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Generating
1/3 of world’s electricity

Powering
Takeoff every 2 seconds

Curing
16,000+ scans every minute

GE Research… an innovation engine

connecting to GE businesses, government agencies & strategic partners
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Drivers of needed Confidence & Reliability

Critical Infrastructure

safety / failure consequence
surface for cyberattack

Long field life

durable to extended use &
changes to environment / mission

Capital intensive

maintenance contracts for uptime
cost-effective sensor monitoring

Fielded Product

Characteristics

© 2019, General Electric Company. All Rights Reserved.

400,000+ for all
imaging + medical
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Modeling & Simulation well-established at GE / GE Research

Modeling (Form & Function)

&

Simulation (Credibility & Confidence)

Computational

Science & Engineering

© 2019, General Electric Company. All Rights Reserved.

TO SEE

TO UNDERSTAND

TO PREDICT
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TO SEE
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M I C R O S C O P E
Interrogate extreme detail

M A C R O S C O P E
Perceive system-wide interactions

Computational model as scientific instrument

H Y P E R S C O P E
Explore vast dimensionality

6
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Aviation

Hydro

Power

Wind

Widely Applicable

o Aerodynamics, heat transfer, aero-
mechanics, aero-acoustics, combustion

o Aviation, Energy, Renewables

Long term investment in Software

o Solvers, meshing, post-processing

o ~50 years of investment

Sustained investment in HPC Infrastructure

o Significant in-house capabilities

o Compete for peer-reviewed grants to
access Leadership Compute facilities

Computational Fluid Dynamics Used throughout today’s GE products
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LEAP

GE / Safran LEAP
Next generation single aisle (2016) … B737, A320

Architecture, material, advanced components

15% reduction in fuel burn

GE / Safran CFM56
First flew in 1979 and 

continuously improved

GE / Safran RISE Demonstrator
20% reduction in fuel burn

SAF and Hydrogen Capable

20% -100% reduction in CO2 emissions

Aircraft Engines

+=

Pushing the state of the art to reduce fuel burn and CO2 emissions
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T H E  C H A L L E N G E
Design engine with sufficient propulsive efficiency
to enable use of hydrogen as zero CO2 emission fuel

+=

Sustainable Propulsion
➢ Path to zero CO2 emissions requires hydrogen as a fuel.
➢ But economic factors impose barriers such as:

1. Price of fuel source per km traveled.
2. Reduced passenger load (4x fuel volume per joule)
3. Reduced aircraft range (onboard fuel capacity)

➢ Must improve propulsive efficiency.

➢ RISE program: Open fan design is key.
Airbus Video (LinkedIn)

RISE™: Revolutionary Innovation for Sustainable Engines

* RISE is a registered trademark of CFM International, 

a 50-50 joint company between GE and Safran Aircraft Engines [infographic]

https://www.linkedin.com/posts/airbus_a380-propulsion-demonstrator-activity-6955140603881910272-q9wR
https://www.ge.com/news/sites/default/files/2021-06/RISE infographic.pdf


Blade Multi-blade / Blade Row Multi-row / Full Stage

Full Annulus / Multi-stage
Full Engine



FPGAs ~2002

Analysis Methods: Complexity vs. ViabilityAnalysis Methods: Complexity vs. Viability

Engine Model

Complexity

Engine Model

Complexity

Today

Example: Single Stage 3D 

Unsteady DES Analysis will 

be feasible in year 2005

Analysis Methods: Complexity vs. ViabilityAnalysis Methods: Complexity vs. Viability

Engine Model

Complexity

Engine Model

Complexity

Today
Analysis Methods: Complexity vs. ViabilityAnalysis Methods: Complexity vs. Viability

Engine Model

Complexity

Engine Model

Complexity

Today

Example: Single Stage 3D 

Unsteady DES Analysis will 

be feasible in year 2005

Example: Single Stage 3D 

Unsteady DES Analysis will 

be feasible in year 2005

Computational View from mid 2000’s

?
STI Cell ~2007

Heart of PlayStation3

GPUs ~2005



GE Healthcare Image Reconstruction
(CT & MRI Diagnostic Scan Data)

FPGAs ~2002

STI Cell ~2007

Heart of PlayStation3

GPUs ~2005

787 Core Compute System

High Integrity
Embedded Computing



GE ready pre-2010 for
hardware-software co-design 

& use of accelerators
for performance…

but limited in massively parallel (scalability).

Assistance from           TJW (Jim Sexton & team)
to port GE CFD solver (Tacoma) to BlueGene/L







Separated flow
➢ poor air flow control
➢ loss of efficiency

Attached flow
➢ good air flow control
➢ and high efficiency
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Will we SEE something different?

© 2018 General Electric Company - All rights reserved
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Will it be
useful?

Best Legacy
Modeling
Capability

GE Aviation LEAP
Unsteady CFD: Strut wake effects

GE Tacoma RANS solver
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• Unobservable physically

• Relevant to engineering design

• 2012 IDC award:

Never Before Seen

Prior State of the Art:
Steady Analysis

(GE Internal HPC)

Result on OLCF Jaguar Cray XT5 (2010): Unsteady analysis with wake from strut

© 2018 General Electric Company - All rights reserved

18

S
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u
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Separated flow
➢ poor air flow control
➢ loss of efficiency
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TO SEE
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Early promise to predict performance
vs. physical test (Aeroacoustics)

Mira
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2011 Exascale Panel @Capitol

© 2019, General Electric Company. All Rights Reserved.

Supercomputing for Science & Competitiveness

American Chemical Society
March 17th, 2011
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Physics of Ice Formation (Nucleation)
(to understand adhesion sensitivities ~ wind, high altitude, deep sea, …)
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2015 Chapter: GE’s Journey to Supercomputing

© 2019, General Electric Company. All Rights Reserved.

A. Osseyran & M. Giles,
Industrial Applications of High-Performance Computing: 
Best Global Practices, (pp. 253-277). 
London, England: Chapman & Hall/CRC Press (2015)

Chapter by Richard Arthur, GE Research
Case study in full chapter by Masako Yamada, GE Research

© CRC Press

http://www.crcpress.com/product/isbn/9781466596801


Combustor

High Pressure Turbine
Low Pressure Turbine

Exhaust

Fan

April 2016 National Lab Day Poster

(2022 Update)
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TO UNDERSTAND
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2018 Smoky Mountains Conference Keynote
GE Energy Executive

Joe Citeno

29

Issue: Combustion Turbulence 

Thermo-acoustic Instability on

GE’s Next-Generation Gas Turbine GE 7HA: World’s Most Efficient 60Hz Gas Turbine
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T H E  C H A L L E N G E
Understand observed thermo-acoustic instability; 
beyond-state-of-the-art (single combustor) simulation capability

30

GE & Oak Ridge Received the

2016 HPCwire Reader’s Choice Award for

Best HPC Application in the Energy Industry

Cascade Technologies CharLES solver

Never seen before simulation: 
Multi-combustor dynamics interactions

Unstable

Stable
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GE Breakthrough Scale & Fidelity with DOE Leadership Computing

UNSTEADY WAKE ANALYSIS
Jaguar Cray XK7

GE In-house RANS Solver

Brian Mitchell, GE

L E A P  A V I A T I O N  E N G I N E  9 X  A V I A T I O N  E N G I N E  7 H A 2  G A S  T U R B I N E

AEROACOUSTIC ANALYSIS 
Mira IBM BlueGene/Q

AFRL LES Solver

Umesh Paliath, GE

COMBUSTION ANALYSIS
Titan Cray XT4

Cascade LES Solver

Joe Citeno, GE

31
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Understand wind turbine wake
impact on wind farm performance

T H E  C H A L L E N G E

32

GE Research received the

2018 HPCwire Editor’s Choice Award for

Best Use of HPC in Manufacturing

Goal: Optimize wind farm design to improve 

energy generation efficiency of turbines



24 hours

GE Additive Manufacturing
New Business for Novel Capabilities

Highly complex and relatively new manufacturing process
• Wide spectrum of length scales (from powder grains to solid parts)

• Very long process times (kilometres of scanning)

• Complex physics from the melt pool to the final workpiece

• Complex parts and supports structures (lattice-type e.g.)

C H A L L E N G E
Understand sources of manufacturing defects in 
materials and processes to improve first-time yields

Leveraged HPC4EnergyInnovation program
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April 2014

© 2014, General Electric Company

• ~14 INCITE + ~22 ALCC + ~6 HPC4Manufacturing

• Multiple pan-lab engagements

• Gas Turbine, Wind Turbine & Aviation
• Combustion (Atomization, Interactions)
• Unsteady Aerothermal & Aeroacoustics

• Ice Formation (nucleation) & Adhesion
• Alloy Solidification (part castings)
• Additive Manufacturing (metal powder)

2 0 0 9 - 2 0 1 7  O V E R  1  B I L L I O N  C O R E - H O U R S  A W A R D E D  T O  G E

I N  P E E R - R E V I E W E D  C O M P E T I T I V E  G R A N T S
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2019 ECP Annual Meeting Poster

35



Understand impact of coastal low-level wind-jets
on offshore wind farm performance and reliability

July 20, 2022 36

Offshore  low-level 

jet turbulence

Daytime onshore 

turbulence

Multiscale 

atmospheric 

turbulence: 

weather→ turbines
Turbine-turbine 

interactions at 

fidelity

Complex 

terrain/wave swell 

atmosphere 

interactions Wind farm-farm 

interactions at 

fidelity

ALCC awards (2020-22)

Leveraging ExaWind applications 

Allows study of small wind farms (O(10) turbines) at useful  fidelity.  
feasible

not feasible

C H A L L E N G E

(at Petascale)

Side view of axial velocity within a row of the wind farm 

(Press: <The Verve> <GE> <DOE> <InsideHPC> <HPCwire>)

https://www.theverge.com/2020/8/5/21355371/ge-offshore-wind-energy-supercomputer-summit-doe
https://www.ge.com/news/reports/digital-wind-high-powered-computing-helps-scientists-grasp-airflows-offshore-wind-farms
https://www.energy.gov/eere/wind/articles/exawind-supercharges-wind-power-plant-simulations-land-and-sea
https://insidehpc.com/2020/08/summit-takes-center-stage-in-ge-wind-power-study/
https://www.hpcwire.com/2020/08/06/new-ge-simulations-on-summit-to-advance-offshore-wind-power/
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TO PREDICT
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10’s of kilometers

Looking Forward

Exascale computing +

improvements to Exawind tools 

will allow

studying multiple large wind farms (O(100) turbines) at useful  fidelity.  

feasible

not feasible

possible

Øresund wind farm (Baltic sea) Liligrund wind farm (Sweden)

Multiscale 

atmospheric 

turbulence: 

weather→ turbines
Turbine-turbine 

interactions at 

fidelity

Complex 

terrain/wave swell 

atmosphere 

interactions Wind farm-farm 

interactions at 

fidelity

(at Exascale)

Predict impact of farm-scale wakes on down-flow wind farmsC H A L L E N G E
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Predict detailed flow physics on the turbine blade by understanding
how these behaviors vary with Reynolds number (fluid viscosity in the model)C H A L L E N G E

Design objectives: Efficiency and Durability over various operating conditions

Understand flow behavior changes due to selection of Reynolds number:
1. Laminar-to-turbulent transitions (reduced energy capture)
2. Flow structures in wake (reduced performance)
3. Acoustic wave propagation from trailing edge (reduced stability)

High-fidelity datasets as training repository to create surrogate models
able to substitute for complex effects in lower-fidelity simulations.

ALCC 2021-2022 Project CFD153 (Osusky)

Applying Machine Learning to 
Reynolds Number Impact on HPT Flow

3

2

1

https://www.ge.com/research/newsroom/ge-preparing-exascale-computing-key-accelerator-energy-transition
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LEAP

GE / Safran RISE Demonstrator
20% reduction in fuel burn

SAF and Hydrogen Capable

20% -100% reduction in CO2 emissions

T H E  C H A L L E N G E
Design engine with sufficient propulsive efficiency
to enable use of hydrogen as zero CO2 emission fuel

CFM RISE™* industry program 

to enable sustainable aviation
RISE™: Revolutionary Innovation for Sustainable Engines

* RISE is a registered trademark of CFM International, a 50-50 joint 

company between GE and Safran Aircraft Engines

+=
RISE™: Revolutionary Innovation for Sustainable Engines

https://www.ge.com/news/sites/default/files/2021-06/RISE%20infographic.pdf
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INCITE 2021 (Summit)

Early Science (Perlmutter)

Discovering new ways to control the challenging flow physics that limit improvements in noise and efficiency
Product-scale flight Reynolds number: only possible via Frontier

ALCC 2022-23
(Frontier, Summit,

Perlmutter)

Rig Test Scale

Flight Scale

[GT2022-80538]

 a    

 c    

Flow separationWake prediction

Predict flight test performance from 
models validated on TRL4 rig tests

T H E  C H A L L E N G E

CFM RISE™* industry program 

to enable sustainable aviation
RISE™: Revolutionary Innovation for Sustainable Engines

* RISE is a registered trademark of CFM International, a 50-50 joint 

company between GE and Safran Aircraft Engines

+=

Product Scale

https://www.ge.com/news/sites/default/files/2021-06/RISE%20infographic.pdf
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Novel ScientificML Workflow: Bespoke Surrogate Model Factory

TRANSIENT CFD
1 Solution = ~2 Days

FULL-ORDER SURROGATE
1 Million Solutions = ~15 Minutes

Tallman, ORNL AIRES Worship ‘20

Acceleration via Focused ComputationO P P O R T U N I T Y



Post-Grant

Publications

Application of Cascade model towards development of DLN2.6e technology ◆ Numerical methods behind Cascade ◆ Premixed Combustion 

Model & acoustics prediction ◆ Application Paper for prediction of thermoacoustics & other quantaties and comparison with lab and engine ◆

LES & thermoacoustic prediction of combustion process in lean premixed gas turbine with Staged Fuel Injection  ◆ Using a New Entropy Loss 

Analysis to Assess the Accuracy of RANS Predictions of an HPT Vane ◆ The Current State of High-Fidelity Simulations for Main Gas Path 

Turbomachinery Components and Their Industrial Impact ◆ High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and 

Reduced Frequency on Losses ◆ High-Fidelity Simulations of a Linear HPT Vane Cascade Subject to Varying Inlet Turbulence ◆Machine 

learning for turbulence model development using a high-fidelity HPT cascade simulation ◆ Transition investigations based on large eddy 

simulation of high-pressure turbines vane at realistic Reynolds and Mach numbers  ◆ Highly Resolved LES of a Linear HPT Vane Cascade Using 

Structured and Unstructured Codes ◆Multiple invited seminars given based on this work - Can pull that list together ◆ Application of High 

Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines ◆ Unsteady adjoint of pressure loss for a 

fundamental transonic turbine vane ◆ Fluid Dynamics Effects on Microstructure Prediction in the Laser Additive Manufacturing Process ◆

Fluid Dynamics Effects on Microstructure Prediction for the Single-track Laser Additive Manufacturing Process ◆ Effect of Particle Spreading 

Dynamics on Powder Bed Quality ◆ Fluid Dynamics Effects on Microstructure Prediction in Single-Laser Tracks for Additive Manufacturing of 

IN625 ◆ Effect of Particle Spreading Dynamics on Powder Bed Quality in Metal Additive Manufacturing ◆ Quantification of Powder Bed 

Structure for Metal Powder Bed Additive Manufacturing Using Discrete Element Method ◆Wall-modeled LES study of surface roughness 

effects from additive manufacturing for gas turbines ◆ Near Wall resolution Requirements for High-Order FR/CPR Method for Wall-Resolved 

Large Eddy Simulations ◆ GPU accelerated Turbomachinery LES using DG methods ◆ Large Eddy Simulation for Jet Installation Effects ◆

Investigation of Noise Generated by a DU96 Airfoil ◆ Large eddy simulation of a wind turbine airfoil at high angle of attack ◆ Large eddy 

simulation of airfoil self-noise ◆ Report for Workshop: Trailing-Edge noise ◆ Towards Identifying Contribution of Wake Turbulence on Inflow 

Turbulence Noise from Wind Turbines ◆ Large Eddy Simulation of a Wind-Turbine Airfoil at High Freestream Flow Angle ◆ Effect of Installation 

Geometry on Turbulent Mixing Noise from Jet Engine Exhaust ◆ Large Eddy Simulation for jets from chevron &  dual flow nozzle ◆ Turbulent 

Mixing Noise from Jet Exhaust Nozzles ◆ Aerodynamic Noise Prediction for a Rod-Airfoil Configuration using Large Eddy Simulations



Confidentiality disclosure. Use Insert Header/Footer to update the disclosure 44

B. Jayaraman, E. Quon, J. Li, and T. Chatterjee,

“Structure of Offshore Low-Level Jet Turbulence and Implications to Meso-micro Coupling”, 

TORQUE2022 paper 651, J. Phys.: Conf. Ser. 2265 022064.  

T. Chatterjee, J. Li, S. Yellapantula, B. Jayaraman, B. and E. Quon, 

“Wind Farm Response to Mesoscale-driven Offshore Low Level Jets: A Multiscale Large Eddy Simulation Study”, 

TORQUE2022 paper 536, J. Phys.: Conf. Ser. 2265 022004.

S. Priebe, D. Wilkin, A. Breeze-Stringfellow, A. Mousavi, R. Bhaskaran, L. d'Aquila, 

“Large Eddy Simulations of a Transonic Airfoil Cascade”, 

GT2022-80683, ASME Turbo Expo 2022, Rotterdam, The Netherlands, June 13-17, 2022.

R. Bhaskaran, R. Kannan, B. Barr and S. Priebe, 

"Science-Guided Machine Learning for Wall-Modeled Large Eddy Simulation," 

2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 1809-1816, doi: 10.1109/BigData52589.2021.9671436.

S. Priebe, T. Wood, J. Yi and A. Mousavi, 

"Large Eddy Simulation of an Open Rotor Fan Blade”, 

Paper GT2022-80538, ASME Turbo Expo 2022, Rotterdam, The Netherlands, June 13-17, 2022.

(Presentation) B. Mitchell, KAUST Conference: Flow Simulation at the Exascale, March 28-30, 2022

(Recent)

2020-2022 ALCC / INCITE Project Publications

Presentation name | Month Year
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GE Support for Leadership Computing & Exascale

© 2019, General Electric Company. All Rights Reserved.

2018: House Panel: Big Data Challenges and Advanced Computing Solutions
2017 Senate Panel: U.S. Science Facilities: Unlocking Innovation

2014 House Briefing on Value of Supercomputers for Science & Industry

https://www.linkedin.com/pulse/importance-advanced-computing-industry-rick-arthur/
https://twitter.com/i/events/922580619556741120
https://www.ncsa.illinois.edu/archive/house-briefing-highlights-value-of-supercomputers-for-science-industry/
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HPC: Computational Science & Engineering Partnerships – THANK YOU!

• State of the Art Hardware
• Feasibility Study @Scale
• Scalable Software Design & Benchmarking
• Peer-reviewed Credibility & Communications
• Lower TRL problems (Science)

• Har ware Tune  to GE’s Nee s
• Validation @Scale
• Software Innovation and Adoption
• GE Proprietary cases aimed at NPI
• Higher TRL problems (Applied Science & Engineering)

Leadership-class
Supercomputers

GE Internal 
Supercomputers

Inspire & 
Guide



Background materials follow…

@arthurrge

RichardBArthur

richardarthur.medium.com

https://twitter.com/arthurrge
https://www.linkedin.com/in/richardbarthur
https://medium.com/@RichardArthur
https://www.linkedin.com/in/richardbarthur
https://twitter.com/arthurrge
https://medium.com/@RichardArthur




Online:  June 22, 2022Making Simulation Pervasive

Whitney Symposium 2015

Physics & Big Data for Customer Outcomes

Whitney Symposium 2012

Analytics, Modeling and Simulation
in the Age of the Industrial Internet

2020 Computational Methods Workshop
2022 GE Simulation Symposium

Whitney Symposium 2016
AI: The Promise of Limitless Industrial Opportunity



Online:  June 22, 2022Making Simulation Pervasive

2022 GE Simulation Symposium

2020 Computational Methods Workshop • Steven Levine, Sr. Dir. Virtual Human Modeling, Dassault Systèmes
• Eric Stahlberg, Dir. Cancer Data Science, Frederick National Lab
• Laurence Sampson, Sr. Dir., Siemens Digital Industries Software
• Amanda Randles, Biomedical Engineering, Duke University 
• Marc Horner, Distinguished Engineer, Ansys, Inc. 
• Eric Bogatin, University of Colorado, Boulder

General Electric (Internal)
• Patrick Harrington, Sr. Mechanical Engineer
• Kyle Reiser, Mechanical Architect
• Emma Cusack, Mechanical Engineer 
• Gunaseelan Murugan, Sr. Systems Engineer, GE Healthcare 
• Rick Arthur, Sr. Director, Computational Methods, GE Research
• Ann Buneo, Product Leader, HPC, GE Research
• Doug Grant, Sr. Mechanical Engineer, GE Healthcare
• Jonathan Bruss, Sr. Engineer, Mechanical Engineering, GE Healthcare
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Modeling Maturity Rubric

Realism Completeness of …

… Model’s

Region of 

Competence

Accuracy Validity within…

Confidence Error bounding within…

Robustness Stability & Assertability of…

Productivity
Cognitive 

Augmentation

& Waste Reduction

Sustainability & Architecture Quality

Scalability Capable & High Performance
Architecture

Flexibility Modular, Extensible, Interoperable

Realism

Accuracy

Confidence

Robustness

Productivity

Sustainability

Scalability

Flexibility

Model Competence

A
rc

h
it

ec
tu

re

Cognitive Augmentation



Framework to Assess MODEL MATURITY

© 2021 General Electric Company - All rights reserved

MODEL

REALISM

ACCURACY

CONFIDENCE

ROBUSTNESS

PRODUCTIVITY

SUSTAINABILITY

SCALABILITY

FLEXIBILITY

Assert a Region of Model Competence

where its use is numerically stable (ROBUSTNESS)
with minimal simplifying constraints (REALISM) and
quantifiably bounds uncertainties (CONFIDENCE)
of results with validated predictive ACCURACY

Implemented with an Architecture that

performs capably (SCALABILITY)
and is interoperable and FLEXIBILE

Employing modern Software Engineering & Computational Methods
(including AI/ML) discipline and tools to

promote efficient workflows (PRODUCTIVITY),
reduce waste and improve quality (SUSTAINABILITY)

Good (outward)

Bad (inward)

See also

richardarthur.medium.com/co-design-web

https://richardarthur.medium.com/co-design-web-6f37664ac1e1
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Additional Reference: PCMM Adaptation by GE Digital Twin Model Maturity Team: 

Per Asset Based Models L0: Empirical Trial & Error L1: Expertise-driven L2: Model-assisted L3: Model-driven

Model Representation
What features are neglected because of 

simplifications or stylizations?

Little or no representational fidelity 

requirements established for the model 

geometry, material properties, and 

process conditions (parameters, initial 

conditions (IC's), and/or boundary 

conditions (BC's))

Significant assumptions of the model 

geometry, material properties, and process 

conditions (parameters, initial conditions 

(IC's), and/or boundary conditions (BC's))

Limited assumptions of the model geometry, 

material properties, and process conditions 

(parameters, initial conditions (IC's), and/or 

boundary conditions (BC's))

Real time process and quality assurance 

data used to refine model assumptions and 

develop physics based and data driven 

reduced order models

Process Physics Fidelity
How fundamental are physics & material 

models + degree of model calibration?

Empirical data-driven models and/or 

judgment used to define important 

parameters of the asset of interest

Some physics based models exist for key 

parameters of the asset of interest

(Suite of) physics based models exist for the 

key parameters of the asset of interest

Real time predictions of physics based

process performance enable enterprise 

decisions made within process takt time

Code/Algorithm/Model 

Integration 
Do algorithm deficiencies, software errors, 

and poor SQE practices corrupt results?

Minimal or no testing of any 

commercial off the shelf (COTS) or 

custom software elements with little of 

no configuration management 

procedures specified or followed

Source code and algorithms are either 

COTS software or managed by 

configuration management procedures 

with limited comparisons to established 

algorithm benchmarks

Customized and/or modified algorithms are 

tested and compared to benchmark data and/or 

solutions to determine impact on numerical 

convergence and physics

Integration of algorithms with machine 

controls and multi-physics data fusion

Solution Verification
Are numerical solution errors and 

procedural human errors corrupting the 

simulation results?

Modeling assumptions have an 

unknown effect on the accuracy and/or 

precision of the numerical model 

predictions

Alternative model builds considered; 

Numerical, discretization, and model 

assumption induced errors qualitatively 

estimated based on model input/output for 

each use case; Qualitative assessment of 

model limitations and weaknesses 

provided.

Alternative model builds have been considered; 

Numerical, discretization, and model 

assumption induced errors quantitatively 

estimated across validation envelope and used 

to establish best practices; Quantitative 

assessment of model limitations and 

weaknesses provided.

Real time comparison of predictions with 

process data

Model Validation
How is accuracy of simulation & experimental 

data assessed over the validation hierarchy? 

Judgment and/or limited experimental 

data exists to validate model 

predictions

Industry standard use cases and 

benchmark experimental data sets exist 

and used to calibrate models at one or 

more distinct validation points

Data from actual enterprise and/or 

customer/supplier processes used to calibrate 

model predictions and establish validation 

envelopes 

Model predictions are used to adapt 

process parameters for real time control

Uncertainty Quantification
How thoroughly are uncertainties and 

sensitivities characterized and 

propagated?

Model prediction uncertainties and 

sensitivities to key input parameters 

are not assessed as part of the 

simulation

Prediction uncertainties inferred from 

benchmark experimental use case 

validation data with limited sensitivity 

studies conducted for key parameters

Prediction uncertainties segregated and 

propagated by source (geometry, material 

properties, and process conditions (parameters, 

initial conditions (IC's), and/or boundary 

conditions (BC's)) etc.) with detailed sensitivity 

analyses conducted

Uncertainty and confidence estimates made 

for all predictions using physics based data-

driven reduced order models

Peer review Absent Informal / ad-hoc peer review Peer review conducted as process Formal independent peer review process

PCMM

https://www.osti.gov/servlets/purl/1480395
https://www.osti.gov/servlets/purl/1480395


Physical system models with predictive REALISM

54

C O L L A B O R A T I V E  

M U L T I - D I S C I P L I N A R Y  

M O D E L  I N T E G R A T I O N

G E O M E T R I C  

D I M E N S I O N I N G  &  

T O L E R A N C I N G  

P R E C I S I O N

M U L T I - S C A L E  

M A T E R I A L S  M O D E L S

C O U P L E D

M U L T I - P H Y S I C S &

C O - S I M U L A T I O N

© 2021 General Electric Company - All rights reserved

Fluid Dynamics Heat Transfer Structural



Physically validate predictive ACCURACY

to trust critical model results

& bound assertable CONFIDENCE
55

D I G I T A L  T W I N“ R I G ”  T E S T

V E R I F I C A T I O N

&  V A L I D A T I O N

C A L I B R A T I O N  &  

U N C E R T A I N T Y  

Q U A N T I F I C A T I O N

Experimental

Measurement

Targeted Field

Sampling
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Garbage In

Garbage Out
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Garbage In

Garbage Out Systemic Reduction of Uncertainty
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Decision Space Mapping:  Guided Validation & Calibration



Geometry Ecosystem: Gaps & Failure Modes

© 2021 General Electric Company - All rights reserved

CAD
vs.

Meshed
vs.

Voxel
vs.

Meshless / Particle
vs.

Systems Model
vs.

??? …

1. Labor-intensive complex mesh generation and validation 
(“are we sufficiently confident with the geometry spec to take the next step?” –
the step being to send to manufacturing or even simply to use to instantiate 
CFD/FEM analyses ~ flow, thermal, stress/strain, etc.”)

2. Elegantly and robustly handle tolerances
(including consistency & coherence/feasibility in 
design tolerances vs. manufacturing tolerances)

3. Handling imperfect or formulaic geometry (gaps/overlaps/shards)

4. Geometric change propagation across adjacent parts 

5. Mapping / calibration with point cloud measurement 
(including evaluating tolerance deviation/acceptance)

6. Load-balancing/adaptive refinement/scalability in highly complex 
(especially evolving/sliding and dynamic physics) meshes

Legacy



Geometry Ecosystem: EMERGING Gaps
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7. Sufficiently authoritative and comprehensive specification of a single source reference 
for deriving geometries for all potential uses (i.e., end-use context-driven)

a. automated mesh generation guided by embedded domain knowledge
b. (e.g., performance flow vs. cooling flow vs. conjugate heat transfer vs. solid thermal flow 

vs. stress/strain thermal cycling and crack propagation vs. tensile strength / etc.)
c. (or manufacturing GTD@room temperature vs. performing GTD@operational temperature / etc.)
d. (and systems modeling inclusion of kinematics / articulation information),
e. with sufficient fidelity to reduce physical testing-for-certification with virtualized certification-by-analysis
f. as well as geometry simplification (including high-order analyses),
g. (with in-situ reflective/introspective learning (of principles, simplification opportunities, etc.) during meshing.)

8. Sufficiently support capabilities for advanced manufacturing use cases including

a. nonuniform materials (gradient composition, designed microstructures, etc.),  
b. surface tagging in complex internal geometries (such as micro-trifurcating core structures in heat exchangers) 

and geometries resulting from generative design (fully exploiting additive degrees of freedom & biomorphic shapes),
c. specification for geometric fit by functional intent rather than explicit shape (generatively/programmatically derived),
d. assessment of opportunities for multi-part consolidation,
e. auto-propagate novel manufacturing capability up the toolchain to design decisions (e.g., via design assistants),
f. inclusion of intermediate geometries for manufacturing (such as mid-process geometries or temporary bit holds) 

and process guidance (such as surface roughness, crystal orientations, measurement & inspection features)



Strategy: Actions & Assets

Modernization of Science & Engineering: Data as Strategic Asset
➢ Gap Assessment: legacy tools & practices (e.g., physical testing, certification)

➢ Modeling Maturity: identify opportunities to pilot feasibility study, reduction to practice

➢ Continuous Improvement/Exploit ML: automation, virtualization, standardization, FAIR data/workflows, …

Modeling Infrastructure: Systemic Mindfulness & Knowledge Stewardship
➢ In-silico Infrastructure: HPC, cloud, software & methods ecosystem (capacity + capability)

➢ Modeling Literacy/Fluency: executive competency/confidence + workforce development

➢ Human-Machine Collaboration: data & decision provenance, continuum mindset


