Richard Arthur
Senior Director
Computational Methods Research
y @arthurrge
in RichardBArthur
OOO richardarthur.medium.com

GE COLLABORATIONS WITH DOE AT THE EXASCALE

GE Research... an innovation engine

connecting to GE businesses, government agencies \& strategic partners

(5) Generating $\begin{aligned} & 1 / 3 \text { of world's electricity }\end{aligned}$
-t. Powering
Takeoff every 2 seconds
(ब) Curing
$16,000+$ scans every minute

Drivers of needed Confidence \& Reliability

Fielded Product Characteristics

Critical Infrastructure

safety / failure consequence surface for cyberattack

Long field life

durable to extended use \& changes to environment / mission

Capital intensive

maintenance contracts for uptime cost-effective sensor monitoring

Modeling \& Simulation well-established at GE / GE Research

Computational

 Science \& EngineeringModeling (Form \& Function) \&
Simulation (Credibility \& Confidence)

TO SEE TO UNDERSTAND TO PREDICT

Gas CT Wind scanners Engines turbines Turbines

Oil \& Gas

Additive

TO SEE

Computational model as scientific instrument

MICROSCOPE

Interrogate extreme detail

MACROSCOPE

Perceive system-wide interactions

HYPERSCOPE
Explore vast dimensionality

Computational Fluid Dynamics -
 Used throughout today's GE products

Widely Applicable

- Aerodynamics, heat transfer, aeromechanics, aero-acoustics, combustion
- Aviation, Energy, Renewables

Long term investment in Software

- Solvers, meshing, post-processing
- ~50 years of investment

Sustained investment in HPC Infrastructure

- Significant in-house capabilities
- Compete for peer-reviewed grants to access Leadership Compute facilities

Aviation

Hydro

Wind

GE / Safran CFM56
First flew in 1979 and continuously improved

GE / Safran LEAP

Next generation single aisle (2016) ... B737, A320 Architecture, material, advanced components
15% reduction in fuel burn

Sustainable Propulsion

> Path to zero CO_{2} emissions requires hydrogen as a fuel.
$>$ But economic factors impose barriers such as:

1. Price of fuel source per km traveled.
2. Reduced passenger load ($4 x$ fuel volume per joule)
3. Reduced aircraft range (onboard fuel capacity)
> Must improve propulsive efficiency.
RISE ${ }^{\text {TM: }}$: Revolutionary Innovation for Sustainable Engines

* RISE is a registered trademark of CFM International,
a 50-50 joint company between GE and Safran Aircraft Engines

> RISE program: Open fan design is key.

Computational View from mid 2000's

GPUs ~2005

FPGAs ~2002

STI Cell ~2007

Heart of PlayStation3

High Integrity

787 Core Compute System

Wich mulir-crana achinecure and utra high.speeed

Revolutionizing medical and molecular imaging systems with Cell Broadband Engine technology

LOCKHEEDMARTIN

dedicated high-speed busses However, these hardware architectures are expensive, take a long time to are expensive, take a long time to program/modify.

GE Research gains a 16 x improveme GE Research gains a 16 x impp
on MRI image reconstruction on MRI image reconstruction Recently, a team at GE Global
Research implemented three MRI image reconstruction algorithms mage reconstruction algorinms Cell/B.E. processors. Each algorithm was implemented and compared

GPUs ~2005

FPGAs ~2002

STI Cell ~2007

Heart of PlayStation3

GE ready pre-2010 for

Assistance from to port GE CFD solver (Tacoma) to BlueGene/L

Will we SEE something different?

GE Aviation LEAP Unsteady CFD: Strut wake effects GE Tacoma RANS solver

Will it be useful?

Never Before Seen

Prior State of the Art:
Steady Analysis (GE Internal HPC)

- Unobservable physically
- Relevant to engineering design
- 2012 IDC award:

TO SEE

TO SEE

GE Global Research acquires a Cray Supercomputer
 AN
 f Recommend
 Tweet
 \checkmark Email

Companies: Cray Inc. I General Electric Co.

Related Quotes

Symbol	Price	Change
CRAY	6.39	+0.13
CRAY	Jul 12. 1:27pm EDT	6.45
		6.40
		6.35
		6.30
Yahool	12 pm	2 pm
10 am	6.25	

On Tuesday June 21, 2011 . $: 59$ am EDT
Cray Inc. (NasdaqGS:CRAY) announced the company has sold a

Early promise to predict performance vs. physical test (Aeroacoustics)

2011 Exascale Panel @Capitol

Supercomputing for Science \& Competitiveness

American Chemical Society
March 17 ${ }^{\text {th }}, 2011$

Potential Problem Size

Full wheel aircraft engine
(each "spoke" on each "wheel" is a "blade")

- 1,000 blades

$\times 5 \mathrm{M}$ geometric points per blade ($\mathrm{w} /$ cavities)
$\times 9$ (double precision) variables (degrees of freedom)
$\times 60,000$ time steps
$=2.7 \times 10^{\wedge 14(2.7 ~ P e t a-c a l c u l a t i o n s ~}{ }^{1}$) per case

- Output file $=500$ time steps $=180 \mathrm{~Tb}$ file per case
- This is just CFD

86) imgnotionotwack (1) Each "calculation" = many FLOP/s

2015 Chapter: GE's Journey to Supercomputing

A. Osseyran \& M. Giles, Industrial Applications of High-Performance Computing: Best Global Practices, (pp. 253-277).
London, England: Chapman \& Hall/CRC Press (2015)

Chapter by Richard Arthur, GE Research
Case study in full chapter by Masako Yamada, GE Research
© CRC Press

April 2016 National Lab Day Poster (2022 Update)
$15+(86)$

TO UNDERSTAND

Super Collaboration
Smoky Mountains Computational Sciences and Engineering Conference

Joe Citeno,
GE Power
August 28, 2018

Issue: Combustion Turbulence Thermo-acoustic Instability on GE's Next-Generation Gas Turbine

Combustion in gas turbines

12 Combustors in a 7HA Gas Turbine, each one consumes in just 1 minute....
$\mathbf{3}$ tons of fuel/air mixture ... like $\mathbf{2 1}$ tractor trailers of combustible mixture
The energy equivalent of $\mathbf{9}$ propane tanks per minute Like 6,500 backyard gas grills

GE 7HA: World's Most Efficient 60Hz Gas Turbine

GE Breakthrough Scale \& Fidelity with DOE Leadership Computing

UNSTEADY WAKE ANALYSIS

Jaguar Cray XK7
GE In-house RANS Solver
Brian Mitchell, GE

AEROACOUSTIC ANALYSIS
Mira IBM BlueGene/Q
AFRL LES Solver
Umesh Paliath, GE

COMBUSTION ANALYSIS

Titan Cray XT4
Cascade LES Solver
Joe Citeno, GE

Argonne $\underset{\substack{\text { National } \\ \text { Laboratory }}}{ }$ " OAK
RIDGE
National Laboratory

GE Research received the 2018 HPCwire Editor's Choice Award for Best Use of HPC in Manufacturing

Goal: Optimize wind farm design to improve energy generation efficiency of turbines

CHALLENGE
 Understand sources of manufacturing defects in materials and processes to improve first-time yields

GE Additive Manufacturing

New Business for Novel Capabilities

Leveraged HPC4EnergyInnovation program

HPCAMPNUFRCTURING

Highly complex and relatively new manufacturing process

- Wide spectrum of length scales (from powder grains to solid parts)
- Very long process times (kilometres of scanning)
- Complex physics from the melt pool to the final workpiece
- Complex parts and supports structures (lattice-type e.g.)

CONCEPTLASER

2009-2017 OVER 1 BILLION CORE-HOURS AWARDED TO GE IN PEER-REVIEWED COMPETITIVE GRANTS

- Gas Turbine, Wind Turbine \& Aviation
- Combustion (Atomization, Interactions)
- Unsteady Aerothermal \& Aeroacoustics
- Ice Formation (nucleation) \& Adhesion
- Alloy Solidification (part castings)
- Additive Manufacturing (metal powder)

S

2019 ECP Annual Meeting Poster

Example: Combustor + High-Pressure Turbine

- Improved combustion physics
- Turbine wake propagation
- Combustor acoustic effects
- Wake migration / turbulence evolution through Stage-1
- Film cooling efficacy in 3D flow
- Further increase in fuel efficiency \& decrease in CO2/NOX
- Reduce / improve expensive tests - Novel design practices employing multi-scale multi-physics flow

CHALLENGE Understand impact of coastal low-level wind-jets on offshore wind farm performance and reliability

TO PREDICT

CH ALLENGE - Predict impact of farm-scale wakes on down-flow wind farms

$E(\sqrt{-}) \cdot \square$

Looking Forward

Exascale computing +
improvements to Exawind tools will allow
studying multiple large wind farms ($\mathrm{O}(100$) turbines) at useful fidelity.

Complex terrain/wave swell atmosphere interactions

Wind farm-farm interactions at fidelity

Turbine-turbine interactions at fidelity
\square not feasible
\square possible (at Exascale)

Design objectives: Efficiency and Durability over various operating conditions

Applying Machine Learning to Reynolds Number Impact on HPT Flow

Understand flow behavior changes due to selection of Reynolds number:Laminar-to-turbulent transitions (reduced energy capture)
Flow structures in wake (reduced performance)
Acoustic wave propagation from trailing edge (reduced stability)
High-fidelity datasets as training repository to create surrogate models able to substitute for complex effects in lower-fidelity simulations.

RISE ${ }^{\text {TM }: ~ R e v o l u t i o n a r y ~ I n n o v a t i o n ~ f o r ~ S u s t a i n a b l e ~ E n g i n e s ~}$

[^0]

CFM RISE ${ }^{T M^{*}}$ industry program to enable sustainable aviation

RISE ${ }^{\text {m. }}$: Revolutionary Innovation for Sustainable Engines

* RISE is a registered trademark of CFM International, a $50-50$ joint company between GE and Safran Aircraft Engines

THECHALLENGE - Predict flight test performance from models validated on TRL4 rig tests

Discovering new ways to control the challenging flow physics that limit improvements in noise and efficiency Product-scale flight Reynolds number: only possible via Frontier

OPPORTUNITY -Acceleration via Focused Computation

Novel ScientificML Workflow: Bespoke Surrogate Model Factory

TRANSIENT CFD
1 Solution = ~2 Days

Post-Grant

 PublicationsApplication of Cascade model towards development of DLN2.6e technology \downarrow Numerical methods behind Cascade Premixed Combustion Model \& acoustics prediction Application Paper for prediction of thermoacoustics \& other quantaties and comparison with lab and engine LES \& thermoacoustic prediction of combustion process in lean premixed gas turbine with Staged Fuel Injection Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an HPT Vane The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses High-Fidelity Simulations of a Linear HPT Vane Cascade Subject to Varying Inlet Turbulence Machine learning for turbulence model development using a high-fidelity HPT cascade simulation Transition investigations based on large eddy simulation of high-pressure turbines vane at realistic Reynolds and Mach numbers \leqslant Highly Resolved LES of a Linear HPT Vane Cascade Using Structured and Unstructured Codes Multiple invited seminars given based on this work - Can pull that list together Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines Unsteady adjoint of pressure loss for a fundamental transonic turbine vane Fluid Dynamics Effects on Microstructure Prediction in the Laser Additive Manufacturing Process Fluid Dynamics Effects on Microstructure Prediction for the Single-track Laser Additive Manufacturing Process Effect of Particle Spreading Dynamics on Powder Bed Quality Fluid Dynamics Effects on Microstructure Prediction in Single-Laser Tracks for Additive Manufacturing of IN625 Effect of Particle Spreading Dynamics on Powder Bed Quality in Metal Additive Manufacturing Quantification of Powder Bed Structure for Metal Powder Bed Additive Manufacturing Using Discrete Element Method Wall-modeled LES study of surface roughness effects from additive manufacturing for gas turbines Near Wall resolution Requirements for High-Order FR/CPR Method for Wall-Resolved Large Eddy Simulations GPU accelerated Turbomachinery LES using DG methods Large Eddy Simulation for Jet Installation Effects Investigation of Noise Generated by a DU96 Airfoil Large eddy simulation of a wind turbine airfoil at high angle of attack Large eddy simulation of airfoil self-noise Report for Workshop: Trailing-Edge noise Towards Identifying Contribution of Wake Turbulence on Inflow Turbulence Noise from Wind Turbines Large Eddy Simulation of a Wind-Turbine Airfoil at High Freestream Flow Angle Effect of Installation Geometry on Turbulent Mixing Noise from Jet Engine Exhaust Large Eddy Simulation for jets from chevron \& dual flow nozzle Turbulent Mixing Noise from Jet Exhaust Nozzles Aerodynamic Noise Prediction for a Rod-Airfoil Configuration using Large Eddy Simulations

(Recent)

2020-2022 ALCC / INCITE Project Publications

```
B. Jayaraman, E. Quon, J. Li, and T. Chatterjee,
"Structure of Offshore Low-Level Jet Turbulence and Implications to Meso-micro Coupling", TORQUE2022 paper 651, J. Phys.: Conf. Ser. 2265022064.
T. Chatterjee, J. Li, S. Yellapantula, B. Jayaraman, B. and E. Quon,
"Wind Farm Response to Mesoscale-driven Offshore Low Level Jets: A Multiscale Large Eddy Simulation Study", TORQUE2022 paper 536, J. Phys.: Conf. Ser. 2265022004.
S. Priebe, D. Wilkin, A. Breeze-Stringfellow, A. Mousavi, R. Bhaskaran, L. d'Aquila,
"Large Eddy Simulations of a Transonic Airfoil Cascade",
GT2022-80683, ASME Turbo Expo 2022, Rotterdam, The Netherlands, June 13-17, 2022.
R. Bhaskaran, R. Kannan, B. Barr and S. Priebe,
"Science-Guided Machine Learning for Wall-Modeled Large Eddy Simulation,"
2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 1809-1816, doi: 10.1109/BigData52589.2021.9671436.
S. Priebe, T. Wood, J. Yi and A. Mousavi,
"Large Eddy Simulation of an Open Rotor Fan Blade",
Paper GT2022-80538, ASME Turbo Expo 2022, Rotterdam, The Netherlands, June 13-17, 2022.
(Presentation) B. Mitchell, KAUST Conference: Flow Simulation at the Exascale, March 28-30, 2022
```


GE Support for Leadership Computing \& Exascale

Background materials follow...

DAVE KEPCZYNSKI

Chair, ECP Industry Council

Exascale Computing Project (ECP) Industry Council Chair Brunon (Dave) Kepczynski serves as Chief Information Officer, General Electric (GE) Global Research Centers and the Engineering Product Leader for GE's Digital Technologies. His missions are the scaling and maturing of digital thread technologies and engineering horizontal products across the enterprise to deliver outcomes in technical velocity, cost, and quality. In a previous role at GE, he was Engineering Chief Information Officer for GE Oil \& Gas where his teams drove digital transformation.

Before GE, he spent more than 25 years with General Motors, leading teams in Global Systems Development \& Business/IT Transformation, Global Design Execution \& Operations, Vehicle \& Powertrain Product Development, Assembly Operations, and Manufacturing Engineering. His teams developed and deployed solutions enabling the design, validation, and manufacture of world-class automotive products.

Dave has been an active member of the ECP Industry Council since its inception and became chair in April 2018.

2020 Computational Methods Workshop 2022 GE Simulation Symposium

Whitney Symposium 2015

Physics \& Big Data for Customer Outcomes

Whitney Symposium 2012

Analytics, Modeling and Simulation in the Age of the Industrial Internet

Whitney Symposium 2016

 Al: The Promise of Limitless Industrial Opportunity

2022 GE Simulation Symposium

2020 Computational Methods Workshop

- Steven Levine, Sr. Dir. Virtual Human Modeling, Dassault Systèmes
- Eric Stahlberg, Dir. Cancer Data Science, Frederick National Lab
- Laurence Sampson, Sr. Dir., Siemens Digital Industries Software
- Amanda Randles, Biomedical Engineering, Duke University
- Marc Horner, Distinguished Engineer, Ansys, Inc.
- Eric Bogatin, University of Colorado, Boulder

General Electric (Internal)

- Patrick Harrington, Sr. Mechanical Engineer
- Kyle Reiser, Mechanical Architect
- Emma Cusack, Mechanical Engineer
- Gunaseelan Murugan, Sr. Systems Engineer, GE Healthcare
- Rick Arthur, Sr. Director, Computational Methods, GE Research
- Ann Buneo, Product Leader, HPC, GE Research
- Doug Grant, Sr. Mechanical Engineer, GE Healthcare
- Jonathan Bruss, Sr. Engineer, Mechanical Engineering, GE Healthcare

Modeling Maturity Rubric

	Realism Accuracy Confidence Robustness	Completeness of ...
	Productivity Sustainabi...............	
	Scalability Flex........ Flexibility	Capable \& High Performance Architecture Modular, Extensible, Interoperable

Framework to Assess MODEL MATURITY

Assert a Region of Model Competence

where its use is numerically stable (ROBUSTNESS) with minimal simplifying constraints (REALISM) and quantifiably bounds uncertainties (CONFIDENCE) of results with validated predictive ACCURACY

Implemented with an Architecture that
performs capably (SCALABILITY)
and is interoperable and FLEXIBILE

Employing modern Software Engineering \& Computational Methods (including AI/ML) discipline and tools to
promote efficient workflows (PRODUCTIVITY), reduce waste and improve quality (SUSTAINABILITY)

See also
richardarthur.medium.com/co-design-web

Additional Reference: PCMM Adaptation by GE Digital Twin Model Maturity Team:

Sandia
Nation National
Laboratories PCMM

Per Asset Based Models	L0: Empirical Trial \& Error	L1: Expertise-driven	L2: Model-assisted	L3: Model-driven
Model Representation What features are neglected because of simplifications or stylizations?	Little or no representational fidelity requirements established for the model geometry, material properties, and process conditions (parameters, initial conditions (IC's), and/or boundary conditions (BC's))	Significant assumptions of the model geometry, material properties, and process conditions (parameters, initial conditions (IC's), and/or boundary conditions (BC's))	Limited assumptions of the model geometry, material properties, and process conditions (parameters, initial conditions (IC's), and/or boundary conditions (BC's))	Real time process and quality assurance data used to refine model assumptions and develop physics based and data driven reduced order models
Process Physics Fidelity How fundamental are physics \& material models + degree of model calibration?	Empirical data-driven models and/or judgment used to define important parameters of the asset of interest	Some physics based models exist for key parameters of the asset of interest	(Suite of) physics based models exist for the key parameters of the asset of interest	Real time predictions of physics based process performance enable enterprise decisions made within process takt time
Code/Algorithm/Model Integration Do algorithm deficiencies, software errors, and poor SQE practices corrupt results?	Minimal or no testing of any commercial off the shelf (COTS) or custom software elements with little of no configuration management procedures specified or followed	Source code and algorithms are either COTS software or managed by configuration management procedures with limited comparisons to established algorithm benchmarks	Customized and/or modified algorithms are tested and compared to benchmark data and/or solutions to determine impact on numerical convergence and physics	Integration of algorithms with machine controls and multi-physics data fusion
Solution Verification Are numerical solution errors and procedural human errors corrupting the simulation results?	Modeling assumptions have an unknown effect on the accuracy and/or precision of the numerical model predictions	Alternative model builds considered; Numerical, discretization, and model assumption induced errors qualitatively estimated based on model input/output for each use case; Qualitative assessment of model limitations and weaknesses provided.	Alternative model builds have been considered; Numerical, discretization, and model assumption induced errors quantitatively estimated across validation envelope and used to establish best practices; Quantitative assessment of model limitations and weaknesses provided.	Real time comparison of predictions with process data
Model Validation How is accuracy of simulation \& experimental data assessed over the validation hierarchy?	Judgment and/or limited experimental data exists to validate model predictions	Industry standard use cases and benchmark experimental data sets exist and used to calibrate models at one or more distinct validation points	Data from actual enterprise and/or customer/supplier processes used to calibrate model predictions and establish validation envelopes	Model predictions are used to adapt process parameters for real time control
Uncertainty Quantification How thoroughly are uncertainties and sensitivities characterized and propagated?	Model prediction uncertainties and sensitivities to key input parameters are not assessed as part of the simulation	Prediction uncertainties inferred from benchmark experimental use case validation data with limited sensitivity studies conducted for key parameters	Prediction uncertainties segregated and propagated by source (geometry, material properties, and process conditions (parameters, initial conditions (IC's), and/or boundary conditions (BC's)) etc.) with detailed sensitivity analyses conducted	Uncertainty and confidence estimates made for all predictions using physics based datadriven reduced order models
Peer review	Absent	Informal / ad-hoc peer review	Peer review conducted as process	Formal independent peer review process

GE Research

Physical system models with predictive REALISM

COLLABORATIVE MULTI-DISCIPLINARY MODEL INTEGRATION

GEOMETRIC DIMENSIONING \&
TOLERANCING PRECISION

MULTI-SCALE MATERIALS MODELS

COUPLED MULTI-PHYSICS\& CO-SIMULATION

Physically validate predictive ACCURACY

Garbage In Garbage Out
"RIG" TEST

to trust critical model results
\& bound assertable CONFIDENCE

DIGITAL TWIN

VERIFICATION
\& VALIDATION
CALIBRATION \& UNCERTAINTY QUANTIFICATION

Decision Space Mapping: Guided Validation \& Calibration

Geometry Ecosystem: Gaps \& Failure Modes

1. Labor-intensive complex mesh generation and validation ("are we sufficiently confident with the geometry spec to take the next step?" the step being to send to manufacturing or even simply to use to instantiate CFD/FEM analyses \sim flow, thermal, stress/strain, etc.")
2. Elegantly and robustly handle tolerances
(including consistency \& coherence/feasibility in design tolerances vs. manufacturing tolerances)
3. Handling imperfect or formulaic geometry (gaps/overlaps/shards)
4. Geometric change propagation across adjacent parts
5. Mapping / calibration with point cloud measurement (including evaluating tolerance deviation/acceptance)
6. Load-balancing/adaptive refinement/scalability in highly complex (especially evolving/sliding and dynamic physics) meshes

Geometry Ecosystem: EMERGING Gaps

7. Sufficiently authoritative and comprehensive specification of a single source reference for deriving geometries for all potential uses (i.e., end-use context-driven)
a. automated mesh generation guided by embedded domain knowledge
b. (e.g., performance flow vs. cooling flow vs. conjugate heat transfer vs. solid thermal flow vs. stress/strain thermal cycling and crack propagation vs. tensile strength / etc.)
c. (or manufacturing GTD@room temperature vs. performing GTD@operational temperature / etc.)
d. (and systems modeling inclusion of kinematics / articulation information),
e. with sufficient fidelity to reduce physical testing-for-certification with virtualized certification-by-analysis
f. as well as geometry simplification (including high-order analyses),
g. (with in-situ reflective/introspective learning (of principles, simplification opportunities, etc.) during meshing.)

8. Sufficiently support capabilities for advanced manufacturing use cases including

a. nonuniform materials (gradient composition, designed microstructures, etc.),
b. surface tagging in complex internal geometries (such as micro-trifurcating core structures in heat exchangers) and geometries resulting from generative design (fully exploiting additive degrees of freedom \& biomorphic shapes),
c. specification for geometric fit by functional intent rather than explicit shape (generatively/programmatically derived), d. assessment of opportunities for multi-part consolidation,
e. auto-propagate novel manufacturing capability up the toolchain to design decisions (e.g., via design assistants),
f. inclusion of intermediate geometries for manufacturing (such as mid-process geometries or temporary bit holds) and process guidance (such as surface roughness, crystal orientations, measurement \& inspection features)

Strategy: Actions \& Assets

Modernization of Science \& Engineering: Data as Strategic Asset

> Gap Assessment: legacy tools \& practices (e.g., physical testing, certification)
$>$ Modeling Maturity: identify opportunities to pilot feasibility study, reduction to practice
$>$ Continuous Improvement/Exploit ML: automation, virtualization, standardization, FAIR data/workflows,
Modeling Infrastructure: Systemic Mindfulness \& Knowledge Stewardship
$>$ In-silico Infrastructure: HPC, cloud, software \& methods ecosystem (capacity + capability)
$>$ Modeling Literacy/Fluency: executive competency/confidence + workforce development
$>$ Human-Machine Collaboration: data \& decision provenance, continuum mindset

[^0]: GE / Safran RISE Demonstrator
 20\% reduction in fuel burn
 SAF and Hydrogen Capable
 20\% -100\% reduction in CO2 emissions

