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Why Are We Here? 

• Exascale Town Halls in 2007

• Led to many other workshops (>10)

• ASCAC engagement

• NSCI

• And the Exascale Computing Initiative

– ECP: Exascale Computing Project

– Exascale systems

– Application efforts across  DOE

• Ideas for the next big thing, complementing 
exascale

• 4 Town Halls organized by the Labs

– 4th is in DC, October  22-23

- 2 -AI for Science
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AI for Science: Integration of Modeling and Simulation, 
Data Analytics and Learning

• AI is transforming our “regular life” world

• AI has tremendous potential to accelerate scientific discovery

• AI Complements our Exascale Plans

– The emerging platforms at the LCF and NERSC will be excellent platforms for 
machine learning, in particular deep learning training

– The coupling of AI and HPC is a huge opportunity for DOE 

– Many uses of AI couple to experiments in ways that traditional modeling and 
simulation do not

– The DOE experimental community could become major users of the DOE HPC 
facilities

– Future systems directions will be impacted by AI use cases
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AI is disruptive.  

It won’t replace the scientist, but scientists 

who use AI will replace those who don’t.*
*Adapted from a Microsoft report, “The Future Computed”

To harness the disruptive potential of AI to 

improve science, we need to be leaders in AI 

and computational science, 

as well as the application of AI.
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The Government/International Landscape

• Approximately 35 countries have AI strategies

– They generally share the view that the country 
or business that uses its data best will be the 
most competitive.

– China gets the most attention, and the 
competition is “asymmetric”

• The U.S. has an AI strategy that includes

1. Long-term investment in research

2. Effective methods for human-AI collaboration

3. Address ethical, legal and social implications

4. Ensure the safety and security of AI Systems

5. Develop shared datasets and environments

6. Standards and benchmarks

7. Understand the AI workforce

8. Expand public-private partnerships
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The Business Landscape

• Business

– Will either deliver AI or use AI 

– The “Big 9” dominate, but don’t discount traditional business

– $7.4B in start-up investments in 488 deals in 2019/Q2

– $803M in “AI for cybersecurity” VC in last six months

• Barriers to insertion

– Understanding: 37% of executive feel their employees 
understand the importance of data

– Management needs a “BS meter”

– Trust:

• 49% of U.S. consumers would trust AI-generated advice for retail, 

• 38% would trust AI-generated advice for hospitality, while only 

• 20% would trust AI-generated advice for healthcare and 

• 19% for financial services

– Example: 33% of US healthcare professionals have implemented AI into their practice, 
compared to a 15-country average of 46%.  
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Policy Statement:  Artificial Intelligence (AI) 
promises to drive growth of the United States 
economy, enhance our economic and national 
security, and improve our quality of life. 

… leadership requires a concerted effort to 
promote advancements in technology and 
innovation, while protecting American 
technology, economic and national security, 
civil liberties, privacy, and American values and 
enhancing international and industry 
collaboration with foreign partners and allies. 

White House Executive Order on AI
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DOE’s Artificial Intelligence and Technology Office

- 8 -AI for Science

Vision:
Transform DOE into a world-leading AI 

enterprise by accelerating the research, 

development, delivery, and adoption of AI.

Mission:
The Artificial Intelligence and Technology Office 

(AITO), the Department of Energy’s center for 

Artificial Intelligence, will accelerate the 

delivery of AI-enabled capabilities, scale the 

department-wide development and impact of 

AI, and synchronize AI activities to advance 

the agency’s core missions, expand 

partnerships, and support American AI 

Leadership.
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AI for Science Town Halls
The Integration of modeling and simulation, data analytics and learning

• ~1.5 days to capture ideas, problems, requirements and challenges 
for an AI for Science initiative

• Each townhall
– 1 plenary, 3 keynotes, half-day breakouts on domains, half-day breakouts on 

crosscuts 

– All breakouts were consistent, with slight tailoring to accommodate what we 
learned and local influences

• What problems could be attacked?

• What data, simulations, and experiments do we need?

• What kind of methods, software and math do we need?

• What kind of computer architectures and infrastructure do we 
need?
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Goal is to Look 10+ Years Out

• We are looking for transformational ideas

• What could be the impact of a sustained push on AI in some problem 
domain?

– Building superhuman capabilities in science

• What scale 

– Big Problems, Big Pushes, Big Data, Big Systems?

– Fine grain innovation, many thousands of small teams?

• Coupling to experiments, simulations, user and computing facilities?

• What does “scientific production” look like in this space?
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In Ten Years…

• Learned Models Begin to Replace Data

– queryable, portable, pluggable, chainable, secure

• Experimental Discovery Processes Dramatically Refactored

– models replace experiments, experiments improve models

• Many Questions Pursued Semi-Autonomously at Scale

– searching for materials, molecules and pathways, new physics

• Simulation and AI Approaches Merge

– deep integration of ML, numerical simulation and UQ 

• Theory Becomes Data for Next Generation AI

– AI begins to contribute to advancing theory

• AI Becomes Common Part of Scientific Laboratory Activities

– Infuses scientific, engineering and operations
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AI for Science Town Halls – Argonne

• 1st of 4 Town Halls

• July 22-23

• Held at Advanced Photon Source 

• 357 participants

• Introductory remarks by Congressman 
Bill Foster
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AI for Science Town Halls – ORNL

• August 20-21

– ORNL Conference Center

• 319 participants

• Opening remarks by Steve Binkley

• Keynote: “AI for Science Opportunities” -
ORNL AI Program Director David Womble 
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AI for Science Town Halls – Berkeley

• September 11-12

• Opening remarks by Barb Helland

• 358 attendees (in person) 

– 121 virtual
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AI for Science Town Halls – Washington, D.C.

• Opening remarks by Chris Fall

• October 22-23

– Renaissance Hotel, downtown

• Theme: What Can We Do in AI for 
Science to Move the Country 
Forward?

• Visionary Keynote

– “Energy & Investments: The role 
of AI in changing how business 
works” - Claire Curry, Bloomberg 
New Energy Finance
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Agenda plan

Science and engineering breakthroughs 
that critically use AI at scale

Methods, computing/networking/data 
facilities, software, and hardware for AI

- 16 - AI for Science

Day 1

X
AI

AI
X

Day 2
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Science Breakthroughs

What: is the challenge problem? 

Why: is this important to science, society, etc.?

How: what kind of AI is critical and why?

Scale: what is the data size/rate, compute cost, etc.?

Timeframe: is this a 3,5, or 10-year goal?

AI for Science
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Crosscut Challenge Highlight

What problem are you solving? 

Why is this important? 

Which applications need it?

Why DOE?  How does this fit into DOE expertise / facilities 
/ team science?

AI for Science
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Cosmology and Astrophysics 
Breakout

AI for Science, Berkeley Town Hall
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Universe: The Movie
Brought to you by AI

Problem: reconstructing the past from the Big Bang until 
today and predicting the future of our visible Universe, 
from the largest scales down to our own galaxy, using all 
existing data (galaxy positions, stellar mass, velocities, 
dark matter maps, gas distribution, tSZ, kSZ, X-ray).

What is dark energy? What is its density evolution in 
time? What is the nature of dark matter? Did inflation 
happen? 

Impact: providing tightest possible constraints on 
fundamental physics questions as stated above by 
solving optimal inference problem. Equivalent to several 
DESI+LSST. 

- 20 -



2121
- 21 -

What kind of AI and why? Conventional methods (such as 2 point 
correlations) are missing information encoded in the data. To 
optimally extract information while maintaining robustness we 
need AI combined with statistical methods and HPC simulations. 
Generative models and discriminative AI models are crucial in 
solving the problem. Example: AI learned tSZ map can be created 
1000 times faster. 

Scale: cosmological surveys measure on scales of (10Gpc)^3 and 
resolve scales of 1Mpc, thus having 10^12 dynamic range and 
O(100) PB datasets. To solve it we need to combine AI based 
surrogate models with N-body and hydrodynamic cosmology 
simulations. To explore the posterior parameter space we will 
need to run O(100) exascale-class simulations.

Timeframe: 10 year effort to get full dynamical range.

Universe: The Movie
Brought to you by AI
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Numerical aspects of learning (improving 
robustness and stability)

Co-leads:

Sandeep Madireddy (Argonne)

Clayton Webster (ORNL)

Stefan Wild (Argonne)

Writer: Rachel Harken (ORNL)
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4 Crosscut Opportunities

● Robust ML and AI approaches to increase trust

● Advanced deep network architecture design

● Characterizing the loss landscape of science-informed ML

● Exploiting variable precision for performance

● What scientific grand challenges could these address?

○ Robustness is an essential ingredient for all AI models that augment/model science

○ Particularly important for mission-critical and high-risk scenarios

○ Important theoretical guarantees could increase and justify adoption in complex scientific 

applications



Robust ML and AI Approaches to Increase Trust

New capabilities imagined

● 3-5 years
○ A suite of databases and challenge problems common and transferable between science applications that can be used to 

test and improve the robustness in the AI models

○ Novel architecture formulations (e.g., Implicit networks)

○ Domain informed representation learning (input space representations)

○ Robustness metrics be a commonplace in architecture choice

● 10-15 years
○ Rigorous theoretical basis involving approximation theory for domain-informed architecture choice/design

○ Probabilistic approaches to deep learning and uncertainty quantification

● What is this?

- Build AI models that are accurate and stable, where the stability is with respect to variability/perturbations in the data

- Develop strategies for achieving this robustness through the choice of architecture, initialization and optimization

● What is unique to/important for science?
○ The data, information content and noise distributions are unique compared to industry applications

○ Consequence and risks can be much higher when deployed in practice

○ Computational and numerical capabilities in the DOE ecosystem could be used to improve robustness

○ The diversity of the application space provides a richer testbed for developing and testing robustness approaches



Advanced Deep Network Architecture Design

New capabilities imagined

● 3-5 years
○ Advance closure models in CFD

○ New pre-conditioners for systems derived in physics and 

engineering applications

● 10-15 years

○ New deep network architectures that can 

accommodate unstructured temporal/spatial meshes.

○ Transfer the advanced architectures into the state-of-

the-art capabilities in applications

What is this?

● Design innovative deep networks to resolve physical and engineering systems comprised of multiple 

complex phenomena.

● This requires capabilities that go beyond black-box tools developed by industry that lack important 

properties, e.g., stability, robustness.

What math needs to be done to enable future advances in science?

● How to design continuous ML models given the desired physical and/or analytical properties?

● How to design proper discretization schemes to enforce the desired numerical properties?

● How to integrate ML models into well-established simulators and accelerate the solvers?

What scientific grand challenges could this 

address?

• Noisy/adversarial data from 

experiments/simulation

• High-dimensional input parameters

• Irregular data geometry



Characterizing the Loss Landscape of Science-informed ML

● New capabilities imagined (3-5 years)

○ Tackle short horizon bias: Mathematical theory that can bound the number of critical points for a 

given loss function

○ Improved understanding of loss landscape for more complicated ML models of practical interests, 

e.g., GANs, Physics-informed ML

Ø Training parameterized models on near-term quantum devices

Ø Multiplicity, bifurcation and other critical behavior regularly encountered in chemically reacting systems

● What is this?

○ Understanding properties of critical points and the landscape around them using visualization and 

analysis

○ Understand how the loss landscape will affect performance of training algorithms

○ Characterization of the effects of regularizations on loss landscape

● What is unique to/important for science?

○ Characterization of the loss landscape in order to expediate training of ML models by informing 

choice of ML model design (hyperparameter optimization, initializations)

○ Understanding how regularizations encourage certain properties for critical points and landscapes 

will equip us with new guides to improve the interpretability of neural networks via 

regularizations.



Exploiting Variable Precision for Performance

New capabilities imagined

○ LA Library for half and mixed precision

○ Fast initial guesses and preconditioners

○ Precompute minimum precision to train models

○ Precision-informed neural architecture search

What scientific grand challenges could this address?
● Make edge computing a reality for science

● Higher fidelity models for same cost

● What is this?
○ Performance from faster arithmetic, data movement, data storage

● Challenges
○ Numerical implication... reevaluate numerical analysis
○ Can it be automated? 
○ Issues with different vendor “standards” for half precision
○ Can we verify we have meaningful results?
○ Redefining what accuracy means

● What is unique to/important for science?
○ Bigger problems faster

○ Maintaining accuracy while enhancing throughput for scientific experiments Google TPU: bfloat16

largest fl pt number

65,504

largest fl pt number O(1038)

IEEE float16

IEEE SP
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Domain Breakouts

Argonne Oak Ridge Berkeley DC

Materials, Chemistry, 

and Nanoscience

Materials, Chemistry, 

and Nanoscience

Materials, Chemistry, 

and Nanoscience

Materials, Chemistry, 

and Nanoscience

Materials Synthesis 

and Chemistry

Environment, Climate 

and Earth Science

Environment, Climate 

and Earth Science

Climate and Carbon Earth Systems

Subsurface and 

Geoscience

Water

Biology and Life 

Science

Biology and Life 

Science

Synthetic Biology Biology and Life 

Sciences
Health

Fundamental Physics Fundamental Physics Cosmology and 

Astrophysics

Fundamental Physics

Particle Physics

Accelerator Science



2929

Domain Breakouts

Argonne Oak Ridge Berkeley DC

Engineering and 

Technology

Advanced 

Manufacturing

Engineering and 

Manufacturing

Engineering 

Manufacturing

Energy (wind, solar, 

fossil, etc.)

Transportation and 

Mobility

Transportation / 

Mobility

Smart Energy 

Infrastructure

Urban

Energy Generation & 

Distribution

SmartGrid

AI Networking and 

Computing Facilities

AI for Computer 

Science

AI for Computer 

Hardware and 

Software

[Energy (wind, solar, 

fossil, etc.)]

Fusion Fusion Fusion
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Crosscuts Breakouts

Argonne Oak Ridge Berkeley DC

Optimization /UQ /Statistics Numerical Aspects of 
Learning

Performance Optimization of 
Deep Learning

Machine Learning 
Foundations and Open 
Problems

Foundations and Challenges 
of Deep Learning

Model Applicability and 
Characterization

Opportunities and 
Foundations of Traditional 
Machine Learning

Reinforcement/Streaming 
learning for Decision support 
and control

Convergence of Simulation 
and Data Methods

Decision Support

ML for science problems with 
limited data

Science Informed Learning

Science-informed learning

Uncertainty Quantification

Use of AI with Simulation
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Crosscut Breakouts Argonne Oak Ridge Berkeley DC

Software 
Environments and 
Software 
Research

Software 
Environments and 
Software 
Research

Software 
Environments and 
Research

Software 
Environments and 
Software 
Research

Data 
Infrastructure and 
Life Cycle

Data 
Infrastructure and 
Life Cycle

Data Life Cycle Data Life Cycle & 
Infrastructure

Hardware and 
Architecture

Hardware and 
Architecture

Hardware 
Technology

Hardware 
Architectures

Imaging and 

Scientific User 
Facilities

Data Collection, 

Reduction, 
Analysis, and 
Imaging for 
Scientific User 
Facilities

Light Sources Support  for AI for 

Experimental 
Facilities

Electron 
Microscopy 
Imaging

[Facilities 
Integration]

[Facilities 
Integration and AI 
Ecosystem]

[Facilities 
Infrastructure and 
Integration; the AI 
Ecosystem]

Support for AI at 
the Edge

Facilities 
Integration

Facilities 
Integration and AI 
Ecosystem

Facilities 
Infrastructure and 
Integration; the AI 
Ecosystem

Facilities 
Integration and AI 
Ecosystem

Cybersecurity 
and Privacy
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What Happens Next?

• Domains/Crosscuts (7 + 7) working to create summary documents (6-page) and 
presentations (12 slide) based on the prior 3 townhall artifacts

• These summary documents are presented, vetted and tweaked at the DC 
townhall 

• Summary documents are finalized and used to create townhall report to ASCR

• Next steps are based on the need for BRN for each of the relevant offices; SC, 
applied, NNSA, etc.

• Assessment of final steps need to be determined by long term goals of 
ASCR/SC/DOE: program versus project, etc.


