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As high-performance-computing (HPC) systems continue to evolve, with increasingly diverse
and heterogeneous hardware, increasingly-complex requirements for security and
multi-tenancy, and increasingly-demanding requirements for resiliency and monitoring, research
in operating systems must continue to seed innovation to meet future needs. In the following,
we survey current trends in system software and HPC systems for scientific computing,
associated research challenges and open questions, infrastructure requirements for
operating-systems research, communities who should be involved in that research, and the
anticipated benefits of success.

The primary aspects of the modern computing ecosystem key to understanding future research
opportunities in operating systems are:

e Full-stack co-design for extreme heterogeneity and scalability

e Adaptive management and partitioning of resources

e Smart supercomputer systems and facilities

Current Trends

Full-stack co-design for extreme heterogeneity and scalability

Increasing heterogeneity, increasing system scales, and increasing migration (e.g., due to
increasing virtualization and VM-to-resource mapping) are requiring ever more advanced
compilers, runtime libraries, and operating systems. Moreover, software must increasingly be
optimized and specialized for different kinds of hardware. As the execution environment
diversifies, including accelerators, network interfaces, and other components with their own
programming environments, all aspects of the system are subject to specialization for particular
components. For example, while task scheduling is generally managed directly by runtime



libraries at a low level, GPUs feature hardware thread/task scheduling at a higher level,
necessitating special support within task-scheduling system abstractions.

Increasing specialization at the hardware level is driving system heterogeneity, and with
specialization within the software required for optimal support of this heterogeneous hardware,
systems research and development increasingly requires co-design of both the hardware and
the software. With the advent of high-quality open-source hardware designs and fast
cycle-accurate simulation tools, it is now possible to rapidly co-design pre-silicon hardware
together with full software stacks. This opens up opportunities to co-design OS functionality and
hardware designs in hours vs. years previously, with the ability to iterate hardware designs on
the fly. For example, this capability was recently used to port KVM to the RISC-V architecture
prior to final ratification of the RISC-V virtualization extensions, providing critical validation and
feedback. There is great potential to co-design OS support for common interfaces to
heterogeneous accelerators, virtual memory schemes, tightly coupled accelerators, and other
novel hardware capabilities. As rapid, full-stack co-design continues to mature, it may become
feasible to rapidly develop and economically deploy domain-optimized silicon targeted at DOE
computing workloads, delivering world-class efficiency and performance.

Adaptive management and partitioning of resources

As an increasing number of extreme-scale applications are composed of multiple components,
workflows that must often be “rewired” dynamically, the price of static decisions about workload
placement and execution, and their management increases with scale and heterogeneity.
Moreover, the computational capabilities of HPC compute nodes keep increasing, yet fully
leveraging those capabilities using individual applications gets ever harder. Running a diverse
mix of workloads on a node would improve the overall resource utilization, however this is often
avoided, especially the multi-user scenarios, because this tends to introduce performance
variability which makes it more difficult to reason about the performance of individual
applications. Implementing multi-component workloads and workflows that break free from the
current, static HPC-resources resource model is currently painful. Furthermore, as
extreme-scale multi-component applications increasingly have the coupling between them vary
over the application life-cycle, this imposes a further requirement of adaptive and dynamic
resource management.

A lack of standards currently hampers the construction of composable, extensible scientific
workflows: currently nearly every multi-component application and workflow assumes a different
model of resource partitioning, selection, and availability, as well as different interfaces,
resource state models, and resource / process management. This makes applications and
workflows brittle and the barrier to portability and extensibility significant. Identifying generalized
abstractions, interfaces and their implementations to minimize, if not reduce these barriers is
imperative in order to reach scales and sophistication (over resource types, functionality needed
etc.). These requirements are common across scales (“edge to exascale”), application types
and time-scales.



The set of relevant resources continues to increase, now including CPU cores, shared caches,
main memory, NIC, and heterogeneous hardware accelerators. This broadening collection of
resources makes both adaptive management and partitioning even more difficult. Virtualization
techniques are a popular existing solution in cloud environments, and offer partial solutions to
some of these challenges, but they have traditionally been avoided in HPC due to overheads.
HPC-specific multi-kernels can offer lower overheads at the cost of additional implementation
complexity. Adoption of containers is increasing, also offering partial solutions to some
management and partitioning challenges, but bringing new challenges around composability
and efficient workflow integration.

One particularly-important resource to manage is memory, and not only is the memory topology
landscape is already pretty complex (shared caches, NUMA, host vs accelerator memory), it is
only expected to deepen in extremely-heterogeneous architectures (NV, PIM, disaggregated
memory). Extreme-scale applications are already facing limited memory capacity and
bandwidth, yet there are no widely accepted, standardized interfaces for exploiting deep
memory hierarchies. If anything, the trend seems to be to attempt to hide the complexity, e.g.,
by presenting additional hierarchy levels as a transparent cache or through “unified” memory
with transparent page migration behind the scenes. While such approaches often reduce the
effort required for initial porting by application writers (who would rather not have to deal with
additional hardware complexity), they can be harmful to overall performance due to suboptimal
use of the capabilities made available by the hardware. There is an inherent conflict between
how much of the memory hierarchy to hide from users (so as not to overly complicate the
programming) vs how many novel capabilities to expose (to take advantage of the possible
performance improvements).

Smart supercomputer systems and facilities

Operational intelligence (Ol) optimizes the efficiency and effectiveness of systems and facilities
using an observe-orient-decide-act loop for adaptation. The loop consists of operational data
aggregation, operational data analytics, decision making that considers trade-offs, and
operational configuration actions. Human-in-the-loop Ol at different granularities is the current
state of practice. 24/7 staff monitors and analyzes live system and facility data using
dashboards and takes actions typically only in emergencies. Other operations staff monitors and
analyzes daily, weekly and monthly system and facility data for maintenance and tuning. For
example, adaptation to emerging reliability threats is mostly an entirely manual and sometimes
ad hoc task and root cause analyses often take months [2]. Corrective actions are often highly
limited, as the resilience “toolbox”, i.e., the number and types of corrective actions, employed in
today’s computing systems and facilities is highly limited. It is unknown how this set of actions,
and the data needed to inform them, must evolve into the future.

The DOE’s recent Computational Facilities Research Workshop report [1] identified smart
systems and facilities as a broad challenge area with enabling automation and eliminating
human-in-the-loop requirements as a cross-cutting theme. Smart supercomputer systems and
facilities employ machine-in-the-loop Ol for autonomous decision-making. Human-in-the-loop



needs are eliminated by an automated online control that is capable of aggregating operational
data, understanding behavioral patterns and trade-offs, and taking appropriate operational
actions in real time. It may be assisted by a “black box” Al trained offline with archived data
and/or with synthetic data created by a digital twin. It may also rely on causal models,
reinforcement learning or advanced statistical methods. Multiple independent control loops may
address different aspects. For example, DOE’s flagship supercomputers may use such smart
system capability for: (1) scheduling adversarial (network congestion) workloads, (2) dealing
with anomalies (slow/failing equipment, job, service, network or storage), (3) tuning
compiler/runtime parameters of applications, and (4) improving energy efficiency. It may also be
used in the entire supercomputing facility, such as for improving the operation of network,
storage, cooling and other systems.

Research Challenges and Open Questions

Research in a number of these areas is inherently multidisciplinary, and as a result, must
overcome coordination challenges. For both research, and later development activities, defining
interface standards is critical for enabling the decoupling of different parts of the software stack.
The tradeoff between flexibility needed for innovation versus constraints needed for overall
coordination and project efficiency need to be carefully managed.

Full-stack co-design for extreme heterogeneity and scalability

Operating-systems research in the context of full-stack co-design can address:
e Rapidly developing novel accelerator hardware and accompanying software support
e Common interfaces to heterogeneous hardware enabling effective OS management
e Autonomous resource management that reduces the burden on users
e System-wide security that enables breaking free from the “root is special” model in HPC

In this context, specific research questions include:

e How should we think about the OS managing extremely heterogeneous systems, and
what new hardware and software mechanisms are needed to enable this?

e What are the right interfaces to communicate the needed information between programs,
compilers, runtime/OS, monitoring subsystem architecture?

e Can autonomous resource management, assisted by co-designed hardware and OS
software, reduce the user burden for managing extremely heterogeneous devices and
memories?

e Can this be done portably, such that difficult porting efforts are not required when moving
from one system to the next?

e How to design an intelligent memory management featuring automated, on-the-fly data
optimization (compression, transformations, placement)?

e What role can the OS play in identifying inefficient resource usage and suggesting or
automating potential improvements?



What new hardware capabilities could help the OS do this?

Through hardware and software co-design, can we enable system-wide security such
that root is no longer a special thing on HPC systems, similar to the case on public
clouds?

Would this reduce the facility burden for managing security issues, as well as enable
new types of cloud-native workloads to run on DOE supercomputers?

Adaptive management and partitioning of resources

Future research is needed to address a number of open questions regarding how applications,
programming environments, and systems can exchange information and cooperatively react to
changing workloads and resources. These questions include:

How to extend programming languages and compilers so that users can express the
user-relevant information?

What is the communication architecture (i.e., what information is created, communicated,
and consumed where and when)?

How can current programming methods and compiler optimizations be extended to take
advantage of the new information?

How can dynamic optimization systems be constructed that adapt at runtime and in the
field to changing environments?

How to build performance models and decision support to guide users and compilers in
these methods and optimizations?

How to construct data-centric abstractions that are application-aware and that present a
range of interfaces for a right fit to every application and runtime system, from fully
transparent to fully explicit ones?

How to enable integration across all of the on-node devices, including function offloading
to the NIC?

How to reintroduce resource partitioning capabilities in HPC environments, overcoming
concerns regarding security and reproducibility?

How to support containers within an HPC environment, including workflow integration
and performance monitoring?

What is the performance price of static execution and resource management as a
function of scale and heterogeneity?

What are “intrinsic” scales of resource partitioning as a function of scale and dynamism?
In the presence of adaptive execution and dynamic resource behavior, what is the
trade-off between global versus partitioned resource management at exascale?

What are the challenges of providing the application complete control of the resources?
How is information propagated across resources partitions?

How can adaptive execution be implemented without incurring significant overhead?

Smart supercomputer systems and facilities

Specific research challenges to enable enhanced Ol and intelligent facilities are:



e Autonomous resource management at different granularities: programming model
runtime, node OS, global OS and facility

e Machine-in-the-loop feedback through operational intelligence: monitoring, operational
data analytics, autonomous decision making and adaptive resource management

e Improving operational productivity and lowering operational costs through corrective
actions while understanding performance, power consumption and resilience trade-offs

e Autonomous adaptation to system properties and application needs

There are a number of open research questions to make machine-in-the-loop operational
intelligence for HPC systems and facilities a reality, including: (1) identification of relevant
monitoring data for specific control problems, (2) offline vs. online operational data analytics,
learning and decision making, (3) understanding and modeling the involved trade-offs, (4)
leveraging community and industry software for reuse and maintainability, and (5) enabling
real-time control.

Infrastructure Requirements

The fact that essentially all system stack components are involved and need to be experimented
with puts high demands on the infrastructure. It needs to allow access and modifications across
the system stack, include highly diverse platforms, and allow migration between classical HPC
centers, Cloud platforms, and edge devices. It also needs to be as close to a production
environment as possible, for adaption to be validated properly.

For full-stack co-design, enabling exploration of pre-silicon hardware designs with full software
stacks requires access to FPGA accelerated simulation tools to deliver the required levels of
performance. These may be hosted in the cloud, as with the Berkeley FireSim tool, or located
on premise with additional porting work. A cluster of such FPGA resources would be required to
simulate more than a handful of nodes.

Benefits of Success

Full-stack co-design for extreme heterogeneity and scalability

Success would demonstrate the ability to co-design novel OS functionality with supporting
hardware designs in hours vs. years with current approaches. Proving out new OS ideas is
difficult due to researchers having limited ability to affect hardware designs and limited access to
large scale HPC platforms by which custom OS software can be booted. Performing
experiments via FPGA-accelerated simulation tools attacks both of these challenges. Success
would produce highly credible OS functionality, hardware designs, and actionable information
which could be used to more effectively influence our vendor partners, ultimately leading to
higher performing and more efficient DOE supercomputer platforms.



Adaptive management and partitioning of resources

A defining feature of success will be middleware capabilities that provide the abstractions and
interfaces for distributed and high-performance resource management, that allow a broad range
of multi-component applications and workflows that are agnostic to the specifics of underlying
resources and platforms, while making it easier to scale up and out. Moreover, success will be
characterized by significant performance improvements, improved resource utilization (less
movement, better power consumption), and improved productivity for users/developers when
porting to new platforms. Resource-partitioning improvements will result in better utilization of
available node resources, improved performance for dynamic workloads (including ensemble
calculations and Al), and opening HPC systems to a broader, more diverse set of workloads.

Smart supercomputer systems and facilities

Machine-in-the-loop operational intelligence improves productivity and lowers costs. It optimizes
the efficiency and effectiveness of computing systems and facilities, enabling faster science
breakthroughs at lower costs. For example, (1) adversarial workloads are scheduled better to
avoid network congestion, (2) emerging reliability threats are recognized early and handled
adequately to avoid unnecessary system downtime or degradation, (3) compiler and runtime
parameters are tuned correctly to avoid wasting resources, and (4) workload requirements are
understood better to inform the design and deployment process of next-generation systems.

Contributing Research Communities

Full-stack co-design for extreme heterogeneity and scalability

This work leverages a vibrant open-source hardware community in academia, which is
producing increasingly high-quality hardware designs and high-productivity hardware
development tools. It would additionally leverage a new class of hardware vendors that are
emerging to help customers develop domain optimized hardware targeting their particular
workloads. While HPC is not the direct focus of these communities, an effort within DOE could
provide this linkage and help ensure the needs of DOE supercomputer facilities are addressed.

Adaptive management and partitioning of resources

Research communities across the entire system stack will need to collaborate, from low-level
architecture to applications; from single platforms to wide-area distributed systems; from edge to
Cloud, to traditional HPC systems. Designing middleware to support adaptive execution and
dynamic resources, requires in addition to the DOE applications, facilities, and systems
researchers, collaboration with the Software Engineering for Adaptive and Self-managing
Systems (see: https://conf.researchr.org/home/seams-2021), and the community of middleware
design principles, programming abstractions and paradigms for reconfigurable, adaptable, and
reflective approaches (see: ACM Middleware).



For partitioning specifically, the cloud community faces and—to a greater or lesser
extent—successfully solves many of these issues, though possibly at significant performance
overhead costs. The execution model of cloud services is however more oriented towards
duplication/shutdown-restart than long-running applications adapting at runtime. The edge
community also addresses similar needs.

Smart supercomputer systems and facilities

This work involves the HPC node OS community, the parallel programming runtime community,
the HPC global OS community, HPC operations personnel at computing facilities, the AI/ML (in

control systems) community and the decision sciences (in control systems) community. It spans
the DOE laboratories, academia and industry.
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