

Polaris A Scalable Testbed Towards Aurora

Ti Leggett ALCF-Polaris Project Director, Argonne Leadership Computing Facility

March 30, 2022

Aurora

Leadership Computing Facility Exascale Supercomputer

PEAK PERFORMANCE

\geq 2 Exaflops DP

Intel GPU

Ponte Vecchio

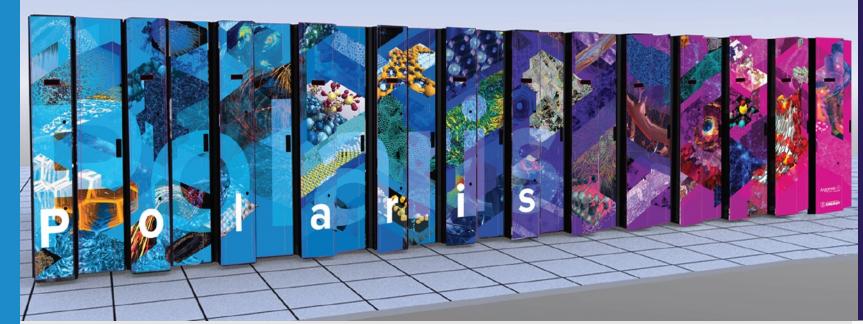
Intel Xeon PROCESSOR Sapphire Rapids wt HBM

PLATFORM HPE Cray-Ex **Compute Node** 2 SPR+HBM processor; 6 PVC; Unified Memory Architecture; 8 fabric endpoints;

GPU Architecture

Xe arch-based "Ponte Vecchio" GPU Tile-based chiplets HBM stack Foveros 3D integration **System Interconnect** HPE Slingshot 11; Dragonfly topology with adaptive routing

Network Switch 25.6 Tb/s per switch, from 64–200 Gb/s ports (25 GB/s per direction)


Node Performance >130 TF

System Size >9,000 nodes

Aggregate System Memory >10 PB aggregate System Memory

High-Performance Storage 220 PB @ EC16+2, ≧25 TB/s DAOS

Programming Models oneAPI, MPI, OpenMP, C/C++, Fortran, SYCL/DPC++

Polaris

Polaris will provide a platform utilizing several of the Aurora technologies and similar architectures to provide ALCF staff and users a platform for early scaling and testing purposes.

PEAK PERFORMANCE

44 Petaflop DP

NVIDIA GPU

A100

AMD EPYC PROCESSOR

Rome*

PLATFORM HPE Apollo Gen10+

Compute Node 1 AMD EPYC 7532* processor; 4 NVIDIA A100 GPUs; Unified Memory Architecture; 2 fabric endpoints; 2 NVMe SSDs

GPU Architecture NVIDIA A100 GPU; HBM stack

Processor Interconnects CPU-GPU: PCIe GPU-GPU: NVLink

System Interconnect HPE Slingshot 10*; Dragonfly topology with adaptive routing **Network Switch** 25.6 Tb/s per switch, from 64–200 Gb/s ports (25 GB/s per direction)

Programming Models

CUDA, MPI, OpenMP, C/C++, Fortran, DPC++

Node Performance 78 TF

Aggregate Memory 368 TB

System Size 560 nodes, 1.78 MW

Storage

Polaris will be connected to existing ALCF storage resources

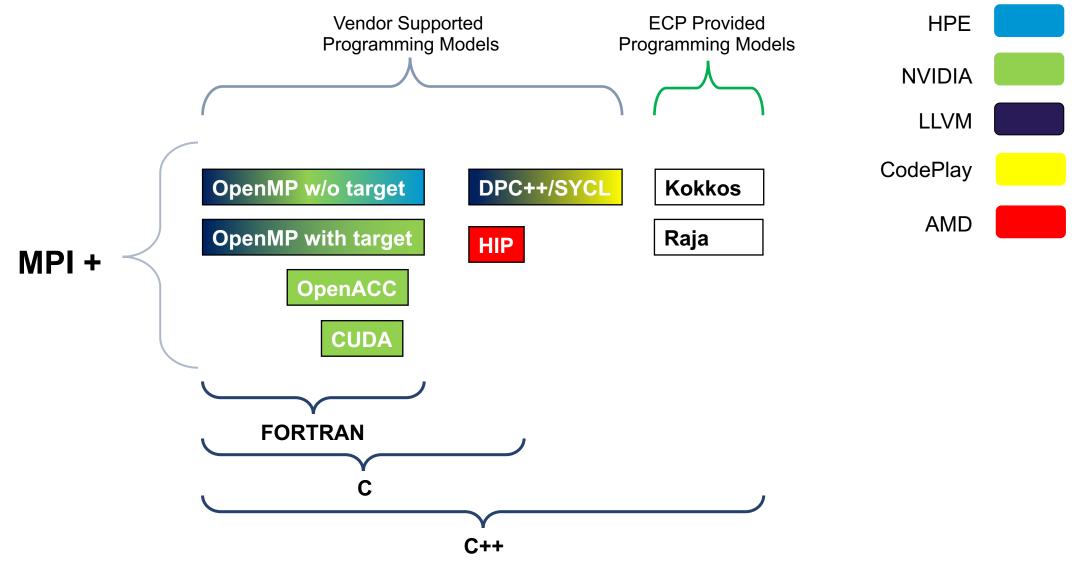
- Grand Global/Center-wide file system providing main project storage
 - 100 PB @ 650 GB/s
 - Accessed via Lustre LNET routers using Polaris gateway nodes
- Eagle Community file system providing project storage that can be shared externally via Globus sharing
 - 100 PB @ 650 GB/s
 - Accessed via Lustre LNET routers using Polaris gateway nodes
- Home shared home file system for convenience not for performance or bulk storage

Preparing Users for Exascale

Early Science Program (ESP)

 ALCF conducts ESP to ensure the facility's next-generation systems are ready for science on day one

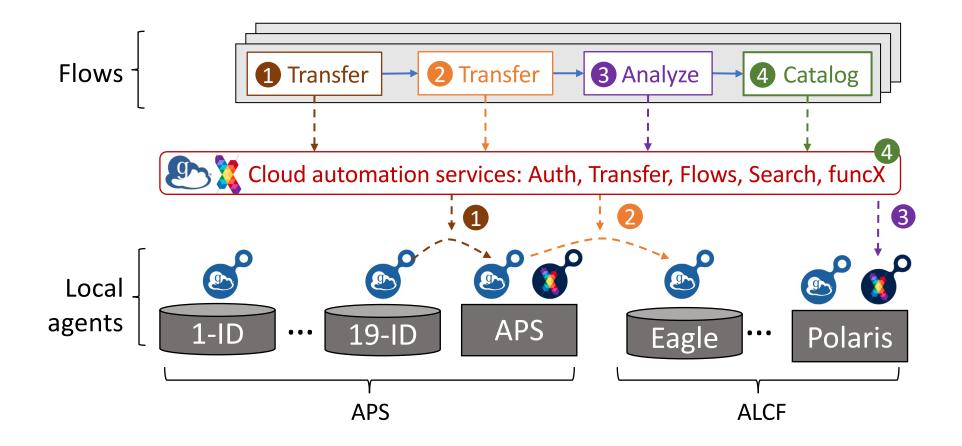
- Provides research teams with critical pre-production computing time and resources
 - prepares applications for the architecture and scale of a new supercomputer
 - solidifies libraries and infrastructure for other
 - production applications to run on the system


Bridging ESP Projects to Aurora

- To be ready for Early Science runs, projects must
 - -Demonstrate INCITE level computational readiness (scaling, use GPUs, ready proposed problem in short order)
 - -Complete model validations, preliminary studies, parameter-setting exercises
 - -Finish integrating complex workflows for Data and Learning projects with realistic data
- Portability of applications, components, and workflows to Polaris

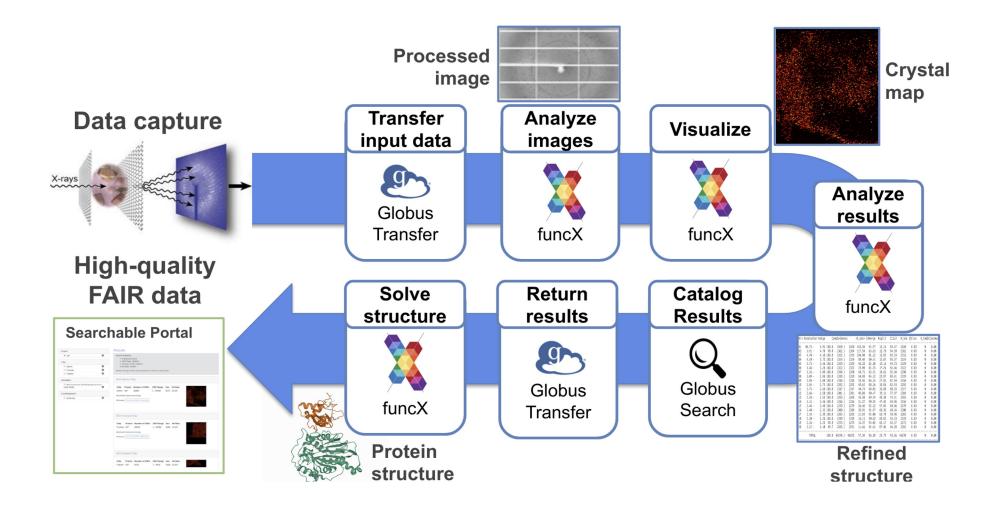
Simulation components	Data components	Learning components	Workflows
OpenMP 4.5+	Spark	TensorFlow	 Containers
 Kokkos 	HDF5	PyTorch	 Balsam
 SYCL 	 ADIOS 	Distributed DL	funcX/Parsl
PETSc, math libraries	MPI-IO	(eg., Horovod)	Python-based
 Many apps have 	 Databases 	 Scitkit Learn 	workflows
explicit NVIDIA implementations	Numba	JAX	
	Python	 Julia 	

Programming Models

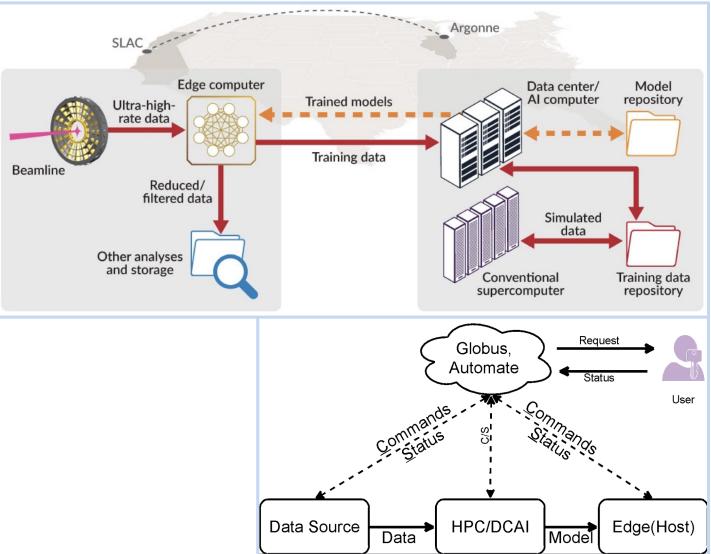


Bridge to Aurora

Component	Polaris	Aurora
System Software	НРСМ	НРСМ
Programming Models	MPI, OpenMP, DPC++, Kokkos, RAJA, HIP, CUDA, OpenACC	MPI, OpenMP, DPC++, Kokkos, RAJA, HIP
Tools	PAT, gdb, ATP, NVIDIA Nsight, cuda-gdb	PAT, gdb, ATP, Intel VTune
MPI	HPE Cray MPI, MPICH	HPE Cray MPI, MPICH, Intel MPI
Multi-GPU	1 CPU : 4 GPU	2 CPU : 6 GPU
High-Speed Network (HSN)	HPE Slingshot	HPE Slingshot
Data and Learning	DL frameworks, Cray Al stack, Python, Numba, Spark, Containers, RAPIDS	DL frameworks, Cray Al stack, Python, Numba, Spark, Containers, oneDAL
Math Libraries	cu* from CUDA	oneAPI



Experimental Instrument Workflows


Experimental Instrument Workflows

Example: Rapid Training of Deep Neural Networks using Remote Resources

- DNN at the edge for fast processing, filtering, QC
- Requires tight coupling with simulation and training with real-time data
- Near real-time steering of the experiment towards points of interest

Upcoming

- Upgrade CPUs and HSN
 - —AMD Rome \rightarrow AMD Milan
 - —SS-10 NICs → SS-11 NICs
 - -Later this year
- Production Full User Access

 - -Mid-Summer 2022

Thanks!

- Entire Project Team
- Frank Gines & Alex Walton
- ASCR

