linear State-space block 
• Static input/output nonlinearities: piece-wise linear (PWL)

• Linearized using Special Ordered Sets of Type II (SOS2)

Representation of Dynamics

Finite Step Response (FSR) Models:
• Data-driven non-parametric models used for unknown model order and time delay
• Can be reduced to reflect setpoint, u, that only changes once per scheduling time slot, i

Billings, S. A. (2013). Nonlinear system identification : NARMAX methods in the time, frequency, and spatio-temporal domains. Chichester, West Sussex: John Wiley & Sons.
MATLAB. (2016). MATLAB 2016a. Natick, MA, USA: The Mathworks, Inc.
M. T. Kelley, R. C. Pattison, R. Baldick, and M. Baldea, “An MILP framework for optimizing demand response operation of air separation units,” Appl. Energy, vol. 222, pp. 951–966, Jul. 2018.
Ogunnaike, B. & Harmon Ray, W. Process Dynamics, Modeling, and Control. (Oxford University Press, 1994).
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Production rate

Scheduling-
relevant variable

𝐻(𝑢𝑖)
𝑥𝑖,𝑗+1 = 𝐴𝑥𝑖𝑗 + 𝐵ℎ𝑖

𝑦𝑖𝑗 = 𝐶𝑥𝑖𝑗
𝑊(𝑦𝑖𝑗)

ui wijhi yij

𝑤𝑖𝑗 = 𝑤𝑖−1,𝑗 + 𝑆𝑗 𝑢𝑖 − 𝑢𝑖−1
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Static blocks: Linearize nonlinearities

27

𝐻(𝑢)
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑏ℎ

𝑦 = 𝐶𝑥
𝑊(𝑦)

y 

w

Block input, y

Block 
output, w

λ2

λ1

λ3=1-λ2 λ4

λ5

λ6

Special Ordered Sets of type 2 (SOS2)
• Benefits: 

• Most linear optimization solvers have 
architecture in place to solve SOS2 
variables directly

• Result in exact linearization—no loss of 
information

• Drawbacks:
• Introduces multiple integer variables at 

each time point
• Exponential increases in solution 

time with each integer variable 
added

Static block size:
NSOS2*Ni*Nj*NSBM
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Linear Reformulations of HW Models (I)

Option 1: Special Ordered Sets of Type 1 (SOS1)
• Exact linearization of PWC functions

• Applicable when set-points take discrete values (e.g., multi-product plant) 

28

ui 

hi

ui 

hi

κijk=1

κijk=0

κ1

κ2

κ3

κ4

κ5

Beale, E., & Tomlin, J. (1970). Special Facilities in a General Mathematical Programming System for Nonconvex Problems Using Ordered Sets of Variables. In Proceedings of the 5th International Conference on Operational 
Research. London.

𝐻(𝑢)
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑏ℎ

𝑦 = 𝐶𝑥
𝑊(𝑦)



Internal Use - Confidential

Linear Reformulations of HW Models (II)

Option 2: Special Ordered Sets of Type 2 (SOS2) 

• Exact linearization of PWL functions

• Applicable when set-points are continuous 

• Some solvers have built-in support for SOS2 variables

29

yij 

wij

yij 

wij

λijk 0
λijk=0

λ2

λ1
λ3 λ4

λ5

λ6

IBM. (2017). CPLEX 12.7. Armonk, NY: IBM.
BDMLP Solver. (2017). In GAMS User Guide (24.7). Washington, DC
XPRESS Solver Engine. (2017). Incline Village, NV: FrontlineSolvers..

𝐻(𝑢)
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑏ℎ

𝑦 = 𝐶𝑥
𝑊(𝑦)
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Linear Reformulations of HW Models (III)

Option 3: Big-M 
• Linearize PWL functions

• General formulation for handling if-then structures—computationally 
more costly

30

yij 

wij

yij 

wij

zijk=1
zijk=0

z2

z1

z3 z4

z5

z6
𝐻(𝑢)

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑏ℎ

𝑦 = 𝐶𝑥
𝑊(𝑦)
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Linear Reformulation Options: Summary

31

yij 

wij

yij 

wij

zijk=1
zijk=0

yij 

wij

yij 

wij

λijk 0
λijk=0

Big-M SOS2

ui 

hi

ui 

hij

κijk=1
κijk=0

SOS1

• For solvers that support SOS2, this is the most efficient modeling option
• SOS1: best suited for input nonlinearity (Hammerstein block) with discrete set-points
• SOS2: best suited for output nonlinearity (Wiener block), deal with continuous output of state-space block
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Special Case: Breakpoint Elimination

32

For variables not in the objective function:
• Output nonlinearity can be estimated by 

endpoints at the upper and lower bounds
• Variable stays between bounds
• Becomes linear function—breakpoint 

elimination

wij = 𝑎𝑦𝑖𝑗 + 𝑏

Can further simplify by 
bounding y and leaving W 
block out: 

𝑦𝑖𝑗
𝑙𝑜 ≤ 𝑦𝑖𝑗 ≤ 𝑦𝑖𝑗

𝑢𝑝

𝐻(𝑢)
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑏ℎ

𝑦 = 𝐶𝑥
𝑊(𝑦)
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MMA free-radical polymerization results

33

Problem Model description CPU (s) Obj ($) TC (h)

P1 Full-Order model 91.13 55,407 47.45

P2 I/O linearizing controller-based 6.13 56,188 46.72

P3 HW+LR 18.96 56,006 47.89

P4 HW 23.08 56,006 47.89

P5 HW+FSR+LR 3.19 56,289 48.18

Optimality gap: 0.00%
Optimal schedule: A→B→C→D
64 bit Windows system Intel Core i7-2600 CPU at 3.40 GHz and 16 GB RAM
Solved in GAMS/CPLEX
GAMS. (2016). General Algebraic Modeling System (GAMS). Release 24.7.4. Washington, D.C.: GAMS Development Corporation.

Same solution

Significant improvement 
in computation time

Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An
efficient MILP framework for integrating nonlinear
process dynamics and control in optimal production
scheduling calculations. Comput. Chem. Eng. 110, 35–52
(2018).
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Dynamic block: Discrete state space representation

34

• Discretization:
ℎ𝑖 = 𝐻 𝑢𝑖
Ԧ𝑥𝑖,𝑗+1 = 𝐴 Ԧ𝑥𝑖𝑗 + 𝐵ℎ𝑖
𝑦𝑖𝑗 = 𝐶 Ԧ𝑥𝑖𝑗
𝑤𝑖𝑗 = 𝑊 𝑦𝑖𝑗

• Requires state continuity 
constraint between scheduling 
time slots:

𝑥𝑖,𝑗=1 = 𝑥𝑖−1,𝑗=𝑁𝑗

Common Problem

...

j NJ...

j NJ...

j NJ...

i=1

i=2

i=NI

Subproblem 1

Subproblem 2

Subproblem NI

Complicating (Continuity) Constraints

Eq
u

at
io

n
s

Variables

Dynamic block size:
Ni*Nj*NSBM

𝐻(𝑢)
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑏ℎ

𝑦 = 𝐶𝑥
𝑊(𝑦) Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An efficient MILP framework for integrating nonlinear

process dynamics and control in optimal production scheduling calculations. Comput. Chem. Eng. 110, 35–
52 (2018).
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Base problem: PI

35

PI
max 𝐽
s.t.
Scale bridging models (HW/FSR)
Initial Conditions
Continuity Constraints
Process/safety constraints
Quality constraints

Common Problem

...

j NJ...

j NJ...

j NJ...

i=1

i=2

i=NI

Subproblem 1

Subproblem 2

Subproblem NI

Complicating (Continuity) Constraints

Eq
u

at
io

n
s

Variables

Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An efficient MILP framework for integrating nonlinear
process dynamics and control in optimal production scheduling calculations. Comput. Chem. Eng. 110, 35–
52 (2018).
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Batch reactor

36

Desired product: C
Undesired product: D
Reactor temperature is controlled 
via the cooling water flow rate 
(Fcw)

max
𝐹𝑐𝑤𝑖

𝐽 = 2𝑁𝐶,𝑡𝑓 − 𝑈𝑡𝑓

s.t. Full-order process model
Process/quality constraints
Initial conditions

𝑁𝐶,𝑡𝑓: Moles of product C at the end of the horizon

𝑈𝑡𝑓: Total amount of cooling water used during synthesis

Cooling 
Water, Fcw

A+B → C

B+C → D

Kelley, M. T., Baldick, R. & Baldea, M. A direct transcription-based multiple shooting
formulation for dynamic optimization. Comput. Chem. Eng. 140, 106846 (2020).
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Case Study: MMA free-radical polymerization

• Continuous process

• Four product grades: g={A,B,C,D} 

• Defined by set-points: u = ҧ𝜇 =
𝐷1

𝐷𝑜
, ത𝑇

• Scheduling-Relevant variables: 𝑤𝑖𝑗 = {𝐹𝑐𝑤, 𝐹𝐼 , 𝜇, 𝑇}

37

Monomer+Solvent

F, Cmin, Tin

Initiator

Tin,CIin,FI

Tja

Tw0, Fcw

F, CI, D1, 
Cm, T, D0

Daoutidis, P., Soroush, M., & Kravaris, C. (1990). Feedforward/feedback control of multivariable nonlinear 
processes. AIChE Journal, 36(10), 1471–1484. https://doi.org/10.1002/aic.690361003

max𝑃 =෍

𝑔

𝑅𝑔 − 𝑐𝑔
𝑠𝑡

s.t.
Process dynamics (HW/FSR models)
Initial Conditions
Process, safety, and quality constraints

Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An
efficient MILP framework for integrating nonlinear
process dynamics and control in optimal production
scheduling calculations. Comput. Chem. Eng. 110, 35–52
(2018).
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Batch reactor results

38

Solved on a PC running Windows 10® 
with a 3.5 GHz Intel® CoreTM i7 
processor with 32 GB of RAM

No LR: Black dash
LR: Red solid Kelley, M. T., Baldick, R. & Baldea, M. A direct transcription-based multiple shooting

formulation for dynamic optimization. Comput. Chem. Eng. 140, 106846 (2020).
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Batch reactor results

39

Sequential NLP solution: Blue dash-dot
No LR: Black dash
LR: Red solid

Kelley, M. T., Baldick, R. & Baldea, M. A direct transcription-based multiple shooting
formulation for dynamic optimization. Comput. Chem. Eng. 140, 106846 (2020).
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Storage System and Power Consumption Models

Demand Constraint:

𝐹𝑖,𝑗
𝑝
− 𝐷𝑖,𝑟 ≥ 𝑓𝑠𝑖,𝑗

𝑖𝑛 − 𝑓𝑠𝑖,𝑗
𝑜𝑢𝑡

Storage system:

𝑠𝑖,𝑗+1 = 𝑓𝑠𝑖,𝑗
𝑖𝑛 − 𝑓𝑠𝑖,𝑗

𝑜𝑢𝑡 Δ𝑗 + 𝑠𝑖,𝑗

𝑓𝑠𝑖,1
𝑖𝑛 = 𝑓𝑠𝑖−1,𝑁𝑗

𝑖𝑛

𝑓𝑠𝑖,1
𝑜𝑢𝑡 = 𝑓𝑠𝑖−1,𝑁𝑗

𝑜𝑢𝑡

𝑠𝑖,1 = 𝑠𝑖−1,𝑁𝑗

𝑠𝑁𝑖,𝑁𝑗
≥ 𝑠1,1

Power consumption:

Φ𝑖,𝑗 = 𝒲𝑖,𝑗
𝐶 +𝒲𝑖,𝑗

𝑡1 +𝒲𝑖,𝑗
𝑡2 +𝒲𝑖,𝑗

ℓ

𝒲𝑖,𝑗
𝐶 = Ω𝐶𝐹𝑖,𝑗

𝑓
𝒲𝑖,𝑗

𝑡1 = Ω𝑡1𝐹𝑖,𝑗
𝑓

𝒲𝑖,𝑗
𝑡2 = Ω𝑡2𝐹𝑖,𝑗

𝑝
𝒲𝑖,𝑗

ℓ = Ωℓ𝑓𝑠𝑖,𝑗
𝑖𝑛
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Turbine

Compressor

Liquid N2 
storage tank

fs
out

Fp

fl
in

To customer N2(g)

Liquifier

Evaporator

Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An 
MILP framework for optimizing demand response 
operation of air separation units. Appl. Energy 222, 
951–966 (2018).
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Representing Uncertainty: Chance Constraints

• Confidence level of the optimization problem solution is increased by 
restricting the feasibility region
• Confidence/robustness level is defined using desired probability of meeting the 

uncertain constraint(s) 

min
x

𝑓 𝑥, 𝜉

s.t. 𝑔 𝑥 = 0
ℙ ℎ 𝑥, 𝜉 ≥ 0 ≥ 𝛼
𝜉 ∈ ℝ𝑝

min
𝑥

𝑓 𝑥, 𝜉

s.t. 𝑔 𝑥 = 0
ℎ 𝑥, 𝜉 ≥ 0
𝜉 ∈ ℝ𝑝

Original problem, 
is uncertain 
parameter

Chance-constraint 
representation
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Uncertain product demand

42

Chance-constraints in DR scheduling problems

min𝐶 =෍

𝑖

෍

𝑗

𝑃𝑖Φ𝑖,𝑗

s.t. 𝐹𝑖,𝑗
𝑝
− 𝐷𝑖,𝑟 ≥ 𝑓𝑠𝑖,𝑗

𝑖𝑛 − 𝑓𝑠𝑖,𝑗
𝑜𝑢𝑡 −𝑀 1 − 𝑧𝑟

𝐷

෍

𝑟

𝑧𝑟
𝐷 ≥ 𝛼𝑁𝑅

𝐷

0 ≤ 𝛼 ≤ 1

𝐷𝑖 ∼ 𝒰 16,23 𝑡𝑠𝑡𝑎𝑟𝑡~𝒰[0,72]
Process model (HW/FSR)
Process constraints
Quality constraints
Initial conditions
Continuity conditions

min𝐶 =෍

𝑖

෍

𝑗

𝑃𝑖Φ𝑖,𝑗

s.t. 𝐶 + 1 − 𝑧𝑟
𝑃 𝑀 ≥ σ𝑖σ𝑗 𝑃𝑖,𝑟Φ𝑖,𝑗

෍

𝑟

𝑧𝑟
𝑃𝜋𝑟 ≥ 𝛼

𝜋𝑟 = Pr 𝑃𝑖,𝑟
0 < 𝛼 ≤ 1
𝑃𝑖 ∼ 𝒩𝑚𝑣𝑛 𝜇𝑖 , Σi
Process model (HW/FSR)
Process constraints
Quality constraints
Initial conditions
Continuity conditions
Demand constraints (Di=20 mol/s)

Uncertain electricity prices

Kelley, M. T., Baldick, R. & Baldea, M. Demand response scheduling under uncertainty: Chance‐constrained framework and 
application to an air separation unit. AIChE J. 66, (2020).
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Problem comparison

43

Operating Cost ($) % increase α* (%) Solution time (min) CPLEX optimality gap (%)

Reference 1023.50 -- -- -- --

Deterministic 1014.48 -- -- 1.88 ± 0.020 0.17

Price Uncertainty 1020.39 0.58 95.1 7.39 ± 0.024 0.29

Demand Uncertainty 1163.67 14.7 95 2.06 ± 0.020 0.22

P&D Uncertainty 1172.69 15.6 95.1, 95 7.56 ± 0.032 0.29

Solution times are well-within the one hour time limit
The objective value increases (solution becomes more 
conservative) as the degree of uncertainty increases 
• Effect of uncertain demand is strong

Summary: 

Solved on a 64-bit 
Windows system with 
Intel Core-7-2600 CPU 
at 3.40 GHz with 16 Gb 
RAM  using GAMS 
25.1.3 /CPLEX 12.8.0

The proposed method accounts for 
errors that arise in predictions of 
uncertain parameters—its 
applicability is independent of the 
methods chosen to predict 
electricity prices and demand

Key point: 

Kelley, M. T., Baldick, R. & Baldea, M. Demand response 
scheduling under uncertainty: Chance‐constrained 
framework and application to an air separation unit. 
AIChE J. 66, (2020).
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Optimal schedule of Deterministic vs P&D Uncertainty Reference: 21.60 MWh
Deterministic: 22.29 MWh
P&D Uncertainty: 25.25 MWh

Det
P&D

Kelley, M. T., 
Baldick, R. & 
Baldea, M. 
Demand 
response 
scheduling under 
uncertainty: 
Chance‐constrain
ed framework 
and application 
to an air 
separation unit. 
AIChE J. 66, 
(2020).
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Moving Horizon Scheduling

45

...

Schedule 1

Time

...

Schedule 2

Schedule 1 Projection

Past trajectory

Time

...
Past trajectory

Schedule 1 Projection

Schedule 2 Projection

Schedule 3

Time

...

Past trajectory

Schedule 1 Projection

Schedule 2 Projection

Schedule 3 Projection

Time

Example: Scheduling of two days at a time, for a total time horizon of 4 days

Current
time

Day 1 Day 2 Day 3

New information 
available

New information 
available

New information 
available
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Periodic pricing updates

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Day 1 Day 1 Day 1

Day 1 Day 2 Day 2 Day 2

Day 1 Day 2 Day 3 Day 3 Day 3

Day 1 Day 2 Day 3 Day 4 Day 4 Day 4

Day 1 Day 2 Day 3

Day 1 Day 2 Day 3 Day 4

Day 1 Day 2 Day 3 Day 4 Day 5

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Reschedule 1

Reschedule 1

Reschedule 2

Reschedule 3

Reschedule 4

Reschedule 1

Reschedule 2

Reschedule 3

Reschedule 4

PP1

PP2

PP3

Scheduling Window Unscheduled Day Day in the past

Ideal

Realistic 

Price set 1: Truly periodic—comparison of 
scheduling methods without price effects  

Price set 2: Historical values from CAISO

Key findings:
1. When accurate price 

predictions are known, 
scheduling methods are 
comparable 

2. When forecasts are 
inaccurate, losses in savings 
are evident

46

CAISO. (2017). California Independent System Operator. http://www.caiso.com/Pages/default.aspx
Kelley, M. T., Baldick, R. & Baldea, M. An empirical study of moving horizon closed-loop 
demand response scheduling. J. Process Control 92, 137–148 (2020).
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Demand disturbances
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D
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 (

m
o
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Tm

PD2

PD3

PD4

3

2

2

1

1

1

2PD5

31

321Rescheduling points:Planned Maintenance

Unplanned Maintenance

Random Failure

Random Failure

Disturbance end times (uncertain)

Tm

Tm

Tm

Key findings:
PD4 left room for constraint violations (particularly with 
a step down towards the end) due to storage depletion

PD5 was far and away a more conservative solution, 
but mitigated infeasibilities

Kelley, M. T., Baldick, R. & Baldea, M. An empirical study of moving horizon closed-loop 
demand response scheduling. J. Process Control 92, 137–148 (2020).
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Moving horizon vs chance-constraints

48

CC: chance-constrained
MH: feedback scheduling

MH and CC methods are comparable, with the MH method allowing more room for correction at rescheduling points

Future work: Extension of feedback vs. uncertainty quantification methods to supply chain planning 
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Summary: Large-scale application to an air separation unit

• DR scheduling of an ASU using SBMs and LR
• Found a reduction in operating cost of 1.1%
• Future work: Network of ASUs operating to meet localized demand

• Two computationally efficient methods of capturing uncertainties
• Chance-constraints
• Moving-horizon scheduling

• Future work: Extension of feedback vs. uncertainty quantification methods 
to supply chain planning 

• Publications:
Kelley, M. T., Pattison, R. C., Baldick, R. & Baldea, M. An MILP framework for optimizing demand response 
operation of air separation units. Appl. Energy 222, 951–966 (2018).

Kelley, M. T., Baldick, R. & Baldea, M. An empirical study of moving horizon closed-loop demand response 
scheduling. J. Process Control 92, 137–148 (2020).

Kelley, M. T., Baldick, R. & Baldea, M. Demand response scheduling under uncertainty: Chance‐constrained 
framework and application to an air separation unit. AIChE J. 66, (2020).

49
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EMP overview

50
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Emissions Factor

51

Combined hourly emissions factor for each source:

Calculated combined emissions factors for July 3-5 2017 
from data supplied by CAISO [2]

Source kg CO2/MWh[4]

Biomass 366.66*

Biogas 177.66

Thermal 181.04

Imports 428

*Average of biomass 
emissions factors

[4] Emission Factors for Greenhouse Gas Inventories. EPA (2014).

#<30 MW generation capacity

Renewables Non-renewables

Geothermal Thermal (natural gas)

Biomass Nuclear

Biogas Imports (petroleum, coal, etc.)

Small# hydropower Large hydropower

Wind

PV-Solar

Solar Thermal
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Linear dynamic models
More accurately represent systems than steady-state models
• Account for differing time-scales/time delays within the plant

DR scheduling of an ammonia plant

HX1

FL1

FL2

N2

H2

Process HX

Hot stream out

Product NH3

CN2

CH2

CREC

R1 R2 R3 HX2

Hot stream in

Purge

Synthesis Loop

Power consuming units
• Compressors drive power consumption within the process
• Can modulate their power usage by changing variables in the 

process such as flowrates and reactor splits

Compared to a process 
operating at steady-state:
• 1.5% reduction in 

operating cost a 
• 7.74% decrease in peak 

power consumption 

Future work: 
1. Verify this heuristic approach 

to modeling dynamics via 
plant data

2. Ammonia synthesis loop as 
part of a larger system 
(including an ASU) for DR

52

Kelley, M. T., Do, T. T. & Baldea, M. Evaluating the Demand Response Potential of Ammonia Plants. AIChE Journal, In revision. (2021).
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Summary: Extensions of DR scheduling work 

• Adapted DR scheduling framework to grid-side emissions minimizing production 
(EMP)

• Identified linear ARX models for representing a 3-product ASU based on a year’s 
worth of plant data, demonstrating savings of 8.9%

Future work: Adaptation of current models to new plants

• Demonstrated applicability of ammonia synthesis loop for DR operation with 
savings of 1.5%
• Future work: (1) Verify this heuristic approach to modeling dynamics via plant data, and (2) 

Ammonia synthesis loop as part of a larger system (including an ASU) for DR

Publications:
Kelley, M. T., Baldick, R. & Baldea, M. Demand Response Operation of Electricity-Intensive Chemical Processes 
for Reduced Greenhouse Gas Emissions: Application to an Air Separation Unit. ACS Sustain. Chem. Eng. 7, 
1909–1922 (2019).

Kelley, M. T., Tsay, C. & Baldea, M. A data-driven linear formulation of the optimal demand response 
scheduling problem for an industrial air separation unit. Chem. Eng. Sci. Submitted. (2021).

Kelley, M. T., Do, T. T. & Baldea, M. Evaluating the Demand Response Potential of Ammonia Plants. AIChE
Journal, In revision. (2021).
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Lagrangean Relaxation 

Theorem 1. If PI is feasible and the equality 
constraints in PII are met, then the solution to PII is 
optimal for PI

Proof: Assume a feasible solution exists to PI (i.e. state 
continuity constraints can be met, and the production 
schedule is dynamically feasible). 

Then, when equality constraints 𝛾𝑖 = 𝑥𝑖−1,𝑁𝐽
− 𝑥𝑖,1 = 0

are met, the objectives of PI and PII are the same, 
L = J, and the relaxed sub-problem PII is equivalent 
to the original problem PI.  □

54

[12] Guignard, M. (2003). Lagrangean relaxation. Top, 11(2), 151–200. https://doi.org/10.1007/BF02579036

PII

max 𝐿𝑚 = 𝐽𝑚 −෍

𝑘=1

𝑛

෍

𝑖=2

𝑁𝐼

𝜆𝑖𝑚
𝑘 𝛾𝑖𝑚

𝑘

s.t.
Linear surrogate models (HW/FSR)
Initial Conditions
Process/safety constraints
Quality constraints
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Slot-based Cyclical Scheduling

55

tgi
P

i i+1 time

ti
s ti

e=ti+1
s

TI

ti

ti
ss

Ysp Y

ti
trans

Product assignment to slots

Demand satisfaction

Timing
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Inventory Model

56

A B C D

Process

pgi

෍

𝑖

𝑝𝑔𝑖

Customer

Maximum storage holdup

Time spent in storage

Cost of storage

Revenue

𝑅 =෍

𝑔

𝑃𝑟𝑔𝑝𝑔
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Process Dynamics: SBMs

• Scheduling-Relevant Variables: 𝑤𝑖𝑗 = {𝐹𝑐𝑤 , 𝐹𝐼 , 𝜇, 𝑇}

• Sampling times (mins): 𝑇𝐽 = 5.96, 5.96, 2.68, 2.68

• HW models:

• FSR models:

57

Input Output H(u) State-space Order W(y) Sample time (s) %fit

ത𝑇𝑖 Fcw 4 2 10 5.96 99.79

ത𝑇𝑖 FI 4 2 13 5.96 99.35

ത𝑇𝑖 T 1 2 0 2.68 99.93

ത𝑇𝑖 μ 4 2 0 2.69 99.89

Input Output Sample time (s) %fit

ത𝑇𝑖 Fcw 5.96 99.64

ത𝑇𝑖 FI 5.96 99.99

ത𝑇𝑖 T 2.68 99.65

ത𝑇𝑖 μ 2.69 99.99

%𝑓𝑖𝑡 =
100 |σ𝑤𝑖𝑗

𝑟𝑒𝑓
− σ𝑤𝑖𝑗 |

σ𝑤𝑖𝑗
𝑟𝑒𝑓
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Solution methods

58

Sequential Simultaneous Multiple Shooting (MS)

Decision variables are 
discretized and optimized 
with an NLP solver

Discretize the entire problem space Time horizon divided into smaller 
intervals with piecewise control vector
(solved with Lagrangian relaxation)

max
𝑢

𝐽 = 𝑓 𝒙, 𝒚, 𝒖, 𝑡𝑓

𝑠. 𝑡.
𝑑𝑥

𝑑𝑡
= 𝑔 𝒙, 𝒚, 𝒖

𝒙 𝑡𝑜 = 𝒙𝑜
𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈

𝒚𝐿 ≤ 𝒚 ≤ 𝒚𝑈

𝒖𝐿 ≤ 𝒖 ≤ 𝒖𝑈

max
𝒖𝑖

𝐽 = 𝑓 𝒙𝑁𝑖,𝑁𝑗
, 𝒚𝑁𝑖,𝑁𝑗

, 𝒖𝑁𝑖

𝑠. 𝑡. 𝒙𝑖,𝑗+1 = 𝑔 𝒙𝑖,𝑗+1, 𝒚𝑖,𝑗+1, 𝒖𝑖 Δj + 𝐱i,j
𝒙𝑖−1,𝑁𝑗

= 𝒙𝑖,𝑗=1 ∀𝑖 > 1

𝒙 𝑡𝑜 = 𝒙𝑜
𝒙𝐿 ≤ 𝒙𝑖,𝑗 ≤ 𝒙𝑈

𝒚𝐿 ≤ 𝒚𝑖,𝑗 ≤ 𝒚𝑈

𝒖𝐿 ≤ 𝒖𝑖,𝑗 ≤ 𝒖𝑈

max
𝒖𝑖

𝐿 = 𝐽 −෍

𝑖

𝝀𝑖𝜸𝑖

𝑠. 𝑡. 𝒙𝑖,𝑗+1 = 𝑔 𝒙𝑖,𝑗+1, 𝒚𝑖,𝑗+1, 𝒖𝑖 Δj + 𝐱i,j
𝒙 𝑡𝑜 = 𝒙𝑜
𝒙𝐿 ≤ 𝒙𝑖,𝑗 ≤ 𝒙𝑈

𝒚𝐿 ≤ 𝒚𝑖,𝑗 ≤ 𝒚𝑈

𝒖𝐿 ≤ 𝒖𝑖,𝑗 ≤ 𝒖𝑈
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ASU SBMs

Variable Sample Time (mins) %Fit

IP 6 99.85

MR 0.5 99.93

dT 6 99.80

δf 10 99.63

Pd 10 99.97

Input Output Input Nonlinearity Linear Dynamics Output Nonlinearity NMSE

u w H(u) Breakpoints State-space Order W(y) Type W(y) Breakpoints Training Validation

Fp IP 4 4 PWL 6 0.82 0.52

Fp MR 3 4 linear -- 0.78 0.75

Fp δf 5 5 quadratic -- 0.91 0.92

Fp Pd 2 8 quadratic -- 0.83 0.97

Fp ∆T 9 4 PWL 6 0.69 0.84
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Variable Sample
Time (mins)

%Fit to full order model
data

FP 1 99.81

Ff 1 99.96

HW models

FSR modelsLinearization is exact

R. C. Pattison, C. R. Touretzky, T. Johansson, I. Harjunkoski, and M. Baldea, “Optimal Process Operations in Fast-Changing Electricity Markets: Framework for 
Scheduling with Low-Order Dynamic Models and an Air Separation Application,” Ind. Eng. Chem. Res., vol. 55, no. 16, pp. 4562–4584, Apr. 2016.
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Full-order first-principles model (P1)

min
𝑦𝑝
𝑠𝑝,𝑛

, 𝛼𝑠𝑝,𝑛,𝑦
𝑖𝑛𝑣
𝑠𝑝,𝑛

𝐽 = න
0

𝑇𝑚

Φ 𝑝, 𝑣𝑝, 𝑦𝑝, 𝑦𝑖𝑛𝑣 , ෤𝑦 𝑑𝑡

s.t.
Timing constraints
Process model (Full-order)
Inventory model
Product split
Product mixing
Initial Conditions
Process and Quality Constraints

Time horizon: 72 hours
Solution time: 94.62 hours
Optimal operating cost: $1,012.56
Cost savings (%): 1.22%

64 bit Windows system Intel Core i7-2600 CPU at 3.40 GHz and 16 GB RAM
Solved in gPROMS[5]

[5] Process Systems Enterprise, “gPROMS Process Builder.”
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[4]

Reduced-order nonlinear HW models (P2)

min
𝐹𝑝
𝑠𝑝,𝑛

𝜙 = න
0

𝑇𝑚

𝑃𝑟𝑖𝑐𝑒 𝑡 𝒫 𝑡 𝑑𝑡

s.t.
Timing constraints
Process model  (HW)
Inventory model
Product split
Product mixing
Initial Conditions
Process and Quality Constraints

Time horizon: 72 hours
Solution time: 5.10 hours
Optimal operating cost: $1,014.81
Cost savings (%): 1.01%

[4]

64 bit Windows system Intel Core i7-2600 CPU at 3.40 GHz and 16 GB RAM
Solved in gPROMS[5]



Internal Use - Confidential

DR Optimal Scheduling with Linear Models

61

MILP HW/FSR models (P3)

min
𝑢𝑖

𝐽 = σ𝑖σ𝑗 𝑃𝑟𝑖𝑐𝑒𝑖𝒫𝑖𝑗 (P3)

s.t.
Timing constraints
Process model (HW/FSR)
Inventory model
Initial Conditions
Process and Quality Constraints
Continuity Constraints

Continuous Variables: 85,131 
SOS2 Variables: 1,512

Time horizon: 72 hours
Solution time: 11.7 min
Optimal operating cost: $1,013.64
Cost savings: 1.12%
Optimality gap: 0.053%

MILP HW/FSR models with LR (P4)

min
𝑢𝑖

𝐿𝑚 =෍

𝑖

෍

𝑗

𝑃𝑟𝑖𝑐𝑒𝑖𝒫𝑖𝑗𝑚 + 𝐿𝐷𝑖𝑚𝛾𝑖𝑚

s.t.
Timing constraints
Process model (HW/FSR)
Inventory model
Initial Conditions
Process and Quality Constraints

Continuous Variables: 90,325 
SOS2 Variables: 1,512

Time horizon: 72 hours
Solution time: 7.12 mins
Optimal operating cost: $1,013.64 
Cost savings: 1.12%
Optimality gap: 0.040%
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Uncertain Electricity Prices

For 𝑁𝑟
𝑃 = 200, 𝛼 = 0.95

Optimal cost: $1020.39
Soln time: 7.39 ± 0.02 min

min𝐶 =෍

𝑖

෍

𝑗

𝑃𝑖Φ𝑖,𝑗

s.t. 𝐶 + 1 − 𝑧𝑟
𝑃 𝑀 ≥ σ𝑖σ𝑗 𝑃𝑖,𝑟Φ𝑖,𝑗

෍

𝑟

𝑧𝑟
𝑃𝜋𝑟 ≥ 𝛼

𝜋𝑟 = Pr 𝑃𝑖,𝑟
0 < 𝛼 ≤ 1
𝑃𝑖 ∼ 𝒩𝑚𝑣𝑛 𝜇𝑖 , Σi

Process model (HW/FSR)

Process constraints

Quality constraints

Initial conditions

Continuity conditions

Demand constraints (Di=20 mol/s)

3-day operating cost without 
price uncertainty: $1014.48
(0.58% increase)
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Uncertain Product Demand

min𝐶 =෍

𝑖

෍

𝑗

𝑃𝑖Φ𝑖,𝑗

s.t. 𝐹𝑖,𝑗
𝑝
− 𝐷𝑖,𝑟 ≥ 𝑓𝑠𝑖,𝑗

𝑖𝑛 − 𝑓𝑠𝑖,𝑗
𝑜𝑢𝑡 −𝑀 1 − 𝑧𝑟

𝐷

෍

𝑟

𝑧𝑟
𝐷 ≥ 𝛼𝑁𝑅

𝐷

0 ≤ 𝛼 ≤ 1

𝐷𝑖 ∼ 𝒰 16,23 𝑡𝑠𝑡𝑎𝑟𝑡~𝒰[0,72]

Process model (HW/FSR)

Process constraints

Quality constraints

Initial conditions

Continuity conditionsFor 𝑁𝑟
𝐷 = 20, 𝛼 = 0.95

Optimal cost: $1163.67 (+14.7%)
Soln time: 2.06 ± 0.02 min

3-day storage depletion without 
demand uncertainty: -698 kmol
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Uncertain Electricity Prices and Product Demand
min𝐶

s.t. 𝐶 + 1 − 𝑧𝑟
𝑃 𝑀 ≥ σ𝑖σ𝑗 𝑃𝑖,𝑟Φ𝑖,𝑗

෍

𝑟

𝑧𝑟
𝑃𝜋𝑟 ≥ 𝛼

𝜋𝑟 = Pr 𝑃𝑖,𝑟
𝐹𝑖,𝑗
𝑝
− 𝐷𝑖,𝑟 ≥ 𝑓𝑠𝑖,𝑗

𝑖𝑛 − 𝑓𝑠𝑖,𝑗
𝑜𝑢𝑡 −𝑀 1 − 𝑧𝑟

𝐷

෍

𝑟

𝑧𝑟
𝐷 ≥ 𝛼𝑁𝑅

𝐷

0 ≤ 𝛼 ≤ 1

𝐷𝑖 ∼ 𝒰 16,23
𝑃𝑖 ∼ 𝒩𝑚𝑣𝑛 𝜇𝑖 , Σi
Process model (HW/FSR)
Process and quality constraints
Initial conditions
Continuity conditions

For 𝑁𝑟
𝐷 = 20, Nr

P = 200, 𝛼 = 0.95
Optimal cost: $1,172.69 (+15.6%)
Soln. time: 7.56 ± 0.03 min

The proposed method accounts for errors that arise 
in predictions of uncertain parameters—its 
applicability is independent of the methods chosen 
to predict electricity prices and demand

Key point: 
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Kelley, M. T., Tsay, C. & Baldea, M. A data-driven linear formulation 
of the optimal demand response scheduling problem for an 
industrial air separation unit. Chem. Eng. Sci. Submitted. (2021).


