
AMT Runtimes, Portability and the Sunway TiahuLight
Martin Berzins

How hard is it to port an Asynchronous Many Task Runtime
code (Uintah) to the worlds fastest machine, the Tiahu
SunwayLight ? What does this tell us about the Tiahu
SunwayLight?

NSF Grant 1337145 Damodar Sahasbarude Utah.

Zhang Yang IAPM Beijing, Alan Humphrey U. of Utah

Uintah Background and Acknowledgements
DOE NSF People
• DOE ASC Strategic Academic Alliance Program 1998 -2010
• ALCC and Directors Discretionary time awards
• INCITE (4 awards 700M cpu hours in total)
• Argonne and Oak Ridge Facilities
• NNSA PSAAP2 center funding 2014-2019
• Argonne A21 exascale early science program
• NSF software funding and Peta-Apps 2007- 2015
• NSF XSEDE TACC computer time and facilities
• The 50 or so people on Uintah and its related projects, since

2003 particularly Justin Luitjens, Qingyu Meng, John Schmidt,
Alan Humphrey, John Holmen , Brad Peterson, Steve Parker,
Dave Pershing and Phil Smith

Outline

1. Overview of AMTs and Uintah
2. A runtime system portability approach
3. Porting to the Sunway light
4. Summary

https://www.youtube.com/watch?v=rStVp19tXqk

Asynchronous Many Task Runtime Systems
SC16 Survey by Thomas Sterling

Darma – Sandia Labs
Legion – Stanford
Charm++ Illinois
Uintah - University of Utah
STAPL – Texas A & M
OCR - Rice
Qthreads – Sandia
LFRIC - UK met Office
PaRSEC - Tennessee
StarPU - Barcelona/INRIA

Key features:

Adaptive execution of tasks

Ability to hide communications costs including
delays

Task specification may not change as code
ported , even though some of runtime does

Spatial Mesh Based Calculations many codes use
Bulk Synchronous Parallel (BSP) Processing

--
Compute values on core cells

Communicate between nodes to update halo values

Compute values on core cells

Three compute nodes
Synchronize

Synchronize

Synchronize

Asynchronous Many Task (AMT) Approach [Sarkar 1987]
e.g. three compute nodes

Task Graph Task Graph Task Graph

Execute tasks when possible communicating
as needed. Do useful work instead of waiting

Uintah Architecture

Runtime System

MPM Particles

ICE FV Fluids

CPUsGPUs Xeon Phis

PDE Applications
Code
Components

Automatically generated
abstract C++ task graph form
With mpi compiled in

Adaptive execution of tasks

Components NOT
architecture specific
written in task form

asynchronous out-of-
order execution,
work stealing, overlap
communication &
computation.

ARCHES

Task Graph Compilation

About 1.2 M lines 500K “core’ C++
1-2 staff scientists 3-4 students

50K Lines

250K lines

250K lines

Uintah Programing Model for Stencil Timestep [Parker 1998]

Unew = Uold +
dt*F(Uold,Uhalo)

N
etw

ork
Old Data

Warehouse
on a node GET Uold

Uhalo

Halo
receives
Uhalo

MPI

New Data
Warehouse
on a node

PUT
Unew

Halo sendsExample Stencil Task

User specifies mesh patches and
halo levels and connections

Uintah: Unified Heterogeneous Scheduler & Runtime node [Meng, Luitjens 2012]

Running CPU Task

N
etw

ork

Data
Warehouse

(variables
directory)

PUT

GET

Running CPU Task

CPU Task Queues

CPU Threads

Shared
Data

MPI Data
Ready

MPI
sends

MPI
recvs

Task
Graph

PUT

GET

GPU
Data

WarehouseRunning GPU Task

GPU Task
Queues

Running GPU Task PUT

GET

GPU Kernels

CPU cores and GPUs pull work from task queues

GPU
Data

Warehous
e

NNSA PSAAP2 Existing Simulations of GE Clean coal Boilers using ARCHES in Uintah

• Large scale turbulent combustion
• Structured, high order finite-volume discretization
• Mass, momentum, energy conservation
• LES closure, tabulated chemistry
• PDF mixing models
• DQMOM (many small linear solves)
• Uncertainty quantification

• Low Mach number approx. (pressure Poisson solve up to
variables

• Radiation via Discrete Ordinates – massive solves Mira or ray
tracing Titan.

• Weak and strong scaling on Mira and strong scaling on Titan.

1210

Good (superlinear!) scaling for the full problem on Titan and Mira

60m

Porting Uintah to future exascale architectures

Two main tasks

(i) Modify the scheduler to run tasks in a way that takes advantage
of the machines in question

(ii) Find a way of transforming the loops in a task so that
performance portability is possible

If this works it should work on what might be considered one of the harder machines to port to

Porting Uintah for future exascale architectures
Two main tasks

(i) Modify the scheduler to run tasks in a way that takes advantage
of the machines in question

(ii) Find a way of transforming the loops in a task so that
performance portability is possible

Use experience with many different architectures to do this quickly

Either hand tune loops or use Kokkos DOE Sandia to have portable
loops for which it is possible to get performance for.

If this works it should work on what might be considered one of the harder machines to port to

Sunway TaihuLight Architecture:
● Each Sunway Compute node contains 4 Compute Processing Elements (CPE).

● 1 CPE consists of 1 Management Processing Element (MPE) and 64 Computing
Processing Elements (CPE) along with Memory Controller MC) and System
Interface (SI)

● MPE handles the main control flow / management, communications and
computations and shares its memory with…..

● CPEs are used to perform computations. These can be considered as
“coprocessor” used to offload computations. With 256 vector instructions.
Cacheless but with shared scratch memory 64K (LDM)

● 10M cores 93PF vectorization and comms hiding keys to success.

Compute Processing Element (CPE) 4 per node with total of 4 MPEs and 256
cores

M
PE

Source https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201609/Dongarra-ascac-sunway.pdf

Present Applications experience with the Sunway TiahuLight

●Multiple Gordon Bell Finalists in SC16 (3/6) and SC17 (2/3) winner in both years

●Example entry is climate code CAM-SE in SC17 [Haohuan Fu et al.]

○ 152K of 754K lines modified

○ 59K new lines of code

○ Large coding team (12 or more in the team) SC17

●Need to hide data movement to overcome lack of cache and slow communications

●Is there an easier way to do this with a runtime system and fewer programmers?

Uintah Programing Model for
Stencil Timestep for Sunway

Unew = Uold +
dt*F(Uold,Uhalo)

N
etw

ork
Old Data

WarehouseGET Uold
Uhalo

Halo receives
Uhalo

MPI

New Data
WarehousePUT Unew

Halo sendsExample Stencil Task

Mixture of C and FORTRAN
athreads loops OpenACC

also break mesh block into
16x16x8 tiles

2 2 2

2 2 2

(, , ,) (. . ,) (, , ,)

 c

u u u ua x y z t b x y z t c x y z t
t x y z

u u u
x y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

 ∂ ∂ ∂
+ + ∂ ∂ ∂ 

PDE example
modified Burgers equation

Management
Processing
Element

64 Slave Cores CPEs

Sunway Runtime System Details

200 new lines of code 200 new lines of code

Sunway specific changes
Infrastructure and Scheduler:
● GNU compiler used for MPE infrastructure code written in C++11

● Updated offloading and polling mechanism using OpenACC

Computational Kernel / Task:
● Porting of Kernel: -main comp. kernel rewritten using Fortran, C, OpenACC and native athread

runtime as CPEs do not support C++
● Need to use athread to overcome OpenACC slowdowns [SC17 Gordon Bell CAM paper]
● Optimizations:

○ Tiling: Used tiling for efficient use of LDM for stencil like operations in Burgers’ equation. The
CPE part of scheduler divides tiles among CPEs.

○ Vectorization: Used native SIMD vector intrinsics for vectorization as Sunway toolchains do not
support automatic vectorization also used fast math library for faster exp calculations, as no
h/w suppport

Original C++ kernel for
Burgers’ equation

Fortran kernel
vectorized with
SIMD intrinsics for
d2udz2 calculation

Sunway - Strong scaling
Results

From 1 to 128 nodes. Modes:

Acc.sync: sync. scheduling

acc_simd.sync: sync. scheduling
using simd instructions

acc.async: async. scheduling

acc_asimd.sync: async.
scheduling using simd
instructions

Maximum improvement of
async version over sync is
about 22%

Results
Strong scaling with up to 90%
efficiency up to 8K cores
(limit of test queue)

Peak performance only 1% of
peak but 1 TF

Asynchronous scheduler give
6X speedup

SIMD instructions give 13X
speedup

Baseline is host.sync - most
naive implementation on
Sunway: synchronous
execution without offloading
to CPEs.

Sunway - Parallel Efficiency

> 90% for sufficiently
large problem

Summary

●Porting strategy works well – good scaling and reasonable peak

● 2 person months of work to show how 1M lines of code might run

●New scheduler for Sunway required only 400 lines of code

● Sunway software environment is still at an early stage, e.g. first GPUs

●Tasks needed to be hand rewritten in C, athreads and Fortran

●Porting a full Uintah package with 500-600 loops would be a daunting task

●Use of a portability library like Kokkos would solve this problem – does not exist

●Our experiences with OpenACC similar to CAM climate code Gordon Bell SC17 paper

Additional Slides

Sunway - GFLOPS

Because of
memory bound
nature of Burgers
code, it achieved
only 1% of peak
GFLOPS.

Improved Load Balancing
Cost Estimation Algorithms based on data assimilation
Use load balancing algorithms based on patches and a
fast space filling curve algorithm 1

Uintah Load Balancer automatically assigns patches to nodes

<Grid>
<Level>

<Box label = "1">
<lower> [0,0,0] </lower>
<upper> [1.0,1.0,1.0] </upper>
<resolution> [64,64,64] </resolution>
<patches> [2,2,2] </patches>
<extraCells> [1,1,1] </extraCells>

</Box>
</Level>

</Grid>

XML Problem Specification provided by
user input file, e.g.

• e.g., Grid spec, patches
• <patches> [x,y,z] </patches>

Sunway TaihuLight

de/c))

• SW26010 processor,Chinese design, fab, 1.45 GHz
• Node = 260 Cores (1 socket)

• 4 – core groups
• 64 CPE, No cache, 64 KB scratchpad/CG
• 1 MPE w/32 KB L1 dcache & 256KB L2 cache

• 32 GB memory total, 136.5 GB/s
• ~3 Tflop/s, (22 flops/byte)

• Cabinet = 1024 nodes
• 4 supernodes=32 boards(4 cards/b(2 no
• ~3.14 Pflop/s

• 40 Cabinets in system
• 40,960 nodes total
• 125 Pflop/s total peak

• 10,649,600 cores total
• 1.31 PB of primary memory (DDR3)
• 93 Pflop/s for HPL, 74% peak
• 0.32 Pflop/s for HPCG, 0.3% peak
• 15.3 MW, water cooled

• 6.07 Gflop/s per Watt
• 1.8B RMBs ~ $280M, (building, hw, apps, sw, …)

Source Jack Dongarra

https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201609/Dongarra-ascac-sunway.pdf

• China’s first homegrown many-core processor
• Vendor: Shanghai High Performance IC Design Center
• supported by National Science and Technology Major

Project (NMP): Core Electronic Devices, High-end
Generic Chips, and Basic Software

• 28 nm technology

• 260 Cores

• 3 Tflop/s peak

SW26010 Processor

Source Jack Dongarra

https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201609/Dongarra-ascac-sunway.pdf

• 1 node with 260 cores per processor has 4 Core Groups (CGs), each of which has

• 1 Management Processing Element (MPE) handles the main control flow /
management, communications and computations and shares its memory with…..

● 64 (8x8) Computing Processing Element(CPE) These can be considered as
“coprocessor” used to offload computations. With 256 vector instructions.
Cacheless but with shared scratch memory 64K (LDM)

SW26010: General Architecture

64k

64KB
cache/core

MC MPEMastercore

Group

Slave cores

Main memory

64k

64KB
cache/core

MC MPEMastercore

Group

Slave cores

Main memory

64k

64KB
cache/core

MC MPEMastercore

Group

Slave cores

Main memory

64k

64KB
cache/core

MC MPEMastercore

Group

Slave cores

Main memory

Network on Chip (NoC) SISource Dongarra

	AMT Runtimes, Portability and the Sunway TiahuLight
	Slide Number 2
	Outline
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Uintah Programing Model for Stencil Timestep [Parker 1998]
	Uintah: Unified Heterogeneous Scheduler & Runtime node [Meng, Luitjens 2012]
	NNSA PSAAP2 Existing Simulations of GE Clean coal Boilers using ARCHES in Uintah
	Porting Uintah to future exascale architectures
	Porting Uintah for future exascale architectures
	Sunway TaihuLight Architecture:
	Present Applications experience with the Sunway TiahuLight
	Uintah Programing Model for Stencil Timestep for Sunway
	Slide Number 16
	Slide Number 17
	Sunway specific changes
	Slide Number 19
	Sunway - Strong scaling Results
	Slide Number 21
	Sunway - Parallel Efficiency
	Summary
	Additional Slides
	Sunway - GFLOPS
	Uintah Grid Spec - Load Balancer
	Sunway TaihuLight
	SW26010 Processor
	SW26010: General Architecture

