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Argonne Leadership Computing Facility

ALCF offers different pipelines based on your 
computational readiness. Apply to the 
allocation program that fits your needs.

The Argonne Leadership Computing 
Facility provides world-class 
computing resources to the scientific 
community.
• Users pursue scientific challenges
• In-house experts to help maximize results
• Resources fully dedicated to open 

science Architecture supports three 
types of computing 
§ Large-scale Simulation 
(PDEs, traditional HPC)
§ Data Intensive Applications 
(scalable science pipelines)
§ Deep Learning and Emerging 
Science AI (training and 
inferencing) 
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ALCF Systems Evolution

Aurora
Intel-HPE
2022

Crux
HPE-AMD

Polaris
HPE
2021

+
Theta
Intel-Cray XC40
2017

Mira
IBM BG/Q
2012

Intrepid
IBM BG/P
2007

IBM BG/L
2004

ThetaGPU
NVIDIA 
DGX A100
2020

5.7 TF
557 TF

10 PF
11.7 PF

15.6 PF
44 PF

> 2 EF

JLSE (2013) AI Testbed (2020) Edge Testbed (2021)
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Aurora
Leadership Computing Facility 
Exascale Supercomputer

≧ 2 Exaflops DP
PEAK PERFORMANCE

Ponte Vecchio
Intel GPU

Sapphire Rapids wt
HBM

Intel Xeon PROCESSOR

HPE Cray-Ex 
PLATFORM

Compute Node
2 SPR+HBM processor; 
6 PVC; Unified 
Memory Architecture; 8 fabric 
endpoints; 

GPU Architecture
Xe arch-based “Ponte Vecchio” 
GPU
Tile-based chiplets
HBM stack
Foveros 3D integration

System Interconnect
HPE Slingshot 11; Dragonfly
topology with adaptive routing

Network Switch
25.6 Tb/s per switch, from 64–200 
Gb/s ports (25 GB/s per direction)

Node Performance
>130 TF

System Size
>9,000 nodes

Aggregate System Memory
>10 PB aggregate System Memory

High-Performance Storage
220 PB @ EC16+2, ≧25 TB/s DAOS

Programming Models
oneAPI, MPI, OpenMP, C/C++,
Fortran, SYCL/DPC++
Python-based environments
Machine learning and Deep learning 
fraameworks



AURORA ESP Data and Learning Projects and Methods 
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Classification

Regression

Reinforment learning

Clustering

Uncertainty Quantification

Dimensionality Reduction

Reduced  / Surrogate Models

Advanced Statistics

Image and Signal Processing

Graph Analytics

Databases

Advanced Workflows

In Situ Viz & Analysis

Virtual Drug Response Prediction

Enabling Connectomics at Exascale to
Facilitate Discoveries in Neuroscience

Machine Learning for Lattice Quantum
Chromodynamics

Accelerated Deep Learning Discovery in
Fusion Energy Science

Many-Body Perturbation Theory Meets
Machine Learning

Exascale Computational Catalysis

Dark Sky Mining

Data Analytics and Machine Learning for
Exascale CFD

In Situ Visualization and Analysis of Fluid-
Structure-Interaction Simulations

Simulating and Learning in the ATLAS detector
at the Exascale



SURGE OF SCIENTIFIC MACHINE LEARNING

§ Simulations/ surrogate models
– Replace, in part, or guide 

simulations with AI-driven 
surrogate models

§ Data-driven models
– Use data to build models without 

simulations
§ Co-design of experiments

– AI-driven experiments

Protein-folding

Braggs Peak

Galaxy Classification
Design infrastructure to facilitate and accelerate 
AI for Science applications

shows that the error is normally distributed around zero, which means that the model is not biased

thus the error is not systematic. As quantified using Euclidean distance in Figure 4c, most peaks

deviate little (e.g., 75% of peaks deviate less than 0.3 pixel) from the position identified by using the

conventional Voigt profiling. In comparison, the Maxima position (has resolution of one pixel) shown

in Figure 4d deviated much more than BraggNN from the truth (i.e., pseudo Voigt profiling).

4.2 Reconstruction Error Analysis

§4.1 discussed the direct model performance on peak localization. Since the 3D reconstruction is

our final goal, we also do reconstruction using peaks position located by the proposed BraggNN and

the conventional Voigt profiling separately. Figure 5 compares the positions of about 400 grains

reconstructed separately using Bragg peaks localized by BraggNN and conventional 2D pseudo-Voigt

profiling. The fact that the deviation directions are uniformly distributed indicates that BraggNN is

Figure 5: A comparison of grains in 3D space. Each ball represents one grain reconstructed by using

the conventional method, with color indicating the grain size(µm). An arrow indicates a deviation

from a grain to the corresponding grain reconstructed by using the BraggNN estimated peak.

9



INTEGRATING AI SYSTEMS IN FACILITIES

AI-Accelerators

Experimental Facility
Supercomputers

Simulations

AI-Edge accelerator

SambaNova

Cerebras

Computing Facility

Data-driven Models



AI PATHFINDING

1. Maturity of software and hardware for science
2. Ability to scale hardware and integrate with facility
3. Application at scale to science

Goals of ALCF AI Activities at Argonne

Accelerate science by effective coupling of AI-systems, 
exascale supercomputers and experimental facilities
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ALCF AI Testbeds
• Infrastructure of next-

generation machines with 
hardware accelerators 
customized for artificial 
intelligence (AI) applications.

• Provide a platform to evaluate 
usability and performance of 
machine learning based HPC 
applications running on these 
accelerators.

• The goal is to better 
understand how to integrate AI 
accelerators with ALCF’s 
existing and upcoming 
supercomputers to accelerate 
science insights

Cerebras (CS-2) SambaNova

Graphcore GroqHabana

https://www.alcf.anl.gov/alcf-ai-testbed
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Dataflow ArchitecturesSpatial Dataflow Within an RDU

The old way:  kernel-by-kernel
Bottlenecked by memory bandwidth 

and host overhead

The Dataflow way: Spatial
Eliminates memory traffic and overhead

Simple 
Convolution 
Graph

©2022 SambaNova Systems

Dataflow: Kernels are spatially mapped onto the 
accelerator and data flows on-chip between them 
reducing memory traffic

Image Courtesy: Sumti Jairath, SambaNova

GPU accelerators: Each kernel is launched onto 
the device and bottlenecks include memory 
bandwidth and kernel-launch latencies
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Cerebras
CS2

SambaNova
Cardinal 

SN10
Groq

GroqCard
GraphCore
GC200 IPU

Habana
Gaudi1 NVIDIA A100

Compute Units 850,000 Cores 640 PCUs 5120 vector 
ALUs 1472 IPUs 8 TPC + 

GEMM engine
6912 Cuda

Cores

On-Chip 
Memory 40 GB >300MB 230MB 900MB 24 MB 192KB L1

40MB L2

Process 7nm 7nm 14nm 7nm 7nm 7nm

System Size 2 Nodes
2 nodes 

(8 cards per 
node)

4 nodes 
(8 cards per 

node)

1 node 
(8 cards per 

node)

2 nodes
(8 cards per 

node)

Several 
systems

Estimated 
Performance 
of a card 
(TFlops)

>5780 (FP16) >300 (BF16) >188 (FP16) >250 (FP16) >150 (FP16) 312 (FP16), 
156 (FP32)

Software 
Stack Support

Tensorflow, 
Pytorch

SambaFlow, 
Pytorch

GroqAPI, 
ONNX

Tensorflow, 
Pytorch, 
PopArt

Synapse AI, 
TensorFlow 
and PyTorch

Tensorflow, 
Pytorch, etc

Interconnect Ethernet-based Infiniband RealScale TM IPU Link Ethernet-based NVLink
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AI FOR SCIENCE APPLICATIONS ON AI TESTBED

Protein-folding(Image: NCI)

Tokomak Fusion Reactor operations

Cancer drug response prediction

Imaging Sciences-Braggs Peak

 
Figure 1:  Data flow and summary of the FRNN algorithm 
 
Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 
positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 

and more..

shows that the error is normally distributed around zero, which means that the model is not biased

thus the error is not systematic. As quantified using Euclidean distance in Figure 4c, most peaks

deviate little (e.g., 75% of peaks deviate less than 0.3 pixel) from the position identified by using the

conventional Voigt profiling. In comparison, the Maxima position (has resolution of one pixel) shown

in Figure 4d deviated much more than BraggNN from the truth (i.e., pseudo Voigt profiling).

4.2 Reconstruction Error Analysis

§4.1 discussed the direct model performance on peak localization. Since the 3D reconstruction is

our final goal, we also do reconstruction using peaks position located by the proposed BraggNN and

the conventional Voigt profiling separately. Figure 5 compares the positions of about 400 grains

reconstructed separately using Bragg peaks localized by BraggNN and conventional 2D pseudo-Voigt

profiling. The fact that the deviation directions are uniformly distributed indicates that BraggNN is

Figure 5: A comparison of grains in 3D space. Each ball represents one grain reconstructed by using

the conventional method, with color indicating the grain size(µm). An arrow indicates a deviation

from a grain to the corresponding grain reconstructed by using the BraggNN estimated peak.
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Custom 
meshing for 
cryo-EM data

Initial “best“ guess
Hierarchical AI

Learn global 
fluctuations

Learn local 
fluctuations

Parameterize FFEA 
mesh with learned 
interactions

Computational 
steering of 
simulations from 
novel states 

AI-enabled bridging of cryo-EM observables with 
atomistic fluctuations

v FFEA is efficient on CPUs
v Open-MP parallelization

v Optimize for GPU-dense 
nodes (NAMD 3)

v GPUs for AI methods
v Custom hardware to offset 

“expensive” training 

v EM data can be large -
localize to instrument sites 
(e.g., SLAC)

v Reduce and compute on 
site (images + 3D re-
construction)
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COVID-19 CVAE Training on Summit and Cerebras CS-2 

Performance 523 X 523 926 X 926

Throughput (samples/sec)

1x CS-2 System 24,000 4700

1x V100 GPU 228 51

1x A100 GPU ~1100 ~150

Speedup (CS2 vs. GPU )

1 x V100 GPU 113x 101x

1 x A100 GPU ~22X ~32X

• Single CS-2 delivers performance 
of over 100 GPUs on CVAE

• Results are for out-of-the-box 
performance based on model 
config not optimized for CS-2. 
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Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-
Transcription Machinery in Action, SC21 COVID19 Gordon Bell Finalist, In IJHPCA 2022 
https://www.biorxiv.org/content/10.1101/2021.10.09.463779v1.full.pdf

CS-2 523 Residues

CS-2 926 Residues
Performance similar to
16 Summit nodes and 
~4 ThetaGPU Nodes



Goal:
Image segmentation task for liquid 
argon time projection chamber 
(LArTPC) detectors in Neutrino Physics 
experiments to classify each input pixel 
into one of three classes – Cosmic, 
Muon, or Background

Challenges:
Models and acquired images are 
limited by the size one can fit on 
current systems. These are expected to 
grow with future experiments

COSMIC TAGGER ON SAMBANOVA DATASCALE



COSMIC TAGGER ON SAMBANOVA DATASCALE

M. Emani et al., "Accelerating Scientific Applications With SambaNova Reconfigurable Dataflow 
Architecture," in Computing in Science & Engineering, vol. 23, no. 2, pp. 114-119, 1 March-April 2021, doi: 
10.1109/MCSE.2021.3057203.

SambaNova RDUs able to accommodate larger image sizes and achieve higher accuracy 
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Early Experience with Inference on Groq

3ms

5.5ms
0.14ms

0.6ms

Forecasting Plasma Instability in Tokamak COVID19 Candidate drug molecule screening

Promising results using GroqChip for science Inference use-cases with 
respect to latency and throughput in comparison to GPUs
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Fast X-Ray Bragg Peak Analysis
Goal:  Enable rapid analysis and real-time 
feedback during an in-situ experiment with 
complex  detector technologies

Proposed Approach: Deep learning-
based method, BragNN,  for massive  
extraction of precise  Bragg peak locations 
from far-field high energy diffraction  
microscopy data. BragNN has achieved 
200X improvement over conventional 
pseudo-Voight profiling

Challenges: Model training capability is 
limited by the hardware

Application of the BraggNN deep neural network to an input patch yields a peak center 
position (y, z). All convolutions are 2D of size 3 × 3, with rectifier as activation function. 
Each fully connected layer, except for the output layer, also has a rectifier activation function. 

BraggNN: Fast X-ray Bragg Peak Analysis Using Deep Learning A PREPRINT

(c)

(b)

(a)

Figure 6: A comparison of BraggNN, pseudo-Voigt FF-HEDM and NF-HEDM. (a) Grain positions from NF-HEDM
(black squares), pseudo-Voigt FF-HEDM (red circles) and BraggNN FF-HEDM (blue triangles) overlaid on NF-HEDM
confidence map. (b-c) Difference in position of grains between pseudo-Voigt FF-HEDM (b), BraggNN (c) and NF-
HEDM as a function of Grain Size. Color of markers in (b-c) represent the mean difference in position of expected and
observed diffraction spots. Size of markers in (b-c) represent the mean Internal Angle (see text).

CNN layers better extract feature representation in the latent space for fully-connected layers to better approximate its
center [Wang et al., 2018]. Here, we conduct an ablation study to show its effectiveness. We train two models, one with
attention block one without, using the same datasets, i.e., attention block is the only difference, and then we evaluate
their estimation accuracy. Fig. 7 shows the distribution of deviations. It is clear that both the 50th and 75th percentile
deviations are more than 20% worse than Fig. 4(c) where BraggNN has the non-local self-attention block, the 95th
percentile is about 15% worse.

4.2 Data Augmentation

We presented a novel data augmentation method to prevent model over-fitting and to address inaccurate patch cropping
using the connect component in the model inference phase. In order to study its effectiveness, we trained BraggNN on a
simulation dataset with and without augmentation. When trained with augmentation, we use an interval of [�1, 1] for
both m and n. Fig. 8 demonstrates three arbitrarily selected cases in our test dataset where the computed peak location
deviated from the corresponding patch’s geometric center (i.e., (5, 5) for a 11⇥ 11 pixel patch) in different directions.
We can see from the demonstration that BraggNN is able to locate the peak values precisely even when the peak is
deviated from the geometric center.

In order to quantitatively evaluate the effectiveness of data augmentation, we sample m and n independently from {-1,
0, 1} when preparing our test dataset to mimic imperfect patch cropping. That is, only 1/3⇥ 1/3 = 1/9 of the patches
have maxima at the geometric center.

Fig. 9 compares the prediction error on the test dataset in a statistical way. Comparing Fig. 9(a) with Fig. 9(b), we see
clear improvement when augmentation is applied for model training. The 50th, 75th, and 95th percentile errors are all
reduced to about 20% of those obtained when BraggNN is trained without data augmentation: a five times improvement.

5 Conclusions and Future work

We have described BraggNN, the first machine learning-based method for precisely characterizing Bragg diffraction
peaks in HEDM images. When compared with conventional 2D pseudo-Voigt fitting and higher resolution nf-HEDM,

9

Courtesy: Z. Liu et al. BraggNN: Fast X-ray Bragg Peak Analysis Using Deep 
Learning. International Union of Crystallography (IUCrJ), Vol. 9, No. 1, 2022

A comparison of BraggNN, 
pseudo-Voigt FF-HEDM and NF-
HEDM. (a) Grain positions from 
NF-HEDM (black squares), 
pseudo-Voigt FF-HEDM (red 
circles) and BraggNN FF-HEDM 
(blue triangles) overlaid on NF-
HEDM confidence map 

https://doi.org/10.1107/S2052252521011258
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Fast X-Ray Bragg Peak Analysis
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SambaNova and Graphcore achieve lowest time to solution and achieve up to 3.7X to 3.4X 
speedup in comparison to Nvidia A100 respectively. Cerebras achieves up to 80% 
improvement over A100 
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Fast X-Ray Bragg Peak Analysis

For training time, we ignore the data loading and pre-processing time (Fixed cost time). 
Cerebras CS2 achieves up to 33X improvement over A100 while SN and Graphcore
achieve up to 6-11X improvement over A100 respectively for training.
Cerebras performance includes use of multi-replica optimization and similar optimizations 
need to evaluated on other systems
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Scale to 1, 2, 4 and 8 devices with batch sizes (BS) 32 and 256, for image size of 256x256

UNet throughput for varying batch sizes as we scale number of devices  
A100 (fp16) SN10-08 (bf16) GC200 (fp16) CS-2 (mp)

CS2 achieves 30% over 8 GC200 
and 2X-3X over 8 SN-RDU and A100 

Scaling UNet-2D Training

Note: Graphcore performance includes an optimization to prefetch data and work is ongoing to incorporate similar optimizations 
for other systems

For smaller batch sizes (32), Cerebras CS2 achieve up to a 30% improvement over 8 GC200 devices, over 2X 
and 3X in comparison to using eight SN 10-RDU and A100. For larger batch sizes, we see similar trends though 
with improved A100 performance. 
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Communication Performance - All Reduce
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Scaling across number of devices

A100 (fp32) IPU-M2000 (fp32) SN10-8 (fp32) GroqNode (fp32)

DeepBench and OSU MPI Benchmarks used for the all_reduce communication evaluation and we scale the number of 
devices to 16. We use only 8 devices for Groq and SambaNova

We observe that Nvidia DGX3 achieves higher All Reduce performance in comparison to other AI systems
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AI Testbed Community Engagement

• SambaNova AI training workshop – July 19-20, 2022
• ATPESC H/W Architecture Day on August 1, 2022 will cover 

five AI accelerators
• ALCF AI for Science training series for students in the fall will 

include the AI testbed
• Cerebras CS-2 training workshop planned for August 2022 

SC’22 Tutorial on Programming AI accelerators 
for Scientific Computing  in collaboration with 
Cerebras, Intel Habana, Graphcore, Groq and 
SambaNova accepted
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AI Testbed Expeditions – Argonne LDRD Program
Table of Contents 

SambaNova 

Enabling a Transformer Based Model for Computed Tomography using SambaNova 
 Zhengchun Liu and Rajkumar Kettimuthu 
AI Accelerator for 3D X-ray Phase Retrieval with Automatic Differentiation 
 Tao Zhou, Mathew J. Cherukara, Stephan Hruszkewycz, Martin Holt 
Scalable DL-based X-ray Coherent Diffraction Imaging Enabled by AI Accelerators 
 Yudong Yao, Mathew J. Cherukara, Ross J. Harder 
Exploration of AI for Streamflow Forecast at the National Scale 
 Cheng Wang, Ian Foster, Margaret MacDonell, David LePoire 
AI Accelerator for Image Analysis of Topological Magnetic Spin Textures 
 Arthur McCray and Charudatta M. Phatak 
Accelerating the Simulation of Spatiotemporal Multiphase Flows Using Deep Learning 
 Gina M. Magnotti, Bethany A. Lusch, Roberto Torelli 
SambaWF: Highly Resolved Surrogate Models for Weather Forecasting 
 Romit Maulik 
Accelerating Graph Convolution Based Deep Learning Framework for Large Scale Highway Traffic 
Forecasting with SambaNova 
 Tanwi Mallick 
Deep Learning-Based Scalable and Robust Strong Gravitational Lensing Characterization Pipeline 
Using SambaNova 
 Sandeep Madireddy and Nesar Ramachandra 
Accelerating Inversion of Nuclear Responses with Uncertainty Quantification 
 Krishnan Raghavan, Prasanna Balaprakash, Alessandro Lovato, Stefan M. Wild 
Machine-Learning-Driven New Physics Searches at the Large Hadron Collider 
 Walter Hopkins, Evangelos Kourlitis, J. Taylor Childers, Arindam Fadikar 
Exploration of Quantum Machine Learning and AI Accelerators for Fusion Science 

Minzhao Liu, Ge Dong, Kyle Gerard Felker, Matthew Otten, Prasanna Balaprakash, William Tang, and 
Yuri Alexeev 

Groq and GraphCore 

Low-Latency AI Inferences Near X-Ray Detectors Using Groq 
Kazutomo Yoshii 

PyDDA Technical Report 
Robert Jackson and Sri Hari Krishna Narayanan 

Vector Forward Mode Automatic Differentiation on AI Hardware 
Jan Hückelheim, Sri Hari Krishna Narayanan, Paul Hovland 

Cerebras 
Bridge Cerebras with Edge Computing to Enable Real-Time Data Analysis Using Deep Learning 
 Zhengchun Liu and Rajkumar Kettimuthu 
Deep Neural Networks for Parameter Estimation with Inverse Maps and for Subgrid-Scale Models on 
the Cerebras CS-2 AI-Cluster 
 Johann Rudi, Julie Bessac, Emil Constantinescu 
Scaling Surrogate Visualization Models with Wafer-Scale Deep Learning Accelerator 

Hanqi Guo 

LDRD 2021 Report

• Expeditions projects target Argonne-related AI/ML 
science, autonomous discovery, or computational 
science problem areas; make use of this new testbed; 
and, ideally, promote collaboration across domains

• Supported 18 projects in 2021 (~1 month effort) and 
supporting 11 projects in 2022 (~2 months effort)

• AutophaseNN achieved a 39% improvement in 
training time on SambaNova over A100

AutoPhaseNN for coherent diffraction imaging
Courtesy: Yudong Yau, Argonne
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Director’s Discretionary (DD) awards support 
various project objectives from scaling code 
to preparing for future computing competition 
to production scientific computing in support 
of strategic partnerships.

Allocation Request Form

Getting Started on ALCF AI Testbed:

Apply for a Director’s Discretionary (DD) 
Allocation Award

AI Testbed User Guide

Cerebras CS-2 and SambaNova
Datascale are available for allocations 

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/alcf-ai-testbed
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Ongoing Efforts

• System upgrade plans include a two-rack SambaNova Datascale system (from 
½ rack), a Graphcore Bow-200 (3rd generation) Pod64 rack, and rack-scale 
Groq system

• Work with AI vendors to facilitate AI for Science applications, including support  
for large-language models.

• Evaluate new AI accelerators offerings and incorporate promising solutions as 
part of the testbed 

• Integrate AI testbed systems with the PBSPro scheduler to facilitate job 
scheduling across the accelerators in the testbed and improve user experience

• Evaluate traditional HPC on AI Accelerators
• Understand how to integrate AI accelerators with ALCF’s existing and 

upcoming supercomputers to accelerate science insights
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Observations, Challenges and Insights

Significant speedup achieved for a wide-gamut of scientific ML applications 
• Easier to deal with larger resolution data and to scale to multi-chip systems

Room for improvement exists
• Porting efforts and compilation times 
• Coverage of DL frameworks and support for performance analysis tools and debuggers

Good progress made in integration of AI accelerators, in production, at a national user facility 
and significant more work is needed for effective coupling

Training and Outreach is critical to educate users to effectively use AI systems

Close collaboration with vendors is necessary to realize the vision of AI for science 
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Recent Publications
• Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 

Replication-Transcription Machinery in Action* 
Anda Trifan, Defne Gorgun, Zongyi Li, Alexander Brace, Maxim Zvyagin, Heng Ma, Austin Clyde, David Clark, Michael Salim, Davi
d Hardy,Tom Burnley, Lei Huang, John McCalpin, Murali Emani, Hyenseung Yoo, Junqi Yin, Aristeidis Tsaris, Vishal Subbiah, Tan
veer Raza,Jessica Liu, Noah Trebesch, Geoffrey Wells, Venkatesh Mysore, Thomas Gibbs, James Phillips, S.Chakra Chennubhotl
a, Ian Foster, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, John E. Stone, Emad Tajkhorshid, Sarah 
A. Harris, Arvind Ramanathan, International Journal of High-Performance Computing (IJHPC’22) 
DOI: https://doi.org/10.1101/2021.10.09.463779

• Stream-AI-MD: Streaming AI-driven Adaptive Molecular Simulations for Heterogeneous Computing Platforms 
Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali Emani, Anda Trifa, Austin R. Clyde, Corey Adams, Thomas 
Uram, Hyunseung Yoo,  Andrew Hock, Jessica Liu, Venkatram Vishwanath, and Arvind Ramanathan. 2021 Proceedings of the 
Platform for Advanced Scientific Computing Conference (PASC’21). DOI: https://doi.org/10.1145/3468267.3470578

• Bridging Data Center AI Systems with Edge Computing for Actionable Information Retrieval
Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma, Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, 
Ryan Coffee, Naoufal Layad, Jana Thayer, Ryan Herbst, Chunhong Yoon, and Ian Foster, 3rd Annual workshop on Extreme-scale 
Event-in-the-loop computing (XLOOP), 2021

• Accelerating Scientific Applications With SambaNova Reconfigurable Dataflow Architecture
Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E. Papka, Rick Stevens, Laura Florescu, Sumti Jairath, William Liu, 
Tejas Nama, Arvind Sujeeth, IEEE Computing in Science & Engineering 2021 DOI: 10.1109/MCSE.2021.3057203.

* Finalist in the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2021
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Thank You

• This research was funded in part and used resources of the Argonne 
Leadership Computing Facility (ALCF), a DOE Office of Science User 
Facility supported under Contract DE-AC02-06CH11357.

• Murali Emani, Michael Papka, William Arnold, Bruce Wilson, Varuni
Sastry, Sid Raskar, Corey Adams, Rajeev Thakur, Anthony Avarca, Arvind 
Ramanathan, Alex Brace, Zhengchun Liu, Hyunseung (Harry) Yoo, Ryan 
Aydelott, Sid Raskar, Zhen Xie, Kyle Felker, Craig Stacey, Tom Brettin, 
Rick Stevens, and many others have contributed to this material. 

• Our current AI testbed system vendors – Cerebras, Graphcore, Groq, 
Intel Habana and SambaNova


