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Workshop Charge

Seek community input on the development of in situ 
capabilities for managing the execution and data flow among a 

wide variety of coordinated tasks for scientific computing. 
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Definition of In Situ Data Management 
(ISDM)

The practices, capabilities, and procedures to control the 
organization of data and enable the coordination and 

communication among heterogeneous tasks, executing 
simultaneously in an HPC system, cooperating toward a 

common objective.

3



Definition of In Situ Data Management 
(ISDM)

The practices, capabilities, and procedures to control the 
organization of data and enable the coordination and

communication among heterogeneous tasks, executing 
simultaneously in an HPC system, cooperating toward a 

common objective.

4



Why In Situ?
• ISDM can make critical contributions to managing and reducing 

large data volumes from computations and experiments. 

Successful ISDM can minimize data movement, save storage space, and boost 
resource efficiency—often while simultaneously increasing scientific precision.

• The in situ methodology enables scientific discovery from a broad 
range of data sources, over a wide scale of computing platforms. 

Successful ISDM will benefit real-time decision making, design optimization, and 
data-driven scientific discovery.
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Overview
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In Situ Yesterday
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In Situ Yesterday
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In Situ Today

BES workflow of dynamic ensemble of simulations 
and in situ detection of stochastic events
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[Yildiz et al., 2019]
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[Schulz et al.]

https://www.dunescience.org/

https://www.nersc.gov/

https://www.alcf.anl.gov/

Neutrino event generation and parameter optimization for DUNE (2026).

[Norman et al.]
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ASCR In Situ Data Management (ISDM) 
Workshop
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Abstract
This workshop seeks community input on the 
development of in situ capabilities for managing the 
execution and data flow among a wide variety of 
coordinated tasks for scientific computing. The 
workshop considers ISDM in addition to the 
traditional roles of accelerating simulation I/O and 
visualizing simulation results, to more broadly 
support future scientific computing needs. In 
particular, the convergence of simulation, data 
analysis, and artificial intelligence will require 
machine learning, data manipulation, creation of 
data products, assimilation of experimental and 
observational data, analysis across ensemble 
members, and, eventually the incorporation of tasks 
on non-von Neumann architecture. 



PRDs
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Priority Research Directions
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How can ISDM methodologies help meet the needs for real-time, high-
velocity data applications at the edge and other non-high-performance 
computing platforms? How can ISDM enable science at experimental 

and observational facilities?



Pervasive ISDM
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Apply ISDM methodologies and in situ workflows at a variety of platforms and 
scales.

A changing landscape of use cases is 
driving new applications of ISDM. The 
ability to execute the same ISDM tasks 
and workflows across a spectrum of 
computational platforms, spanning high-
performance supercomputers to 
experimental detectors and even 
embedded devices, will reduce human 
effort and improve portability by 
applying consistent computing methods. 

Experimental 
apparatus at 
Argonne 
Advanced 
Photon Source 
Sector 7. 
Diffraction 
images can be 
reconstructed 
while 
experiments 
are ongoing.
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What abstractions, assumptions, and dependencies on system services 
are needed by ISDM? What information must be exchanged between 

the ISDM tools and the rest of the computing software stack to 
maximize performance and efficiency?



Co-designed ISDM
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Coordinate the development of ISDM with the underlying system software so that 
it is part of the software stack.

Understanding the interlayer 
dependencies so that ISDM 
becomes part of the software 
stack can facilitate connections 
between software layers, 
communicate semantic meaning, 
and realize efficient 
performance in high-
performance computing and 
other software stacks.
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How should in situ algorithms be designed to make the most of the 
available resources? What new classes of data transformations can 

profit from in situ data access in the presence of constraints imposed by 
other tasks?



In Situ Algorithms
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Redesign data analysis algorithms for the in situ paradigm.

The in situ environment for data 
processing and analysis differs 
substantially from the post hoc 
environment, requiring fundamentally 
new algorithms and approaches. 
Progress will benefit from 
multidisciplinary approaches that 
holistically consider the opportunities, 
constraints, and user needs of in situ 
analysis.

In situ topological feature detection in turbulent combustion 
simulations used to segment and track localized intermittent 
ignition and extinction features. (images courtesy of J.H. Chen).
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What metrics best describe the ISDM design space? How can that 
space be defined, codified, and evaluated to support design decision-

making and control?



Controllable ISDM
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Understand the design space of autonomous decision-making and control of in situ 
workflows.

Understanding the space of 
ISDM parameters is crucial to 
making intelligent design 
decisions, both by humans and 
autonomously. The capability to 
optimize a constrained ISDM 
design space will enable 
predictable performance and 
scientific validity. Design metrics 
will promote knowledge sharing 
across communities.

Model of how information flows for experimental computing, 
illustrating how real-time data analysis is required to guide the 
detector system, readout system, and data handling (image 
courtesy of Amber Boehnlein).
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Can the composition of ISDM software components maximize 
programmer productivity and usability? What design decisions of ISDM 
software components promote their interoperability in order to ensure 

the long-term utility of ISDM software for the science community?



Composable ISDM
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Develop interoperable ISDM components and capabilities for an agile and 
sustainable programming paradigm.

The flexible composition of 
interoperable ISDM software 
components will enable 
developers and end users to 
choose from an array of widely 
available tools, thereby 
increasing productivity, 
portability, and usability, and will 
ultimately result in agile and 
reusable software. Workflow 

system stack
ISDM 
components

Smart simulation

Ensemble data fusion

EOD analytics

New 
compositions
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How can provenance and metadata support data discoverability, reuse, 
and reproducibility of results? How can these artifacts be captured 
automatically and analyzed in situ, at the scale of DOE science?



Transparent ISDM
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Increase confidence in reproducible science, deliver repeatable performance, and 
discover new data features through the provenance of ISDM.

In situ provenance and metadata 
are crucial to understanding 
scientific results, assessing 
correctness, and connecting 
underlying models and algorithms 
with workflow execution. The 
ability to capture and query 
provenance and metadata at scale 
and in situ will enable many 
diverse science needs. Performance provenance for NWChem computational 

chemistry simulation (image courtesy of HuubVan Dam, Wei 
Xu, Cong Xie, and Wonyong Jeong).



Process

26



Getting from 
Workshop Topics 

to PRDs
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How it all Started…
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Leading up to the Workshop
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After the Workshop
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At the Workshop
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Breakout Session: 4 Parts
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Data Capture
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State of the art

Potential Scientific Impact

Please answer the following questions:
• Who else is doing this?
• What are the technology and research gaps?

Please answer the following questions:
• What new scientific capabilities will follow?
• What new methods and techniques will be 

developed?

New Research Direction

Please answer the following questions:
• What will you do to address the challenge?
• What research questions will you ask / answer?
• What are the potential risks?
• What would success look like?
• What assumptions about users, hardware, or 

other parts of the software stack motivate this 
as a priority / are required for success?

Key Challenges and Opportunities

Please describe the underlying science challenges 
and opportunities that motivate this PRD



Data Capture
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Assumptions and Dependencies Matter
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• Track the consequence of assumptions back to priorities if/when 
assumptions change.

• Follow relationships between parts of the research portfolio.
• Promotes a software stack view of the portfolio.  
• Components of the portfolio can work together to achieve capabilities.
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Thank You
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