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Outline

1. Overview of AMTs and Uintah 
2. A runtime system portability approach
3. Porting to the Sunway light
4. Summary



https://www.youtube.com/watch?v=rStVp19tXqk

Asynchronous Many Task Runtime Systems
SC16 Survey by Thomas Sterling 

Darma – Sandia  Labs
Legion – Stanford
Charm++ Illinois 
Uintah  - University  of Utah
STAPL – Texas A & M
OCR  - Rice 
Qthreads – Sandia
LFRIC   - UK met Office
PaRSEC - Tennessee 
StarPU - Barcelona/INRIA

Key features:

Adaptive execution of tasks

Ability to hide communications costs including 
delays 

Task specification may not change as code
ported ,  even though some of runtime does



Spatial Mesh Based Calculations                         many codes use 
Bulk Synchronous Parallel (BSP) Processing 

----------------------------------------------------------------------
Compute values on core cells
-----------------------------------------------------------------------
Communicate            between nodes to update halo values 
-----------------------------------------------------------------------
Compute values on core cells  

Three compute nodes 
Synchronize

Synchronize

Synchronize



Asynchronous Many Task (AMT) Approach [Sarkar 1987] 
e.g. three compute nodes 

Task Graph Task Graph Task Graph 

Execute tasks when possible communicating 
as needed. Do useful work instead of waiting 



Uintah Architecture 

Runtime System 

MPM Particles

ICE FV Fluids

CPUsGPUs Xeon Phis

PDE Applications 
Code
Components

Automatically generated
abstract C++ task graph form
With mpi compiled in 

Adaptive execution of tasks 

Components NOT 
architecture specific  
written in task form 

asynchronous out-of-
order execution,  
work stealing, overlap 
communication & 
computation.

ARCHES

Task Graph Compilation

About 1.2 M lines  500K “core’ C++
1-2 staff scientists 3-4 students

50K Lines

250K lines

250K lines



Uintah Programing Model for Stencil  Timestep [Parker 1998]

Unew = Uold + 
dt*F(Uold,Uhalo)
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User specifies mesh patches and 
halo levels and connections 



Uintah: Unified Heterogeneous Scheduler & Runtime node [Meng, Luitjens 2012]
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NNSA PSAAP2 Existing Simulations of GE  Clean coal Boilers using ARCHES in Uintah

• Large scale turbulent combustion
• Structured, high order finite-volume discretization
• Mass, momentum, energy conservation 
• LES  closure, tabulated chemistry
• PDF mixing models
• DQMOM (many small linear solves)
• Uncertainty quantification

• Low Mach number approx. (pressure Poisson solve up to       
variables  

• Radiation via Discrete Ordinates – massive solves Mira or ray 
tracing Titan.

• Weak and strong scaling on Mira and strong scaling on  Titan.

1210

Good (superlinear!) scaling for the full problem on Titan and Mira 

60m



Porting  Uintah to future exascale architectures 

Two main tasks 

(i) Modify the scheduler to run tasks in a way that  takes advantage 
of the machines in question 

(ii) Find a way of transforming the loops in a task so that 
performance portability is possible 

If this works it should work on what might be considered one of the harder machines to port to 



Porting Uintah for future exascale architectures 
Two main tasks

(i) Modify the scheduler to run tasks in a way that  takes advantage 
of the machines in question 

(ii) Find a way of transforming the loops in a task so that 
performance portability is possible 

Use experience with many different architectures to do this quickly

Either hand tune loops or use Kokkos DOE Sandia to have portable 
loops for which it is possible to get performance for.

If this works it should work on what might be considered one of the harder machines to port to 



Sunway TaihuLight Architecture:
● Each Sunway Compute node contains 4 Compute Processing Elements (CPE).

● 1 CPE consists of 1 Management Processing Element (MPE) and 64 Computing 
Processing Elements (CPE) along with Memory Controller MC) and System 
Interface (SI)

● MPE handles the main control flow / management, communications and 
computations and shares its memory with…..

● CPEs are used to perform computations. These can be considered as 
“coprocessor” used to offload computations. With 256 vector instructions. 
Cacheless but with shared scratch memory 64K ( LDM)

● 10M cores  93PF vectorization and comms hiding keys to success. 

Compute Processing Element (CPE) 4 per node with total of 4 MPEs and 256 
cores 

M 
PE

Source https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201609/Dongarra-ascac-sunway.pdf



Present Applications experience with the Sunway TiahuLight

●Multiple Gordon Bell Finalists in SC16 (3/6)  and SC17 (2/3) winner in both years 

●Example entry  is climate code CAM-SE in SC17 [Haohuan Fu et al.]

○ 152K of  754K lines modified 

○ 59K new lines of code

○ Large coding team   (12 or more in the team) SC17

●Need to hide data movement to overcome lack of cache and slow communications 

●Is there an easier way to do this with a runtime system and fewer programmers?



Uintah Programing Model for 
Stencil  Timestep for Sunway

Unew = Uold + 
dt*F(Uold,Uhalo)
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Mixture of C and FORTRAN 
athreads loops OpenACC

also break mesh block into 
16x16x8 tiles
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modified Burgers equation



Management 
Processing 
Element

64 Slave Cores CPEs 



Sunway Runtime System Details 

200  new lines of code                                                      200 new lines of code  



Sunway specific changes
Infrastructure and Scheduler:
● GNU compiler used for MPE infrastructure code written in C++11

● Updated offloading and polling mechanism using OpenACC

Computational Kernel / Task:
● Porting of Kernel: -main comp. kernel  rewritten using Fortran, C, OpenACC and native athread

runtime as CPEs do not support C++
● Need to use athread to overcome OpenACC slowdowns [SC17 Gordon Bell CAM paper]
● Optimizations: 

○ Tiling: Used tiling for efficient use of LDM for stencil like operations in Burgers’ equation. The 
CPE part of scheduler divides tiles among CPEs.

○ Vectorization: Used native SIMD vector intrinsics for vectorization as Sunway toolchains do not 
support automatic vectorization also used fast math library for faster exp calculations, as no 
h/w suppport



Original C++ kernel for 
Burgers’ equation

Fortran kernel 
vectorized with 
SIMD intrinsics for 
d2udz2 calculation



Sunway - Strong scaling  
Results

From 1 to 128 nodes. Modes:

Acc.sync: sync. scheduling

acc_simd.sync: sync. scheduling 
using simd instructions

acc.async: async.  scheduling

acc_asimd.sync: async. 
scheduling using simd
instructions

Maximum improvement of 
async version over sync is 
about 22%



Results
Strong scaling with up to 90% 
efficiency up to 8K cores 
(limit of test queue)

Peak performance  only 1% of 
peak but  1 TF

Asynchronous scheduler give 
6X speedup

SIMD instructions give 13X 
speedup 

Baseline is host.sync - most 
naive implementation on 
Sunway: synchronous 
execution without offloading 
to CPEs.



Sunway - Parallel Efficiency

> 90% for sufficiently 
large problem



Summary

●Porting strategy works well – good scaling and reasonable peak

● 2 person months of work to show how 1M lines of code might run

●New scheduler for Sunway required only 400 lines of code

● Sunway software environment is still at an early stage, e.g. first GPUs

●Tasks needed to be hand rewritten  in C, athreads and Fortran

●Porting a full Uintah package with 500-600 loops would be a daunting task

●Use of a portability library like Kokkos would solve this problem – does not exist 

●Our experiences with OpenACC similar to  CAM climate code Gordon Bell SC17 paper 



Additional Slides



Sunway - GFLOPS

Because of 
memory bound 
nature of Burgers 
code, it achieved 
only 1% of peak 
GFLOPS.



Improved Load Balancing
Cost Estimation Algorithms based on data assimilation
Use load balancing algorithms based on patches and a 
fast space filling curve algorithm 1

Uintah Load Balancer automatically assigns patches to nodes

<Grid>
<Level>

<Box label = "1">
<lower>      [0,0,0]        </lower>
<upper>      [1.0,1.0,1.0]  </upper>
<resolution> [64,64,64]     </resolution>
<patches>    [2,2,2]        </patches>
<extraCells> [1,1,1]        </extraCells>

</Box>
</Level>

</Grid>

XML Problem Specification provided by 
user input file, e.g.

• e.g., Grid spec, patches
• <patches> [x,y,z] </patches>



Sunway TaihuLight

de/c))

• SW26010 processor,Chinese design, fab, 1.45 GHz
• Node = 260 Cores (1 socket)

• 4 – core groups
• 64 CPE, No cache, 64 KB scratchpad/CG
• 1 MPE w/32 KB L1 dcache & 256KB L2 cache

• 32 GB memory total, 136.5 GB/s
• ~3 Tflop/s, (22 flops/byte)

• Cabinet = 1024 nodes
• 4 supernodes=32 boards(4 cards/b(2 no
• ~3.14 Pflop/s

• 40 Cabinets in system
• 40,960 nodes total
• 125 Pflop/s total peak

• 10,649,600 cores total
• 1.31 PB of primary memory (DDR3)
• 93 Pflop/s for HPL, 74% peak
• 0.32 Pflop/s for HPCG, 0.3% peak
• 15.3 MW, water cooled

• 6.07 Gflop/s per Watt
• 1.8B RMBs ~ $280M, (building, hw, apps, sw, …)

Source Jack  Dongarra

https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201609/Dongarra-ascac-sunway.pdf



• China’s first homegrown many-core processor
• Vendor: Shanghai High Performance IC Design Center
• supported by National Science and Technology Major  

Project (NMP): Core Electronic Devices, High-end 
Generic  Chips, and Basic Software

• 28 nm technology

• 260 Cores

• 3 Tflop/s peak

SW26010 Processor

Source Jack  Dongarra

https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201609/Dongarra-ascac-sunway.pdf



• 1 node with 260 cores per processor has 4 Core Groups (CGs), each of which has

• 1 Management Processing Element (MPE) handles the main control flow / 
management, communications and computations and shares its memory with…..

● 64 (8x8) Computing Processing Element(CPE) These can be considered as 
“coprocessor” used to offload computations. With 256 vector instructions. 
Cacheless but with shared scratch memory 64K ( LDM)

SW26010: General Architecture
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